434 lines
19 KiB
C++
434 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective icvers.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "fast_nlmeans_denoising_invoker.hpp"
|
|
#include "fast_nlmeans_multi_denoising_invoker.hpp"
|
|
#include "fast_nlmeans_denoising_opencl.hpp"
|
|
|
|
template<typename ST, typename IT, typename UIT, typename D>
|
|
static void fastNlMeansDenoising_( const Mat& src, Mat& dst, const std::vector<float>& h,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
int hn = (int)h.size();
|
|
double granularity = (double)std::max(1., (double)dst.total()/(1 << 17));
|
|
|
|
switch (CV_MAT_CN(src.type())) {
|
|
case 1:
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<ST, IT, UIT, D, int>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
case 2:
|
|
if (hn == 1)
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
else
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
case 3:
|
|
if (hn == 1)
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
else
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
case 4:
|
|
if (hn == 1)
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
else
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>(
|
|
src, dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported number of channels! Only 1, 2, 3, and 4 are supported");
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
fastNlMeansDenoising(_src, _dst, std::vector<float>(1, h),
|
|
templateWindowSize, searchWindowSize);
|
|
}
|
|
|
|
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, const std::vector<float>& h,
|
|
int templateWindowSize, int searchWindowSize, int normType)
|
|
{
|
|
int hn = (int)h.size(), type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
CV_Assert(hn == 1 || hn == cn);
|
|
|
|
Size src_size = _src.size();
|
|
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
|
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
|
ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
|
|
templateWindowSize, searchWindowSize, normType))
|
|
|
|
Mat src = _src.getMat();
|
|
_dst.create(src_size, src.type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
switch (normType) {
|
|
case NORM_L2:
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if(hn == 1 && tegra::useTegra() &&
|
|
tegra::fastNlMeansDenoising(src, dst, h[0], templateWindowSize, searchWindowSize))
|
|
return;
|
|
#endif
|
|
switch (depth) {
|
|
case CV_8U:
|
|
fastNlMeansDenoising_<uchar, int, unsigned, DistSquared>(src, dst, h,
|
|
templateWindowSize,
|
|
searchWindowSize);
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported depth! Only CV_8U is supported for NORM_L2");
|
|
}
|
|
break;
|
|
case NORM_L1:
|
|
switch (depth) {
|
|
case CV_8U:
|
|
fastNlMeansDenoising_<uchar, int, unsigned, DistAbs>(src, dst, h,
|
|
templateWindowSize,
|
|
searchWindowSize);
|
|
break;
|
|
case CV_16U:
|
|
fastNlMeansDenoising_<ushort, int64, uint64, DistAbs>(src, dst, h,
|
|
templateWindowSize,
|
|
searchWindowSize);
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
|
|
}
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
|
|
float h, float hForColorComponents,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
Size src_size = _src.size();
|
|
if (type != CV_8UC3 && type != CV_8UC4)
|
|
{
|
|
CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3 or CV_8UC4!");
|
|
return;
|
|
}
|
|
|
|
CV_OCL_RUN(_src.dims() <= 2 && (_dst.isUMat() || _src.isUMat()) &&
|
|
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
|
ocl_fastNlMeansDenoisingColored(_src, _dst, h, hForColorComponents,
|
|
templateWindowSize, searchWindowSize))
|
|
|
|
Mat src = _src.getMat();
|
|
_dst.create(src_size, type);
|
|
Mat dst = _dst.getMat();
|
|
|
|
Mat src_lab;
|
|
cvtColor(src, src_lab, COLOR_LBGR2Lab);
|
|
|
|
Mat l(src_size, CV_MAKE_TYPE(depth, 1));
|
|
Mat ab(src_size, CV_MAKE_TYPE(depth, 2));
|
|
Mat l_ab[] = { l, ab };
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);
|
|
|
|
fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
|
|
fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);
|
|
|
|
Mat l_ab_denoised[] = { l, ab };
|
|
Mat dst_lab(src_size, CV_MAKE_TYPE(depth, 3));
|
|
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
|
|
|
|
cvtColor(dst_lab, dst, COLOR_Lab2LBGR, cn);
|
|
}
|
|
|
|
static void fastNlMeansDenoisingMultiCheckPreconditions(
|
|
const std::vector<Mat>& srcImgs,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
int src_imgs_size = static_cast<int>(srcImgs.size());
|
|
if (src_imgs_size == 0)
|
|
{
|
|
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
|
|
}
|
|
|
|
if (temporalWindowSize % 2 == 0 ||
|
|
searchWindowSize % 2 == 0 ||
|
|
templateWindowSize % 2 == 0) {
|
|
CV_Error(Error::StsBadArg, "All windows sizes should be odd!");
|
|
}
|
|
|
|
int temporalWindowHalfSize = temporalWindowSize / 2;
|
|
if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
|
|
imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
|
|
{
|
|
CV_Error(Error::StsBadArg,
|
|
"imgToDenoiseIndex and temporalWindowSize "
|
|
"should be chosen corresponding srcImgs size!");
|
|
}
|
|
|
|
for (int i = 1; i < src_imgs_size; i++)
|
|
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type())
|
|
{
|
|
CV_Error(Error::StsBadArg, "Input images should have the same size and type!");
|
|
}
|
|
}
|
|
|
|
template<typename ST, typename IT, typename UIT, typename D>
|
|
static void fastNlMeansDenoisingMulti_( const std::vector<Mat>& srcImgs, Mat& dst,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
const std::vector<float>& h,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
int hn = (int)h.size();
|
|
double granularity = (double)std::max(1., (double)dst.total()/(1 << 16));
|
|
|
|
switch (srcImgs[0].type())
|
|
{
|
|
case CV_8U:
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<uchar, IT, UIT, D, int>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
case CV_8UC2:
|
|
if (hn == 1)
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
else
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
case CV_8UC3:
|
|
if (hn == 1)
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
else
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
case CV_8UC4:
|
|
if (hn == 1)
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
else
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, &h[0]),
|
|
granularity);
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
float h, int templateWindowSize, int searchWindowSize)
|
|
{
|
|
fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
|
|
std::vector<float>(1, h), templateWindowSize, searchWindowSize);
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
const std::vector<float>& h,
|
|
int templateWindowSize, int searchWindowSize, int normType)
|
|
{
|
|
std::vector<Mat> srcImgs;
|
|
_srcImgs.getMatVector(srcImgs);
|
|
|
|
fastNlMeansDenoisingMultiCheckPreconditions(
|
|
srcImgs, imgToDenoiseIndex,
|
|
temporalWindowSize, templateWindowSize, searchWindowSize);
|
|
|
|
int hn = (int)h.size();
|
|
int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
CV_Assert(hn == 1 || hn == cn);
|
|
|
|
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
switch (normType) {
|
|
case NORM_L2:
|
|
switch (depth) {
|
|
case CV_8U:
|
|
fastNlMeansDenoisingMulti_<uchar, int, unsigned,
|
|
DistSquared>(srcImgs, dst,
|
|
imgToDenoiseIndex, temporalWindowSize,
|
|
h,
|
|
templateWindowSize, searchWindowSize);
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported depth! Only CV_8U is supported for NORM_L2");
|
|
}
|
|
break;
|
|
case NORM_L1:
|
|
switch (depth) {
|
|
case CV_8U:
|
|
fastNlMeansDenoisingMulti_<uchar, int, unsigned,
|
|
DistAbs>(srcImgs, dst,
|
|
imgToDenoiseIndex, temporalWindowSize,
|
|
h,
|
|
templateWindowSize, searchWindowSize);
|
|
break;
|
|
case CV_16U:
|
|
fastNlMeansDenoisingMulti_<ushort, int64, uint64,
|
|
DistAbs>(srcImgs, dst,
|
|
imgToDenoiseIndex, temporalWindowSize,
|
|
h,
|
|
templateWindowSize, searchWindowSize);
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
|
|
}
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg,
|
|
"Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
float h, float hForColorComponents,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
std::vector<Mat> srcImgs;
|
|
_srcImgs.getMatVector(srcImgs);
|
|
|
|
fastNlMeansDenoisingMultiCheckPreconditions(
|
|
srcImgs, imgToDenoiseIndex,
|
|
temporalWindowSize, templateWindowSize, searchWindowSize);
|
|
|
|
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type);
|
|
int src_imgs_size = static_cast<int>(srcImgs.size());
|
|
|
|
if (type != CV_8UC3)
|
|
{
|
|
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
|
|
return;
|
|
}
|
|
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
|
|
// TODO convert only required images
|
|
std::vector<Mat> src_lab(src_imgs_size);
|
|
std::vector<Mat> l(src_imgs_size);
|
|
std::vector<Mat> ab(src_imgs_size);
|
|
for (int i = 0; i < src_imgs_size; i++)
|
|
{
|
|
src_lab[i] = Mat::zeros(srcImgs[0].size(), type);
|
|
l[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 1));
|
|
ab[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 2));
|
|
cvtColor(srcImgs[i], src_lab[i], COLOR_LBGR2Lab);
|
|
|
|
Mat l_ab[] = { l[i], ab[i] };
|
|
mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
|
|
}
|
|
|
|
Mat dst_l;
|
|
Mat dst_ab;
|
|
|
|
fastNlMeansDenoisingMulti(
|
|
l, dst_l, imgToDenoiseIndex, temporalWindowSize,
|
|
h, templateWindowSize, searchWindowSize);
|
|
|
|
fastNlMeansDenoisingMulti(
|
|
ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
|
|
hForColorComponents, templateWindowSize, searchWindowSize);
|
|
|
|
Mat l_ab_denoised[] = { dst_l, dst_ab };
|
|
Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
|
|
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
|
|
|
|
cvtColor(dst_lab, dst, COLOR_Lab2LBGR);
|
|
}
|