Changed parameters of fastNlMeansDenoising[Multi][Abs] from float * to std::vector<float>
This commit is contained in:
parent
21160137d4
commit
c44488629a
@ -149,10 +149,10 @@ Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one per
|
||||
channel. Big h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
@param h Array of parameters regulating filter strength, either one
|
||||
parameter applied to all channels or one per channel in src. Big h value
|
||||
perfectly removes noise but also removes image details, smaller h
|
||||
value preserves details but also preserves some noise
|
||||
|
||||
This function expected to be applied to grayscale images. For colored images look at
|
||||
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
|
||||
@ -160,7 +160,7 @@ image in different colorspaces. Such approach is used in fastNlMeansDenoisingCol
|
||||
image to CIELAB colorspace and then separately denoise L and AB components with different h
|
||||
parameter.
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float *h,
|
||||
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, std::vector<float> h,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Perform image denoising using Non-local Means Denoising
|
||||
@ -201,10 +201,10 @@ Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one per
|
||||
channel. Big h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
@param h Array of parameters regulating filter strength, either one
|
||||
parameter applied to all channels or one per channel in src. Big h value
|
||||
perfectly removes noise but also removes image details, smaller h
|
||||
value preserves details but also preserves some noise
|
||||
|
||||
This function expected to be applied to grayscale images. For colored images look at
|
||||
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
|
||||
@ -212,7 +212,7 @@ image in different colorspaces. Such approach is used in fastNlMeansDenoisingCol
|
||||
image to CIELAB colorspace and then separately denoise L and AB components with different h
|
||||
parameter.
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float *h,
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, std::vector<float> h,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for colored images
|
||||
@ -283,14 +283,14 @@ Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one for each
|
||||
channel. Bigger h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
@param h Array of parameters regulating filter strength, either one
|
||||
parameter applied to all channels or one per channel in src. Big h value
|
||||
perfectly removes noise but also removes image details, smaller h
|
||||
value preserves details but also preserves some noise
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h , int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
std::vector<float> h , int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for images
|
||||
sequence where consequtive images have been captured in small period
|
||||
@ -346,14 +346,14 @@ Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one for each
|
||||
channel. Bigger h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
@param h Array of parameters regulating filter strength, either one
|
||||
parameter applied to all channels or one per channel in src. Big h value
|
||||
perfectly removes noise but also removes image details, smaller h
|
||||
value preserves details but also preserves some noise
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
std::vector<float> h, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
|
||||
|
||||
|
@ -48,55 +48,20 @@
|
||||
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
Size src_size = _src.size();
|
||||
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
||||
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
||||
ocl_fastNlMeansDenoising(_src, _dst, &h, 1,
|
||||
templateWindowSize, searchWindowSize, false))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(src_size, src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
|
||||
return;
|
||||
#endif
|
||||
|
||||
switch (src.type()) {
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
|
||||
}
|
||||
fastNlMeansDenoising(_src, _dst, std::vector<float>(1, h),
|
||||
templateWindowSize, searchWindowSize);
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
|
||||
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, std::vector<float> h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
int hn = h.size();
|
||||
CV_Assert(hn == 1 || hn == CV_MAT_CN(_src.type()));
|
||||
|
||||
Size src_size = _src.size();
|
||||
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
||||
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
||||
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
|
||||
ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
|
||||
templateWindowSize, searchWindowSize, false))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
@ -111,23 +76,38 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
|
||||
switch (src.type()) {
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
@ -138,70 +118,20 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
|
||||
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
Size src_size = _src.size();
|
||||
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
||||
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
||||
ocl_fastNlMeansDenoising(_src, _dst, &h, 1,
|
||||
templateWindowSize, searchWindowSize, true))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(src_size, src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
switch (src.type()) {
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
|
||||
}
|
||||
fastNlMeansDenoisingAbs(_src, _dst, std::vector<float>(1, h),
|
||||
templateWindowSize, searchWindowSize);
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
|
||||
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, std::vector<float> h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
int hn = h.size();
|
||||
CV_Assert(hn == 1 || hn == CV_MAT_CN(_src.type()));
|
||||
|
||||
Size src_size = _src.size();
|
||||
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
||||
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
||||
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
|
||||
ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
|
||||
templateWindowSize, searchWindowSize, true))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
@ -211,43 +141,73 @@ void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
|
||||
switch (src.type()) {
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
@ -332,51 +292,14 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h, int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
std::vector<Mat> srcImgs;
|
||||
_srcImgs.getMatVector(srcImgs);
|
||||
|
||||
fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
srcImgs, imgToDenoiseIndex,
|
||||
temporalWindowSize, templateWindowSize, searchWindowSize);
|
||||
|
||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
switch (srcImgs[0].type())
|
||||
{
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
|
||||
}
|
||||
fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
|
||||
std::vector<float>(1, h), templateWindowSize, searchWindowSize);
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h, int templateWindowSize, int searchWindowSize)
|
||||
std::vector<float> h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
std::vector<Mat> srcImgs;
|
||||
_srcImgs.getMatVector(srcImgs);
|
||||
@ -385,6 +308,9 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
|
||||
srcImgs, imgToDenoiseIndex,
|
||||
temporalWindowSize, templateWindowSize, searchWindowSize);
|
||||
|
||||
int hn = h.size();
|
||||
CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type()));
|
||||
|
||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
@ -392,27 +318,45 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
|
||||
{
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
@ -424,75 +368,14 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h, int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
std::vector<Mat> srcImgs;
|
||||
_srcImgs.getMatVector(srcImgs);
|
||||
|
||||
fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
srcImgs, imgToDenoiseIndex,
|
||||
temporalWindowSize, templateWindowSize, searchWindowSize);
|
||||
|
||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
switch (srcImgs[0].type())
|
||||
{
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
case CV_16UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
|
||||
}
|
||||
fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
|
||||
std::vector<float>(1, h), templateWindowSize, searchWindowSize);
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h, int templateWindowSize, int searchWindowSize)
|
||||
std::vector<float> h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
std::vector<Mat> srcImgs;
|
||||
_srcImgs.getMatVector(srcImgs);
|
||||
@ -501,6 +384,9 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
|
||||
srcImgs, imgToDenoiseIndex,
|
||||
temporalWindowSize, templateWindowSize, searchWindowSize);
|
||||
|
||||
int hn = h.size();
|
||||
CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type()));
|
||||
|
||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
@ -508,51 +394,87 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
|
||||
{
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
case CV_16UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
if (hn == 1)
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
else
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, &h[0]));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
|
@ -16,7 +16,7 @@ namespace ocl {
|
||||
PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool)
|
||||
{
|
||||
int cn, templateWindowSize, searchWindowSize;
|
||||
float h[4];
|
||||
std::vector<float> h;
|
||||
bool use_roi, use_image;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src);
|
||||
@ -31,7 +31,7 @@ PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool)
|
||||
templateWindowSize = 7;
|
||||
searchWindowSize = 21;
|
||||
|
||||
ASSERT_TRUE(cn > 0 && cn <= 4);
|
||||
h.resize(cn);
|
||||
for (int i=0; i<cn; i++)
|
||||
h[i] = 3.0f + 0.5f*i;
|
||||
}
|
||||
@ -51,6 +51,7 @@ PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool, bool)
|
||||
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255);
|
||||
if (use_image) {
|
||||
ASSERT_TRUE(cn > 0 && cn <= 4);
|
||||
if (cn == 2) {
|
||||
int from_to[] = { 0,0, 1,1 };
|
||||
src_roi.create(roiSize, type);
|
||||
|
Loading…
x
Reference in New Issue
Block a user