some more refactoring

This commit is contained in:
Ilya Lavrenov 2014-02-13 15:15:05 +04:00
parent e16d89e8d6
commit d27068f79a
4 changed files with 86 additions and 78 deletions

View File

@ -39,10 +39,14 @@
//
//M*/
#include "opencv2/core/base.hpp"
#ifndef __OPENCV_DENOISING_ARRAYS_HPP__
#define __OPENCV_DENOISING_ARRAYS_HPP__
template <class T> struct Array2d {
template <class T>
struct Array2d
{
T* a;
int n1,n2;
bool needToDeallocArray;
@ -50,14 +54,16 @@ template <class T> struct Array2d {
Array2d(const Array2d& array2d):
a(array2d.a), n1(array2d.n1), n2(array2d.n2), needToDeallocArray(false)
{
if (array2d.needToDeallocArray) {
// copy constructor for self allocating arrays not supported
throw new std::exception();
if (array2d.needToDeallocArray)
{
CV_Error(Error::BadDataPtr, "Copy constructor for self allocating arrays not supported");
}
}
Array2d(T* _a, int _n1, int _n2):
a(_a), n1(_n1), n2(_n2), needToDeallocArray(false) {}
a(_a), n1(_n1), n2(_n2), needToDeallocArray(false)
{
}
Array2d(int _n1, int _n2):
n1(_n1), n2(_n2), needToDeallocArray(true)
@ -65,28 +71,34 @@ template <class T> struct Array2d {
a = new T[n1*n2];
}
~Array2d() {
if (needToDeallocArray) {
~Array2d()
{
if (needToDeallocArray)
delete[] a;
}
}
T* operator [] (int i) {
T* operator [] (int i)
{
return a + i*n2;
}
inline T* row_ptr(int i) {
inline T* row_ptr(int i)
{
return (*this)[i];
}
};
template <class T> struct Array3d {
template <class T>
struct Array3d
{
T* a;
int n1,n2,n3;
bool needToDeallocArray;
Array3d(T* _a, int _n1, int _n2, int _n3):
a(_a), n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(false) {}
a(_a), n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(false)
{
}
Array3d(int _n1, int _n2, int _n3):
n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(true)
@ -94,64 +106,72 @@ template <class T> struct Array3d {
a = new T[n1*n2*n3];
}
~Array3d() {
if (needToDeallocArray) {
~Array3d()
{
if (needToDeallocArray)
delete[] a;
}
}
Array2d<T> operator [] (int i) {
Array2d<T> operator [] (int i)
{
Array2d<T> array2d(a + i*n2*n3, n2, n3);
return array2d;
}
inline T* row_ptr(int i1, int i2) {
inline T* row_ptr(int i1, int i2)
{
return a + i1*n2*n3 + i2*n3;
}
};
template <class T> struct Array4d {
template <class T>
struct Array4d
{
T* a;
int n1,n2,n3,n4;
bool needToDeallocArray;
int steps[4];
void init_steps() {
void init_steps()
{
steps[0] = n2*n3*n4;
steps[1] = n3*n4;
steps[2] = n4;
steps[3] = 1;
}
Array4d(T* _a, int _n1, int _n2, int _n3, int _n4):
Array4d(T* _a, int _n1, int _n2, int _n3, int _n4) :
a(_a), n1(_n1), n2(_n2), n3(_n3), n4(_n4), needToDeallocArray(false)
{
{
init_steps();
}
}
Array4d(int _n1, int _n2, int _n3, int _n4):
Array4d(int _n1, int _n2, int _n3, int _n4) :
n1(_n1), n2(_n2), n3(_n3), n4(_n4), needToDeallocArray(true)
{
a = new T[n1*n2*n3*n4];
init_steps();
}
~Array4d() {
if (needToDeallocArray) {
delete[] a;
}
}
Array3d<T> operator [] (int i) {
~Array4d()
{
if (needToDeallocArray)
delete[] a;
}
Array3d<T> operator [] (int i)
{
Array3d<T> array3d(a + i*n2*n3*n4, n2, n3, n4);
return array3d;
}
inline T* row_ptr(int i1, int i2, int i3) {
inline T* row_ptr(int i1, int i2, int i3)
{
return a + i1*n2*n3*n4 + i2*n3*n4 + i3*n4;
}
inline int step_size(int dimension) {
inline int step_size(int dimension)
{
return steps[dimension];
}
};

View File

@ -117,7 +117,8 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
int templateWindowSize, int searchWindowSize)
{
int src_imgs_size = static_cast<int>(srcImgs.size());
if (src_imgs_size == 0) {
if (src_imgs_size == 0)
{
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
}
@ -136,11 +137,11 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
"should be choosen corresponding srcImgs size!");
}
for (int i = 1; i < src_imgs_size; i++) {
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) {
for (int i = 1; i < src_imgs_size; i++)
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type())
{
CV_Error(Error::StsBadArg, "Input images should have the same size and type!");
}
}
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
@ -152,12 +153,13 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize
);
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type()) {
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar>(
@ -192,15 +194,15 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize
);
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
int src_imgs_size = static_cast<int>(srcImgs.size());
if (srcImgs[0].type() != CV_8UC3) {
if (srcImgs[0].type() != CV_8UC3)
{
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
return;
}
@ -211,7 +213,8 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
std::vector<Mat> src_lab(src_imgs_size);
std::vector<Mat> l(src_imgs_size);
std::vector<Mat> ab(src_imgs_size);
for (int i = 0; i < src_imgs_size; i++) {
for (int i = 0; i < src_imgs_size; i++)
{
src_lab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC3);
l[i] = Mat::zeros(srcImgs[0].size(), CV_8UC1);
ab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC2);

View File

@ -101,7 +101,7 @@ inline int getNearestPowerOf2(int value)
template <class T>
FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
const cv::Mat& src, cv::Mat& dst,
const Mat& src, Mat& dst,
int template_window_size,
int search_window_size,
const float h) :
@ -115,22 +115,20 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
search_window_size_ = search_window_half_size_ * 2 + 1;
border_size_ = search_window_half_size_ + template_window_half_size_;
copyMakeBorder(src_, extended_src_,
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT);
copyMakeBorder(src_, extended_src_, border_size_, border_size_, border_size_, border_size_, BORDER_DEFAULT);
const int max_estimate_sum_value = search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert(template_window_size_ <= 46340 ); // sqrt(INT_MAX)
CV_Assert(template_window_size_ <= 46340); // sqrt(INT_MAX)
int template_window_size_sq = template_window_size_ * template_window_size_;
almost_template_window_size_sq_bin_shift_ = getNearestPowerOf2(template_window_size_sq);
double almost_dist2actual_dist_multiplier = ((double)(1 << almost_template_window_size_sq_bin_shift_)) / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1);
int almost_max_dist = (int)(max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight_.resize(almost_max_dist);
const double WEIGHT_THRESHOLD = 0.001;
@ -157,12 +155,14 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
int row_from = range.start;
int row_to = range.end - 1;
// sums of cols anf rows for current pixel p
Array2d<int> dist_sums(search_window_size_, search_window_size_);
// for lazy calc optimization
// for lazy calc optimization (sum of cols for current pixel)
Array3d<int> col_dist_sums(template_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
// last elements of column sum (for each element in row)
Array3d<int> up_col_dist_sums(src_.cols, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++)
@ -177,7 +177,6 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
{
calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums);
first_col_num = 0;
}
else
{
@ -186,7 +185,6 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
{
calcDistSumsForElementInFirstRow(i, j, first_col_num,
dist_sums, col_dist_sums, up_col_dist_sums);
}
else
{
@ -204,29 +202,23 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
for (int y = 0; y < search_window_size; y++)
{
int* dist_sums_row = dist_sums.row_ptr(y);
int * dist_sums_row = dist_sums.row_ptr(y);
int * col_dist_sums_row = col_dist_sums.row_ptr(first_col_num, y);
int * up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
int* col_dist_sums_row = col_dist_sums.row_ptr(first_col_num,y);
int* up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
const T* b_up_ptr = extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T* b_down_ptr = extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
const T * b_up_ptr = extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T * b_down_ptr = extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
for (int x = 0; x < search_window_size; x++)
{
// remove from current pixel sum column sum with index "first_col_num"
dist_sums_row[x] -= col_dist_sums_row[x];
col_dist_sums_row[x] =
up_col_dist_sums_row[x] +
calcUpDownDist(
a_up, a_down,
b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]
);
int bx = start_bx + x;
col_dist_sums_row[x] = up_col_dist_sums_row[x] + calcUpDownDist(a_up, a_down, b_up_ptr[bx], b_down_ptr[bx]);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
}
}
}
@ -235,9 +227,7 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
}
// calc weights
int weights_sum = 0;
int estimation[3];
int estimation[3], weights_sum = 0;
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = 0;
@ -247,9 +237,7 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
int* dist_sums_row = dist_sums.row_ptr(y);
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist =
dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
int weight = almost_dist2weight_[almostAvgDist];
weights_sum += weight;
@ -302,9 +290,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
template <class T>
inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
int i, int j, int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const
@ -326,8 +312,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int by = start_by + y;
int bx = start_bx + x;
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
col_dist_sums[new_last_col_num][y][x] +=
calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
col_dist_sums[new_last_col_num][y][x] += calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
dist_sums[y][x] += col_dist_sums[new_last_col_num][y][x];
up_col_dist_sums[j][y][x] = col_dist_sums[new_last_col_num][y][x];

View File

@ -70,7 +70,7 @@ template <typename T> static inline int calcDist(const Mat& m, int i1, int j1, i
template <typename T> static inline int calcUpDownDist(T a_up, T a_down, T b_up, T b_down)
{
return calcDist(a_down,b_down) - calcDist(a_up, b_up);
return calcDist(a_down, b_down) - calcDist(a_up, b_up);
}
template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uchar b_down)