5b44ef0c50
This patch attempts to address a bug reported for 4K video. https://b.corp.google.com/issues/62215394 In this instance a perfect storm of a moderate complexity section followed by a much easier section where a CGI overlay helped to suppress film grain noise, followed by a much harder and very grainy section at the end, cause a massive local rate spike that pushed a chunk over the upper allowed rate limit. This patch detects cases where the rate for a frame is much higher than expected and allows, in this special case, for rapid adjustment of the active Q range. For the example chunk in the bug report the target rate was 18Mb/s and the observed rate was over 37 Mb/s with a surge for the last few frames to over 100Mb/s. This patch brings the overall chunk rate right back down to ~18.2 Mbit/s and almost completely eliminates the rate spike at the end. (See graphs appended to bug report) Also see I108da7ca42f3bc95c5825dd33c9d84583227dac1 which fixes a bug unearthed during testing of this patch and also has a bearing on high rate encodes such as 4K. This patch does have a negative impact on some metrics. Most notably there are clips in our standard test set where it hurts global psnr (though in many cases it conversely helps SSIM, FAST SSIM and PSNR-HVS). It is also worth noting that the clips (and data rates) where there is a big metric impact, are almost all cases where there is currently a significant overshoot vs the target rate and overall rate accuracy is greatly improved. Change-Id: I692311a709ccdb6003e705103de9d05b59bf840a |
||
---|---|---|
build | ||
examples | ||
test | ||
third_party | ||
tools | ||
vp8 | ||
vp9 | ||
vpx | ||
vpx_dsp | ||
vpx_mem | ||
vpx_ports | ||
vpx_scale | ||
vpx_util | ||
.clang-format | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
args.c | ||
args.h | ||
AUTHORS | ||
CHANGELOG | ||
codereview.settings | ||
configure | ||
docs.mk | ||
examples.mk | ||
ivfdec.c | ||
ivfdec.h | ||
ivfenc.c | ||
ivfenc.h | ||
keywords.dox | ||
libs.doxy_template | ||
libs.mk | ||
LICENSE | ||
mainpage.dox | ||
md5_utils.c | ||
md5_utils.h | ||
PATENTS | ||
rate_hist.c | ||
rate_hist.h | ||
README | ||
solution.mk | ||
tools_common.c | ||
tools_common.h | ||
tools.mk | ||
usage_cx.dox | ||
usage_dx.dox | ||
usage.dox | ||
video_common.h | ||
video_reader.c | ||
video_reader.h | ||
video_writer.c | ||
video_writer.h | ||
vpxdec.c | ||
vpxenc.c | ||
vpxenc.h | ||
vpxstats.c | ||
vpxstats.h | ||
warnings.c | ||
warnings.h | ||
webmdec.cc | ||
webmdec.h | ||
webmenc.cc | ||
webmenc.h | ||
y4menc.c | ||
y4menc.h | ||
y4minput.c | ||
y4minput.h |
README - 26 January 2017 Welcome to the WebM VP8/VP9 Codec SDK! COMPILING THE APPLICATIONS/LIBRARIES: The build system used is similar to autotools. Building generally consists of "configuring" with your desired build options, then using GNU make to build the application. 1. Prerequisites * All x86 targets require the Yasm[1] assembler be installed. * All Windows builds require that Cygwin[2] be installed. * Building the documentation requires Doxygen[3]. If you do not have this package, the install-docs option will be disabled. * Downloading the data for the unit tests requires curl[4] and sha1sum. sha1sum is provided via the GNU coreutils, installed by default on many *nix platforms, as well as MinGW and Cygwin. If coreutils is not available, a compatible version of sha1sum can be built from source[5]. These requirements are optional if not running the unit tests. [1]: http://www.tortall.net/projects/yasm [2]: http://www.cygwin.com [3]: http://www.doxygen.org [4]: http://curl.haxx.se [5]: http://www.microbrew.org/tools/md5sha1sum/ 2. Out-of-tree builds Out of tree builds are a supported method of building the application. For an out of tree build, the source tree is kept separate from the object files produced during compilation. For instance: $ mkdir build $ cd build $ ../libvpx/configure <options> $ make 3. Configuration options The 'configure' script supports a number of options. The --help option can be used to get a list of supported options: $ ../libvpx/configure --help 4. Cross development For cross development, the most notable option is the --target option. The most up-to-date list of supported targets can be found at the bottom of the --help output of the configure script. As of this writing, the list of available targets is: arm64-android-gcc arm64-darwin-gcc arm64-linux-gcc armv7-android-gcc armv7-darwin-gcc armv7-linux-rvct armv7-linux-gcc armv7-none-rvct armv7-win32-vs11 armv7-win32-vs12 armv7-win32-vs14 armv7-win32-vs15 armv7s-darwin-gcc armv8-linux-gcc mips32-linux-gcc mips64-linux-gcc sparc-solaris-gcc x86-android-gcc x86-darwin8-gcc x86-darwin8-icc x86-darwin9-gcc x86-darwin9-icc x86-darwin10-gcc x86-darwin11-gcc x86-darwin12-gcc x86-darwin13-gcc x86-darwin14-gcc x86-darwin15-gcc x86-darwin16-gcc x86-iphonesimulator-gcc x86-linux-gcc x86-linux-icc x86-os2-gcc x86-solaris-gcc x86-win32-gcc x86-win32-vs10 x86-win32-vs11 x86-win32-vs12 x86-win32-vs14 x86-win32-vs15 x86_64-android-gcc x86_64-darwin9-gcc x86_64-darwin10-gcc x86_64-darwin11-gcc x86_64-darwin12-gcc x86_64-darwin13-gcc x86_64-darwin14-gcc x86_64-darwin15-gcc x86_64-darwin16-gcc x86_64-iphonesimulator-gcc x86_64-linux-gcc x86_64-linux-icc x86_64-solaris-gcc x86_64-win64-gcc x86_64-win64-vs10 x86_64-win64-vs11 x86_64-win64-vs12 x86_64-win64-vs14 x86_64-win64-vs15 generic-gnu The generic-gnu target, in conjunction with the CROSS environment variable, can be used to cross compile architectures that aren't explicitly listed, if the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains will likely work as well. For instance, to build using the mipsel-linux-uclibc toolchain, the following command could be used (note, POSIX SH syntax, adapt to your shell as necessary): $ CROSS=mipsel-linux-uclibc- ../libvpx/configure In addition, the executables to be invoked can be overridden by specifying the environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS. 5. Configuration errors If the configuration step fails, the first step is to look in the error log. This defaults to config.log. This should give a good indication of what went wrong. If not, contact us for support. VP8/VP9 TEST VECTORS: The test vectors can be downloaded and verified using the build system after running configure. To specify an alternate directory the LIBVPX_TEST_DATA_PATH environment variable can be used. $ ./configure --enable-unit-tests $ LIBVPX_TEST_DATA_PATH=../libvpx-test-data make testdata CODE STYLE: The coding style used by this project is enforced with clang-format using the configuration contained in the .clang-format file in the root of the repository. Before pushing changes for review you can format your code with: # Apply clang-format to modified .c, .h and .cc files $ clang-format -i --style=file \ $(git diff --name-only --diff-filter=ACMR '*.[hc]' '*.cc') Check the .clang-format file for the version used to generate it if there is any difference between your local formatting and the review system. See also: http://clang.llvm.org/docs/ClangFormat.html SUPPORT This library is an open source project supported by its community. Please email webm-discuss@webmproject.org for help.