opencv/modules/photo/src/denoising.cpp

434 lines
19 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp"
#include "fast_nlmeans_denoising_opencl.hpp"
template<typename ST, typename IT, typename UIT, typename D>
static void fastNlMeansDenoising_( const Mat& src, Mat& dst, const std::vector<float>& h,
int templateWindowSize, int searchWindowSize)
{
2015-03-10 01:39:43 +01:00
int hn = (int)h.size();
double granularity = (double)std::max(1., (double)dst.total()/(1 << 17));
switch (CV_MAT_CN(src.type())) {
case 1:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<ST, IT, UIT, D, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
case 2:
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
case 3:
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
case 4:
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported number of channels! Only 1, 2, 3, and 4 are supported");
}
}
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
fastNlMeansDenoising(_src, _dst, std::vector<float>(1, h),
templateWindowSize, searchWindowSize);
}
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, const std::vector<float>& h,
int templateWindowSize, int searchWindowSize, int normType)
{
int hn = (int)h.size(), type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert(hn == 1 || hn == cn);
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
templateWindowSize, searchWindowSize, normType))
Mat src = _src.getMat();
_dst.create(src_size, src.type());
Mat dst = _dst.getMat();
switch (normType) {
case NORM_L2:
#ifdef HAVE_TEGRA_OPTIMIZATION
if(hn == 1 && tegra::useTegra() &&
tegra::fastNlMeansDenoising(src, dst, h[0], templateWindowSize, searchWindowSize))
return;
#endif
switch (depth) {
case CV_8U:
fastNlMeansDenoising_<uchar, int, unsigned, DistSquared>(src, dst, h,
templateWindowSize,
searchWindowSize);
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported depth! Only CV_8U is supported for NORM_L2");
}
break;
case NORM_L1:
switch (depth) {
case CV_8U:
fastNlMeansDenoising_<uchar, int, unsigned, DistAbs>(src, dst, h,
templateWindowSize,
searchWindowSize);
break;
case CV_16U:
fastNlMeansDenoising_<ushort, int64, uint64, DistAbs>(src, dst, h,
templateWindowSize,
searchWindowSize);
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
}
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
}
}
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
{
2014-03-18 14:29:02 +04:00
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Size src_size = _src.size();
if (type != CV_8UC3 && type != CV_8UC4)
2014-02-19 18:34:34 +04:00
{
CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3 or CV_8UC4!");
return;
}
CV_OCL_RUN(_src.dims() <= 2 && (_dst.isUMat() || _src.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
2014-02-19 18:34:34 +04:00
ocl_fastNlMeansDenoisingColored(_src, _dst, h, hForColorComponents,
templateWindowSize, searchWindowSize))
Mat src = _src.getMat();
_dst.create(src_size, type);
2014-02-19 18:34:34 +04:00
Mat dst = _dst.getMat();
Mat src_lab;
cvtColor(src, src_lab, COLOR_LBGR2Lab);
Mat l(src_size, CV_MAKE_TYPE(depth, 1));
Mat ab(src_size, CV_MAKE_TYPE(depth, 2));
Mat l_ab[] = { l, ab };
int from_to[] = { 0,0, 1,1, 2,2 };
mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);
fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);
Mat l_ab_denoised[] = { l, ab };
Mat dst_lab(src_size, CV_MAKE_TYPE(depth, 3));
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
2014-03-18 14:29:02 +04:00
cvtColor(dst_lab, dst, COLOR_Lab2LBGR, cn);
}
static void fastNlMeansDenoisingMultiCheckPreconditions(
const std::vector<Mat>& srcImgs,
int imgToDenoiseIndex, int temporalWindowSize,
int templateWindowSize, int searchWindowSize)
{
2013-08-01 03:24:47 +04:00
int src_imgs_size = static_cast<int>(srcImgs.size());
2014-02-13 15:15:05 +04:00
if (src_imgs_size == 0)
{
2013-04-07 23:23:53 +04:00
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
}
if (temporalWindowSize % 2 == 0 ||
searchWindowSize % 2 == 0 ||
templateWindowSize % 2 == 0) {
2013-04-07 23:23:53 +04:00
CV_Error(Error::StsBadArg, "All windows sizes should be odd!");
}
int temporalWindowHalfSize = temporalWindowSize / 2;
if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
{
2013-04-07 23:23:53 +04:00
CV_Error(Error::StsBadArg,
"imgToDenoiseIndex and temporalWindowSize "
2014-03-02 21:04:17 +04:00
"should be chosen corresponding srcImgs size!");
}
2014-02-13 15:15:05 +04:00
for (int i = 1; i < src_imgs_size; i++)
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type())
{
2013-04-07 23:23:53 +04:00
CV_Error(Error::StsBadArg, "Input images should have the same size and type!");
}
}
template<typename ST, typename IT, typename UIT, typename D>
static void fastNlMeansDenoisingMulti_( const std::vector<Mat>& srcImgs, Mat& dst,
int imgToDenoiseIndex, int temporalWindowSize,
const std::vector<float>& h,
int templateWindowSize, int searchWindowSize)
{
2015-03-10 01:39:43 +01:00
int hn = (int)h.size();
double granularity = (double)std::max(1., (double)dst.total()/(1 << 16));
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
case CV_8UC2:
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
case CV_8UC3:
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
case CV_8UC4:
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]),
granularity);
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
}
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, int templateWindowSize, int searchWindowSize)
{
fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
std::vector<float>(1, h), templateWindowSize, searchWindowSize);
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
const std::vector<float>& h,
int templateWindowSize, int searchWindowSize, int normType)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
int hn = (int)h.size();
int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert(hn == 1 || hn == cn);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (normType) {
case NORM_L2:
switch (depth) {
case CV_8U:
fastNlMeansDenoisingMulti_<uchar, int, unsigned,
DistSquared>(srcImgs, dst,
imgToDenoiseIndex, temporalWindowSize,
h,
templateWindowSize, searchWindowSize);
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported depth! Only CV_8U is supported for NORM_L2");
}
break;
case NORM_L1:
switch (depth) {
case CV_8U:
fastNlMeansDenoisingMulti_<uchar, int, unsigned,
DistAbs>(srcImgs, dst,
imgToDenoiseIndex, temporalWindowSize,
h,
templateWindowSize, searchWindowSize);
break;
case CV_16U:
fastNlMeansDenoisingMulti_<ushort, int64, uint64,
DistAbs>(srcImgs, dst,
imgToDenoiseIndex, temporalWindowSize,
h,
templateWindowSize, searchWindowSize);
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
}
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
}
}
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
2014-02-13 15:15:05 +04:00
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type);
2013-08-01 03:24:47 +04:00
int src_imgs_size = static_cast<int>(srcImgs.size());
if (type != CV_8UC3)
2014-02-13 15:15:05 +04:00
{
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
return;
}
int from_to[] = { 0,0, 1,1, 2,2 };
// TODO convert only required images
std::vector<Mat> src_lab(src_imgs_size);
std::vector<Mat> l(src_imgs_size);
std::vector<Mat> ab(src_imgs_size);
2014-02-13 15:15:05 +04:00
for (int i = 0; i < src_imgs_size; i++)
{
src_lab[i] = Mat::zeros(srcImgs[0].size(), type);
l[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 1));
ab[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 2));
cvtColor(srcImgs[i], src_lab[i], COLOR_LBGR2Lab);
Mat l_ab[] = { l[i], ab[i] };
mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
}
Mat dst_l;
Mat dst_ab;
fastNlMeansDenoisingMulti(
l, dst_l, imgToDenoiseIndex, temporalWindowSize,
h, templateWindowSize, searchWindowSize);
fastNlMeansDenoisingMulti(
ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
hForColorComponents, templateWindowSize, searchWindowSize);
Mat l_ab_denoised[] = { dst_l, dst_ab };
Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
cvtColor(dst_lab, dst, COLOR_Lab2LBGR);
}