Addition of per-channel h-values for fastNlMeansDenoising[Multi][Abs]
This commit is contained in:
parent
324fa26848
commit
cc8d94c6fc
@ -138,6 +138,31 @@ parameter.
|
||||
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Perform image denoising using Non-local Means Denoising algorithm
|
||||
<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
|
||||
optimizations. Noise expected to be a gaussian white noise
|
||||
|
||||
@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
|
||||
@param dst Output image with the same size and type as src .
|
||||
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
|
||||
Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one per
|
||||
channel. Big h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
|
||||
This function expected to be applied to grayscale images. For colored images look at
|
||||
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
|
||||
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
|
||||
image to CIELAB colorspace and then separately denoise L and AB components with different h
|
||||
parameter.
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float *h,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Perform image denoising using Non-local Means Denoising
|
||||
algorithm <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/>
|
||||
with several computational optimizations. Noise expected to be a
|
||||
@ -163,6 +188,33 @@ parameter.
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float h = 3,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Perform image denoising using Non-local Means Denoising
|
||||
algorithm <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/>
|
||||
with several computational optimizations. Noise expected to be a
|
||||
gaussian white noise. Uses squared sum of absolute value distances
|
||||
instead of sum of squared distances for weight calculation
|
||||
|
||||
@param src Input 8-bit or 16-bit 1-channel, 2-channel, 3-channel or 4-channel image.
|
||||
@param dst Output image with the same size and type as src .
|
||||
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
|
||||
Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one per
|
||||
channel. Big h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
|
||||
This function expected to be applied to grayscale images. For colored images look at
|
||||
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
|
||||
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
|
||||
image to CIELAB colorspace and then separately denoise L and AB components with different h
|
||||
parameter.
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float *h,
|
||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for colored images
|
||||
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@ -204,14 +256,73 @@ Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
|
||||
removes noise but also removes image details, smaller h value preserves details but also preserves
|
||||
some noise
|
||||
@param h Parameter regulating filter strength. Bigger h value
|
||||
perfectly removes noise but also removes image details, smaller h
|
||||
value preserves details but also preserves some noise
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
|
||||
captured in small period of time. For example video. This version of the function is for grayscale
|
||||
images or for manual manipulation with colorspaces. For more details see
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
|
||||
|
||||
@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
|
||||
4-channel images sequence. All images should have the same type and
|
||||
size.
|
||||
@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
|
||||
@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
|
||||
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
|
||||
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
|
||||
srcImgs[imgToDenoiseIndex] image.
|
||||
@param dst Output image with the same size and type as srcImgs images.
|
||||
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
|
||||
Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Array of parameters regulating filter strength, one for each
|
||||
channel. Bigger h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h , int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for images
|
||||
sequence where consequtive images have been captured in small period
|
||||
of time. For example video. This version of the function is for
|
||||
grayscale images or for manual manipulation with colorspaces. For more
|
||||
details see
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>. Uses
|
||||
squared sum of absolute value distances instead of sum of squared
|
||||
distances for weight calculation
|
||||
|
||||
@param srcImgs Input 8-bit or 16-bit 1-channel, 2-channel, 3-channel
|
||||
or 4-channel images sequence. All images should have the same type and
|
||||
size.
|
||||
@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
|
||||
@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
|
||||
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
|
||||
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
|
||||
srcImgs[imgToDenoiseIndex] image.
|
||||
@param dst Output image with the same size and type as srcImgs images.
|
||||
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
|
||||
Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Parameter regulating filter strength. Bigger h value
|
||||
perfectly removes noise but also removes image details, smaller h
|
||||
value preserves details but also preserves some noise
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoising function for images
|
||||
sequence where consequtive images have been captured in small period
|
||||
of time. For example video. This version of the function is for
|
||||
@ -235,13 +346,14 @@ Should be odd. Recommended value 7 pixels
|
||||
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
|
||||
removes noise but also removes image details, smaller h value preserves details but also preserves
|
||||
some noise
|
||||
@param h Array of parameters regulating filter strength, one for each
|
||||
channel. Bigger h value perfectly removes noise but also removes image
|
||||
details, smaller h value preserves details but also preserves some
|
||||
noise
|
||||
*/
|
||||
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
float *h, int templateWindowSize = 7, int searchWindowSize = 21);
|
||||
|
||||
/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
|
||||
|
||||
|
@ -90,6 +90,51 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
Size src_size = _src.size();
|
||||
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
||||
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
||||
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
|
||||
templateWindowSize, searchWindowSize, false))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(src_size, src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
|
||||
return;
|
||||
#endif
|
||||
|
||||
switch (src.type()) {
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
@ -150,6 +195,66 @@ void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
Size src_size = _src.size();
|
||||
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
|
||||
src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
|
||||
ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
|
||||
templateWindowSize, searchWindowSize, true))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(src_size, src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
switch (src.type()) {
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16U:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16UC2:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16UC3:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16UC4:
|
||||
parallel_for_(cv::Range(0, src.rows),
|
||||
FastNlMeansDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
|
||||
src, dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
|
||||
float h, float hForColorComponents,
|
||||
int templateWindowSize, int searchWindowSize)
|
||||
@ -269,6 +374,52 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h, int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
std::vector<Mat> srcImgs;
|
||||
_srcImgs.getMatVector(srcImgs);
|
||||
|
||||
fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
srcImgs, imgToDenoiseIndex,
|
||||
temporalWindowSize, templateWindowSize, searchWindowSize);
|
||||
|
||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
switch (srcImgs[0].type())
|
||||
{
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistSquared, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistSquared, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistSquared, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistSquared, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h, int templateWindowSize, int searchWindowSize)
|
||||
@ -339,6 +490,76 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float *h, int templateWindowSize, int searchWindowSize)
|
||||
{
|
||||
std::vector<Mat> srcImgs;
|
||||
_srcImgs.getMatVector(srcImgs);
|
||||
|
||||
fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
srcImgs, imgToDenoiseIndex,
|
||||
temporalWindowSize, templateWindowSize, searchWindowSize);
|
||||
|
||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
switch (srcImgs[0].type())
|
||||
{
|
||||
case CV_8U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned, DistAbs, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned, DistAbs, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_8UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec4b, int, unsigned, DistAbs, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16U:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<ushort, int64, uint64, DistAbs, int>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16UC2:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 2>, int64, uint64, DistAbs, Vec2i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16UC3:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 3>, int64, uint64, DistAbs, Vec3i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
case CV_16UC4:
|
||||
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
||||
FastNlMeansMultiDenoisingInvoker<cv::Vec<ushort, 4>, int64, uint64, DistAbs, Vec4i>(
|
||||
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
dst, templateWindowSize, searchWindowSize, h));
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsBadArg,
|
||||
"Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
int imgToDenoiseIndex, int temporalWindowSize,
|
||||
float h, float hForColorComponents,
|
||||
|
@ -236,7 +236,7 @@ void FastNlMeansDenoisingInvoker<T, IT, UIT, D, WT>::operator() (const Range& ra
|
||||
for (int x = 0; x < search_window_size_; x++)
|
||||
{
|
||||
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
|
||||
int weight = almost_dist2weight_[almostAvgDist];
|
||||
WT weight = almost_dist2weight_[almostAvgDist];
|
||||
T p = cur_row_ptr[border_size_ + search_window_x + x];
|
||||
incWithWeight<T, IT, WT>(estimation, weights_sum, weight, p);
|
||||
}
|
||||
|
@ -387,7 +387,7 @@ template <typename ET, typename IT, typename EW> struct incWithWeight_<Vec<ET, 4
|
||||
};
|
||||
|
||||
template <typename T, typename IT, typename WT>
|
||||
static inline void incWithWeight(IT* estimation, IT* weights_sum, IT weight, T p)
|
||||
static inline void incWithWeight(IT* estimation, IT* weights_sum, WT weight, T p)
|
||||
{
|
||||
return incWithWeight_<T, IT, WT>::f(estimation, weights_sum, weight, p);
|
||||
}
|
||||
|
@ -262,7 +262,7 @@ void FastNlMeansMultiDenoisingInvoker<T, IT, UIT, D, WT>::operator() (const Rang
|
||||
{
|
||||
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
|
||||
|
||||
int weight = almost_dist2weight[almostAvgDist];
|
||||
WT weight = almost_dist2weight[almostAvgDist];
|
||||
T p = cur_row_ptr[border_size_ + search_window_x + x];
|
||||
incWithWeight<T, IT, WT>(estimation, weights_sum, weight, p);
|
||||
}
|
||||
|
@ -36,7 +36,7 @@ __kernel void calcAlmostDist2Weight(__global wlut_t * almostDist2Weight, int alm
|
||||
#endif
|
||||
wlut_t weight = convert_wlut_t(fixedPointMult * (isnan(w) ? (w_t)1.0 : w));
|
||||
almostDist2Weight[almostDist] =
|
||||
weight < WEIGHT_THRESHOLD * fixedPointMult ? (wlut_t)0 : weight;
|
||||
weight < (wlut_t)(WEIGHT_THRESHOLD * fixedPointMult) ? (wlut_t)0 : weight;
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user