Changed parameters of fastNlMeansDenoising[Multi][Abs] from float * to std::vector<float>

This commit is contained in:
Erik Karlsson 2015-03-09 15:52:16 +01:00
parent 21160137d4
commit c44488629a
3 changed files with 225 additions and 302 deletions

View File

@ -149,10 +149,10 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one per
channel. Big h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
@param h Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in src. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
@ -160,7 +160,7 @@ image in different colorspaces. Such approach is used in fastNlMeansDenoisingCol
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
*/
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float *h,
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, std::vector<float> h,
int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Perform image denoising using Non-local Means Denoising
@ -201,10 +201,10 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one per
channel. Big h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
@param h Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in src. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
@ -212,7 +212,7 @@ image in different colorspaces. Such approach is used in fastNlMeansDenoisingCol
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
*/
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float *h,
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, std::vector<float> h,
int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoising function for colored images
@ -283,14 +283,14 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one for each
channel. Bigger h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
@param h Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in src. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h , int templateWindowSize = 7, int searchWindowSize = 21);
std::vector<float> h , int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoising function for images
sequence where consequtive images have been captured in small period
@ -346,14 +346,14 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
@param h Array of parameters regulating filter strength, one for each
channel. Bigger h value perfectly removes noise but also removes image
details, smaller h value preserves details but also preserves some
noise
@param h Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in src. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h, int templateWindowSize = 7, int searchWindowSize = 21);
std::vector<float> h, int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences

View File

@ -48,55 +48,20 @@
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, &h, 1,
templateWindowSize, searchWindowSize, false))
Mat src = _src.getMat();
_dst.create(src_size, src.type());
Mat dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
return;
#endif
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
}
fastNlMeansDenoising(_src, _dst, std::vector<float>(1, h),
templateWindowSize, searchWindowSize);
}
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, std::vector<float> h,
int templateWindowSize, int searchWindowSize)
{
int hn = h.size();
CV_Assert(hn == 1 || hn == CV_MAT_CN(_src.type()));
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
templateWindowSize, searchWindowSize, false))
Mat src = _src.getMat();
@ -111,23 +76,38 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, h));
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
default:
CV_Error(Error::StsBadArg,
@ -138,70 +118,20 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, &h, 1,
templateWindowSize, searchWindowSize, true))
Mat src = _src.getMat();
_dst.create(src_size, src.type());
Mat dst = _dst.getMat();
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
}
fastNlMeansDenoisingAbs(_src, _dst, std::vector<float>(1, h),
templateWindowSize, searchWindowSize);
}
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, std::vector<float> h,
int templateWindowSize, int searchWindowSize)
{
int hn = h.size();
CV_Assert(hn == 1 || hn == CV_MAT_CN(_src.type()));
Size src_size = _src.size();
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
templateWindowSize, searchWindowSize, true))
Mat src = _src.getMat();
@ -211,43 +141,73 @@ void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, h));
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, h));
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16UC4:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
src, dst, templateWindowSize, searchWindowSize, &h[0]));
break;
default:
CV_Error(Error::StsBadArg,
@ -332,51 +292,14 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
int imgToDenoiseIndex, int temporalWindowSize,
float h, int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
}
fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
std::vector<float>(1, h), templateWindowSize, searchWindowSize);
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h, int templateWindowSize, int searchWindowSize)
std::vector<float> h,
int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
@ -385,6 +308,9 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
int hn = h.size();
CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type()));
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
@ -392,27 +318,45 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
default:
CV_Error(Error::StsBadArg,
@ -424,75 +368,14 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
int imgToDenoiseIndex, int temporalWindowSize,
float h, int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
case CV_16UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h));
break;
default:
CV_Error(Error::StsBadArg,
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
}
fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
std::vector<float>(1, h), templateWindowSize, searchWindowSize);
}
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float *h, int templateWindowSize, int searchWindowSize)
std::vector<float> h,
int templateWindowSize, int searchWindowSize)
{
std::vector<Mat> srcImgs;
_srcImgs.getMatVector(srcImgs);
@ -501,6 +384,9 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize);
int hn = h.size();
CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type()));
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
@ -508,51 +394,87 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_16UC4:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
default:
CV_Error(Error::StsBadArg,

View File

@ -16,7 +16,7 @@ namespace ocl {
PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool)
{
int cn, templateWindowSize, searchWindowSize;
float h[4];
std::vector<float> h;
bool use_roi, use_image;
TEST_DECLARE_INPUT_PARAMETER(src);
@ -31,7 +31,7 @@ PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool)
templateWindowSize = 7;
searchWindowSize = 21;
ASSERT_TRUE(cn > 0 && cn <= 4);
h.resize(cn);
for (int i=0; i<cn; i++)
h[i] = 3.0f + 0.5f*i;
}
@ -51,6 +51,7 @@ PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool)
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255);
if (use_image) {
ASSERT_TRUE(cn > 0 && cn <= 4);
if (cn == 2) {
int from_to[] = { 0,0, 1,1 };
src_roi.create(roiSize, type);