2010-05-18 11:58:33 -04:00
|
|
|
/*
|
2010-09-09 08:16:39 -04:00
|
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
2010-05-18 11:58:33 -04:00
|
|
|
*
|
2010-06-18 12:39:21 -04:00
|
|
|
* Use of this source code is governed by a BSD-style license
|
2010-06-04 16:19:40 -04:00
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
2010-06-18 12:39:21 -04:00
|
|
|
* in the file PATENTS. All contributing project authors may
|
2010-06-04 16:19:40 -04:00
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
2010-05-18 11:58:33 -04:00
|
|
|
*/
|
|
|
|
|
2012-10-18 16:31:59 -07:00
|
|
|
#include <assert.h>
|
2010-05-18 11:58:33 -04:00
|
|
|
#include <math.h>
|
2013-10-25 17:55:07 -07:00
|
|
|
|
2012-12-23 07:20:10 -08:00
|
|
|
#include "./vpx_config.h"
|
2013-10-25 17:55:07 -07:00
|
|
|
#include "./vp9_rtcd.h"
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2012-11-27 13:59:17 -08:00
|
|
|
#include "vp9/common/vp9_blockd.h"
|
2013-02-07 11:51:23 -08:00
|
|
|
#include "vp9/common/vp9_idct.h"
|
2013-10-25 17:55:07 -07:00
|
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
|
|
|
2013-11-15 15:21:38 -08:00
|
|
|
static INLINE int fdct_round_shift(int input) {
|
|
|
|
int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
|
|
|
|
assert(INT16_MIN <= rv && rv <= INT16_MAX);
|
|
|
|
return rv;
|
|
|
|
}
|
|
|
|
|
2013-10-11 11:19:58 -07:00
|
|
|
static void fdct4(const int16_t *input, int16_t *output) {
|
2013-02-04 15:22:32 -08:00
|
|
|
int16_t step[4];
|
|
|
|
int temp1, temp2;
|
|
|
|
|
|
|
|
step[0] = input[0] + input[3];
|
|
|
|
step[1] = input[1] + input[2];
|
|
|
|
step[2] = input[1] - input[2];
|
|
|
|
step[3] = input[0] - input[3];
|
|
|
|
|
|
|
|
temp1 = (step[0] + step[1]) * cospi_16_64;
|
|
|
|
temp2 = (step[0] - step[1]) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
output[0] = fdct_round_shift(temp1);
|
|
|
|
output[2] = fdct_round_shift(temp2);
|
2013-02-04 15:22:32 -08:00
|
|
|
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
|
|
|
|
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
output[1] = fdct_round_shift(temp1);
|
|
|
|
output[3] = fdct_round_shift(temp2);
|
2013-02-04 15:22:32 -08:00
|
|
|
}
|
2012-06-25 12:26:09 -07:00
|
|
|
|
2013-10-24 11:48:25 -07:00
|
|
|
void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
|
2013-03-25 16:18:38 -07:00
|
|
|
// The 2D transform is done with two passes which are actually pretty
|
|
|
|
// similar. In the first one, we transform the columns and transpose
|
|
|
|
// the results. In the second one, we transform the rows. To achieve that,
|
|
|
|
// as the first pass results are transposed, we tranpose the columns (that
|
|
|
|
// is the transposed rows) and transpose the results (so that it goes back
|
|
|
|
// in normal/row positions).
|
|
|
|
int pass;
|
|
|
|
// We need an intermediate buffer between passes.
|
|
|
|
int16_t intermediate[4 * 4];
|
2013-10-24 11:48:25 -07:00
|
|
|
const int16_t *in = input;
|
2013-03-25 16:18:38 -07:00
|
|
|
int16_t *out = intermediate;
|
|
|
|
// Do the two transform/transpose passes
|
|
|
|
for (pass = 0; pass < 2; ++pass) {
|
|
|
|
/*canbe16*/ int input[4];
|
|
|
|
/*canbe16*/ int step[4];
|
|
|
|
/*needs32*/ int temp1, temp2;
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
|
|
// Load inputs.
|
|
|
|
if (0 == pass) {
|
2013-09-17 16:31:46 -07:00
|
|
|
input[0] = in[0 * stride] * 16;
|
|
|
|
input[1] = in[1 * stride] * 16;
|
|
|
|
input[2] = in[2 * stride] * 16;
|
|
|
|
input[3] = in[3 * stride] * 16;
|
2013-03-25 16:18:38 -07:00
|
|
|
if (i == 0 && input[0]) {
|
|
|
|
input[0] += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
input[0] = in[0 * 4];
|
|
|
|
input[1] = in[1 * 4];
|
|
|
|
input[2] = in[2 * 4];
|
|
|
|
input[3] = in[3 * 4];
|
|
|
|
}
|
|
|
|
// Transform.
|
|
|
|
step[0] = input[0] + input[3];
|
|
|
|
step[1] = input[1] + input[2];
|
|
|
|
step[2] = input[1] - input[2];
|
|
|
|
step[3] = input[0] - input[3];
|
|
|
|
temp1 = (step[0] + step[1]) * cospi_16_64;
|
|
|
|
temp2 = (step[0] - step[1]) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[0] = fdct_round_shift(temp1);
|
|
|
|
out[2] = fdct_round_shift(temp2);
|
2013-03-25 16:18:38 -07:00
|
|
|
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
|
|
|
|
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[1] = fdct_round_shift(temp1);
|
|
|
|
out[3] = fdct_round_shift(temp2);
|
2013-03-25 16:18:38 -07:00
|
|
|
// Do next column (which is a transposed row in second/horizontal pass)
|
|
|
|
in++;
|
|
|
|
out += 4;
|
|
|
|
}
|
|
|
|
// Setup in/out for next pass.
|
|
|
|
in = intermediate;
|
|
|
|
out = output;
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
2012-10-18 16:31:59 -07:00
|
|
|
|
2013-03-25 16:18:38 -07:00
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
|
|
for (j = 0; j < 4; ++j)
|
|
|
|
output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
|
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
2012-10-18 16:31:59 -07:00
|
|
|
|
2013-10-11 11:19:58 -07:00
|
|
|
static void fadst4(const int16_t *input, int16_t *output) {
|
2013-02-13 09:03:21 -08:00
|
|
|
int x0, x1, x2, x3;
|
|
|
|
int s0, s1, s2, s3, s4, s5, s6, s7;
|
2012-10-18 16:31:59 -07:00
|
|
|
|
2013-02-13 09:03:21 -08:00
|
|
|
x0 = input[0];
|
|
|
|
x1 = input[1];
|
|
|
|
x2 = input[2];
|
|
|
|
x3 = input[3];
|
2012-08-29 11:25:38 -07:00
|
|
|
|
2013-02-13 09:03:21 -08:00
|
|
|
if (!(x0 | x1 | x2 | x3)) {
|
|
|
|
output[0] = output[1] = output[2] = output[3] = 0;
|
|
|
|
return;
|
|
|
|
}
|
2012-08-29 11:25:38 -07:00
|
|
|
|
2013-02-13 09:03:21 -08:00
|
|
|
s0 = sinpi_1_9 * x0;
|
|
|
|
s1 = sinpi_4_9 * x0;
|
|
|
|
s2 = sinpi_2_9 * x1;
|
|
|
|
s3 = sinpi_1_9 * x1;
|
|
|
|
s4 = sinpi_3_9 * x2;
|
|
|
|
s5 = sinpi_4_9 * x3;
|
|
|
|
s6 = sinpi_2_9 * x3;
|
|
|
|
s7 = x0 + x1 - x3;
|
|
|
|
|
|
|
|
x0 = s0 + s2 + s5;
|
|
|
|
x1 = sinpi_3_9 * s7;
|
|
|
|
x2 = s1 - s3 + s6;
|
|
|
|
x3 = s4;
|
|
|
|
|
|
|
|
s0 = x0 + x3;
|
|
|
|
s1 = x1;
|
|
|
|
s2 = x2 - x3;
|
|
|
|
s3 = x2 - x0 + x3;
|
|
|
|
|
|
|
|
// 1-D transform scaling factor is sqrt(2).
|
2013-11-15 15:21:38 -08:00
|
|
|
output[0] = fdct_round_shift(s0);
|
|
|
|
output[1] = fdct_round_shift(s1);
|
|
|
|
output[2] = fdct_round_shift(s2);
|
|
|
|
output[3] = fdct_round_shift(s3);
|
2013-02-13 09:03:21 -08:00
|
|
|
}
|
2012-10-18 16:31:59 -07:00
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
static const transform_2d FHT_4[] = {
|
2013-10-10 11:53:55 -07:00
|
|
|
{ fdct4, fdct4 }, // DCT_DCT = 0
|
|
|
|
{ fadst4, fdct4 }, // ADST_DCT = 1
|
|
|
|
{ fdct4, fadst4 }, // DCT_ADST = 2
|
|
|
|
{ fadst4, fadst4 } // ADST_ADST = 3
|
2012-10-18 16:31:59 -07:00
|
|
|
};
|
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
void vp9_fht4x4_c(const int16_t *input, int16_t *output,
|
|
|
|
int stride, int tx_type) {
|
|
|
|
if (tx_type == DCT_DCT) {
|
|
|
|
vp9_fdct4x4_c(input, output, stride);
|
|
|
|
} else {
|
|
|
|
int16_t out[4 * 4];
|
|
|
|
int16_t *outptr = &out[0];
|
|
|
|
int i, j;
|
|
|
|
int16_t temp_in[4], temp_out[4];
|
|
|
|
const transform_2d ht = FHT_4[tx_type];
|
2013-02-13 09:03:21 -08:00
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
// Columns
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
|
|
for (j = 0; j < 4; ++j)
|
|
|
|
temp_in[j] = input[j * stride + i] * 16;
|
|
|
|
if (i == 0 && temp_in[0])
|
|
|
|
temp_in[0] += 1;
|
|
|
|
ht.cols(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 4; ++j)
|
|
|
|
outptr[j * 4 + i] = temp_out[j];
|
|
|
|
}
|
2012-05-09 09:31:14 -07:00
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
// Rows
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
|
|
for (j = 0; j < 4; ++j)
|
|
|
|
temp_in[j] = out[j + i * 4];
|
|
|
|
ht.rows(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 4; ++j)
|
|
|
|
output[j + i * 4] = (temp_out[j] + 1) >> 2;
|
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
2012-05-09 09:31:14 -07:00
|
|
|
}
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2013-10-11 11:19:58 -07:00
|
|
|
static void fdct8(const int16_t *input, int16_t *output) {
|
2013-02-27 12:29:06 -08:00
|
|
|
/*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
|
|
|
|
/*needs32*/ int t0, t1, t2, t3;
|
|
|
|
/*canbe16*/ int x0, x1, x2, x3;
|
2013-02-11 22:04:34 -08:00
|
|
|
|
|
|
|
// stage 1
|
2013-02-27 12:29:06 -08:00
|
|
|
s0 = input[0] + input[7];
|
|
|
|
s1 = input[1] + input[6];
|
|
|
|
s2 = input[2] + input[5];
|
|
|
|
s3 = input[3] + input[4];
|
|
|
|
s4 = input[3] - input[4];
|
|
|
|
s5 = input[2] - input[5];
|
|
|
|
s6 = input[1] - input[6];
|
|
|
|
s7 = input[0] - input[7];
|
|
|
|
|
2013-10-10 11:53:55 -07:00
|
|
|
// fdct4(step, step);
|
2013-02-27 12:29:06 -08:00
|
|
|
x0 = s0 + s3;
|
|
|
|
x1 = s1 + s2;
|
|
|
|
x2 = s1 - s2;
|
|
|
|
x3 = s0 - s3;
|
|
|
|
t0 = (x0 + x1) * cospi_16_64;
|
|
|
|
t1 = (x0 - x1) * cospi_16_64;
|
|
|
|
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
|
|
|
|
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
output[0] = fdct_round_shift(t0);
|
|
|
|
output[2] = fdct_round_shift(t2);
|
|
|
|
output[4] = fdct_round_shift(t1);
|
|
|
|
output[6] = fdct_round_shift(t3);
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2013-02-11 22:04:34 -08:00
|
|
|
// Stage 2
|
2013-02-27 12:29:06 -08:00
|
|
|
t0 = (s6 - s5) * cospi_16_64;
|
|
|
|
t1 = (s6 + s5) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
t2 = fdct_round_shift(t0);
|
|
|
|
t3 = fdct_round_shift(t1);
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2013-02-11 22:04:34 -08:00
|
|
|
// Stage 3
|
2013-02-27 12:29:06 -08:00
|
|
|
x0 = s4 + t2;
|
|
|
|
x1 = s4 - t2;
|
|
|
|
x2 = s7 - t3;
|
|
|
|
x3 = s7 + t3;
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2013-02-11 22:04:34 -08:00
|
|
|
// Stage 4
|
2013-02-27 12:29:06 -08:00
|
|
|
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
|
|
|
|
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
|
|
|
|
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
|
|
|
|
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
output[1] = fdct_round_shift(t0);
|
|
|
|
output[3] = fdct_round_shift(t2);
|
|
|
|
output[5] = fdct_round_shift(t1);
|
|
|
|
output[7] = fdct_round_shift(t3);
|
2013-02-11 22:04:34 -08:00
|
|
|
}
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2013-10-24 11:48:25 -07:00
|
|
|
void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
|
2013-02-11 22:04:34 -08:00
|
|
|
int i, j;
|
2013-02-27 12:29:06 -08:00
|
|
|
int16_t intermediate[64];
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2013-02-27 12:29:06 -08:00
|
|
|
// Transform columns
|
|
|
|
{
|
|
|
|
int16_t *output = intermediate;
|
|
|
|
/*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
|
|
|
|
/*needs32*/ int t0, t1, t2, t3;
|
|
|
|
/*canbe16*/ int x0, x1, x2, x3;
|
|
|
|
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
// stage 1
|
2013-09-17 16:31:46 -07:00
|
|
|
s0 = (input[0 * stride] + input[7 * stride]) * 4;
|
|
|
|
s1 = (input[1 * stride] + input[6 * stride]) * 4;
|
|
|
|
s2 = (input[2 * stride] + input[5 * stride]) * 4;
|
|
|
|
s3 = (input[3 * stride] + input[4 * stride]) * 4;
|
|
|
|
s4 = (input[3 * stride] - input[4 * stride]) * 4;
|
|
|
|
s5 = (input[2 * stride] - input[5 * stride]) * 4;
|
|
|
|
s6 = (input[1 * stride] - input[6 * stride]) * 4;
|
|
|
|
s7 = (input[0 * stride] - input[7 * stride]) * 4;
|
2013-02-27 12:29:06 -08:00
|
|
|
|
2013-10-10 11:53:55 -07:00
|
|
|
// fdct4(step, step);
|
2013-02-27 12:29:06 -08:00
|
|
|
x0 = s0 + s3;
|
|
|
|
x1 = s1 + s2;
|
|
|
|
x2 = s1 - s2;
|
|
|
|
x3 = s0 - s3;
|
|
|
|
t0 = (x0 + x1) * cospi_16_64;
|
|
|
|
t1 = (x0 - x1) * cospi_16_64;
|
|
|
|
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
|
|
|
|
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
output[0 * 8] = fdct_round_shift(t0);
|
|
|
|
output[2 * 8] = fdct_round_shift(t2);
|
|
|
|
output[4 * 8] = fdct_round_shift(t1);
|
|
|
|
output[6 * 8] = fdct_round_shift(t3);
|
2013-02-27 12:29:06 -08:00
|
|
|
|
|
|
|
// Stage 2
|
|
|
|
t0 = (s6 - s5) * cospi_16_64;
|
|
|
|
t1 = (s6 + s5) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
t2 = fdct_round_shift(t0);
|
|
|
|
t3 = fdct_round_shift(t1);
|
2013-02-27 12:29:06 -08:00
|
|
|
|
|
|
|
// Stage 3
|
|
|
|
x0 = s4 + t2;
|
|
|
|
x1 = s4 - t2;
|
|
|
|
x2 = s7 - t3;
|
|
|
|
x3 = s7 + t3;
|
|
|
|
|
|
|
|
// Stage 4
|
|
|
|
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
|
|
|
|
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
|
|
|
|
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
|
|
|
|
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
output[1 * 8] = fdct_round_shift(t0);
|
|
|
|
output[3 * 8] = fdct_round_shift(t2);
|
|
|
|
output[5 * 8] = fdct_round_shift(t1);
|
|
|
|
output[7 * 8] = fdct_round_shift(t3);
|
2013-02-27 12:29:06 -08:00
|
|
|
input++;
|
|
|
|
output++;
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
|
|
|
}
|
2012-10-18 16:31:59 -07:00
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
// Rows
|
2013-02-11 22:04:34 -08:00
|
|
|
for (i = 0; i < 8; ++i) {
|
2013-10-10 11:53:55 -07:00
|
|
|
fdct8(&intermediate[i * 8], &final_output[i * 8]);
|
2013-02-11 22:04:34 -08:00
|
|
|
for (j = 0; j < 8; ++j)
|
2013-02-27 12:29:06 -08:00
|
|
|
final_output[j + i * 8] /= 2;
|
2012-10-18 16:31:59 -07:00
|
|
|
}
|
2013-02-11 22:04:34 -08:00
|
|
|
}
|
2012-10-18 16:31:59 -07:00
|
|
|
|
2013-10-24 11:48:25 -07:00
|
|
|
void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
|
2013-03-15 15:50:55 -07:00
|
|
|
// The 2D transform is done with two passes which are actually pretty
|
|
|
|
// similar. In the first one, we transform the columns and transpose
|
|
|
|
// the results. In the second one, we transform the rows. To achieve that,
|
|
|
|
// as the first pass results are transposed, we tranpose the columns (that
|
|
|
|
// is the transposed rows) and transpose the results (so that it goes back
|
|
|
|
// in normal/row positions).
|
|
|
|
int pass;
|
|
|
|
// We need an intermediate buffer between passes.
|
|
|
|
int16_t intermediate[256];
|
2013-10-24 11:48:25 -07:00
|
|
|
const int16_t *in = input;
|
2013-03-15 15:50:55 -07:00
|
|
|
int16_t *out = intermediate;
|
|
|
|
// Do the two transform/transpose passes
|
|
|
|
for (pass = 0; pass < 2; ++pass) {
|
|
|
|
/*canbe16*/ int step1[8];
|
|
|
|
/*canbe16*/ int step2[8];
|
|
|
|
/*canbe16*/ int step3[8];
|
|
|
|
/*canbe16*/ int input[8];
|
|
|
|
/*needs32*/ int temp1, temp2;
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
if (0 == pass) {
|
|
|
|
// Calculate input for the first 8 results.
|
2013-09-17 16:31:46 -07:00
|
|
|
input[0] = (in[0 * stride] + in[15 * stride]) * 4;
|
|
|
|
input[1] = (in[1 * stride] + in[14 * stride]) * 4;
|
|
|
|
input[2] = (in[2 * stride] + in[13 * stride]) * 4;
|
|
|
|
input[3] = (in[3 * stride] + in[12 * stride]) * 4;
|
|
|
|
input[4] = (in[4 * stride] + in[11 * stride]) * 4;
|
|
|
|
input[5] = (in[5 * stride] + in[10 * stride]) * 4;
|
|
|
|
input[6] = (in[6 * stride] + in[ 9 * stride]) * 4;
|
|
|
|
input[7] = (in[7 * stride] + in[ 8 * stride]) * 4;
|
2013-03-15 15:50:55 -07:00
|
|
|
// Calculate input for the next 8 results.
|
2013-09-17 16:31:46 -07:00
|
|
|
step1[0] = (in[7 * stride] - in[ 8 * stride]) * 4;
|
|
|
|
step1[1] = (in[6 * stride] - in[ 9 * stride]) * 4;
|
|
|
|
step1[2] = (in[5 * stride] - in[10 * stride]) * 4;
|
|
|
|
step1[3] = (in[4 * stride] - in[11 * stride]) * 4;
|
|
|
|
step1[4] = (in[3 * stride] - in[12 * stride]) * 4;
|
|
|
|
step1[5] = (in[2 * stride] - in[13 * stride]) * 4;
|
|
|
|
step1[6] = (in[1 * stride] - in[14 * stride]) * 4;
|
|
|
|
step1[7] = (in[0 * stride] - in[15 * stride]) * 4;
|
2013-03-15 15:50:55 -07:00
|
|
|
} else {
|
|
|
|
// Calculate input for the first 8 results.
|
|
|
|
input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
|
|
|
|
input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
|
|
|
|
input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
|
|
|
|
input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
|
|
|
|
input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
|
|
|
|
input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
|
|
|
|
input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
|
|
|
|
input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
|
|
|
|
// Calculate input for the next 8 results.
|
|
|
|
step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
|
|
|
|
step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
|
|
|
|
step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
|
|
|
|
step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
|
|
|
|
step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
|
|
|
|
step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
|
|
|
|
step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
|
|
|
|
step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
|
2012-10-18 16:31:59 -07:00
|
|
|
}
|
2013-10-10 11:53:55 -07:00
|
|
|
// Work on the first eight values; fdct8(input, even_results);
|
2013-03-15 15:50:55 -07:00
|
|
|
{
|
|
|
|
/*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
|
|
|
|
/*needs32*/ int t0, t1, t2, t3;
|
|
|
|
/*canbe16*/ int x0, x1, x2, x3;
|
|
|
|
|
|
|
|
// stage 1
|
|
|
|
s0 = input[0] + input[7];
|
|
|
|
s1 = input[1] + input[6];
|
|
|
|
s2 = input[2] + input[5];
|
|
|
|
s3 = input[3] + input[4];
|
|
|
|
s4 = input[3] - input[4];
|
|
|
|
s5 = input[2] - input[5];
|
|
|
|
s6 = input[1] - input[6];
|
|
|
|
s7 = input[0] - input[7];
|
|
|
|
|
2013-10-10 11:53:55 -07:00
|
|
|
// fdct4(step, step);
|
2013-03-15 15:50:55 -07:00
|
|
|
x0 = s0 + s3;
|
|
|
|
x1 = s1 + s2;
|
|
|
|
x2 = s1 - s2;
|
|
|
|
x3 = s0 - s3;
|
|
|
|
t0 = (x0 + x1) * cospi_16_64;
|
|
|
|
t1 = (x0 - x1) * cospi_16_64;
|
|
|
|
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
|
|
|
|
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[0] = fdct_round_shift(t0);
|
|
|
|
out[4] = fdct_round_shift(t2);
|
|
|
|
out[8] = fdct_round_shift(t1);
|
|
|
|
out[12] = fdct_round_shift(t3);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
// Stage 2
|
|
|
|
t0 = (s6 - s5) * cospi_16_64;
|
|
|
|
t1 = (s6 + s5) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
t2 = fdct_round_shift(t0);
|
|
|
|
t3 = fdct_round_shift(t1);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
// Stage 3
|
|
|
|
x0 = s4 + t2;
|
|
|
|
x1 = s4 - t2;
|
|
|
|
x2 = s7 - t3;
|
|
|
|
x3 = s7 + t3;
|
|
|
|
|
|
|
|
// Stage 4
|
|
|
|
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
|
|
|
|
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
|
|
|
|
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
|
|
|
|
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[2] = fdct_round_shift(t0);
|
|
|
|
out[6] = fdct_round_shift(t2);
|
|
|
|
out[10] = fdct_round_shift(t1);
|
|
|
|
out[14] = fdct_round_shift(t3);
|
2012-10-18 16:31:59 -07:00
|
|
|
}
|
2013-03-15 15:50:55 -07:00
|
|
|
// Work on the next eight values; step1 -> odd_results
|
|
|
|
{
|
|
|
|
// step 2
|
|
|
|
temp1 = (step1[5] - step1[2]) * cospi_16_64;
|
|
|
|
temp2 = (step1[4] - step1[3]) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[2] = fdct_round_shift(temp1);
|
|
|
|
step2[3] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = (step1[4] + step1[3]) * cospi_16_64;
|
|
|
|
temp2 = (step1[5] + step1[2]) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[4] = fdct_round_shift(temp1);
|
|
|
|
step2[5] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
// step 3
|
|
|
|
step3[0] = step1[0] + step2[3];
|
|
|
|
step3[1] = step1[1] + step2[2];
|
|
|
|
step3[2] = step1[1] - step2[2];
|
|
|
|
step3[3] = step1[0] - step2[3];
|
|
|
|
step3[4] = step1[7] - step2[4];
|
|
|
|
step3[5] = step1[6] - step2[5];
|
|
|
|
step3[6] = step1[6] + step2[5];
|
|
|
|
step3[7] = step1[7] + step2[4];
|
|
|
|
// step 4
|
|
|
|
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
|
|
|
|
temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[1] = fdct_round_shift(temp1);
|
|
|
|
step2[2] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64;
|
|
|
|
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[5] = fdct_round_shift(temp1);
|
|
|
|
step2[6] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
// step 5
|
|
|
|
step1[0] = step3[0] + step2[1];
|
|
|
|
step1[1] = step3[0] - step2[1];
|
|
|
|
step1[2] = step3[3] - step2[2];
|
|
|
|
step1[3] = step3[3] + step2[2];
|
|
|
|
step1[4] = step3[4] + step2[5];
|
|
|
|
step1[5] = step3[4] - step2[5];
|
|
|
|
step1[6] = step3[7] - step2[6];
|
|
|
|
step1[7] = step3[7] + step2[6];
|
|
|
|
// step 6
|
|
|
|
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
|
|
|
|
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[1] = fdct_round_shift(temp1);
|
|
|
|
out[9] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
|
|
|
|
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[5] = fdct_round_shift(temp1);
|
|
|
|
out[13] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
|
|
|
|
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[3] = fdct_round_shift(temp1);
|
|
|
|
out[11] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
|
|
|
|
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[7] = fdct_round_shift(temp1);
|
|
|
|
out[15] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
}
|
|
|
|
// Do next column (which is a transposed row in second/horizontal pass)
|
|
|
|
in++;
|
|
|
|
out += 16;
|
2012-10-18 16:31:59 -07:00
|
|
|
}
|
2013-03-15 15:50:55 -07:00
|
|
|
// Setup in/out for next pass.
|
|
|
|
in = intermediate;
|
|
|
|
out = output;
|
2012-10-18 16:31:59 -07:00
|
|
|
}
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
|
|
|
|
2013-10-11 11:19:58 -07:00
|
|
|
static void fadst8(const int16_t *input, int16_t *output) {
|
2013-02-13 09:03:21 -08:00
|
|
|
int s0, s1, s2, s3, s4, s5, s6, s7;
|
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
int x0 = input[7];
|
|
|
|
int x1 = input[0];
|
|
|
|
int x2 = input[5];
|
|
|
|
int x3 = input[2];
|
|
|
|
int x4 = input[3];
|
|
|
|
int x5 = input[4];
|
|
|
|
int x6 = input[1];
|
|
|
|
int x7 = input[6];
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 1
|
|
|
|
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
|
|
|
|
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
|
|
|
|
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
|
|
|
|
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
|
|
|
|
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
|
|
|
|
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
|
|
|
|
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
|
|
|
|
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
|
|
|
|
|
2013-11-15 15:21:38 -08:00
|
|
|
x0 = fdct_round_shift(s0 + s4);
|
|
|
|
x1 = fdct_round_shift(s1 + s5);
|
|
|
|
x2 = fdct_round_shift(s2 + s6);
|
|
|
|
x3 = fdct_round_shift(s3 + s7);
|
|
|
|
x4 = fdct_round_shift(s0 - s4);
|
|
|
|
x5 = fdct_round_shift(s1 - s5);
|
|
|
|
x6 = fdct_round_shift(s2 - s6);
|
|
|
|
x7 = fdct_round_shift(s3 - s7);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 2
|
|
|
|
s0 = x0;
|
|
|
|
s1 = x1;
|
|
|
|
s2 = x2;
|
|
|
|
s3 = x3;
|
|
|
|
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
|
|
|
|
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
|
|
|
|
s6 = - cospi_24_64 * x6 + cospi_8_64 * x7;
|
|
|
|
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
|
|
|
|
|
|
|
|
x0 = s0 + s2;
|
|
|
|
x1 = s1 + s3;
|
|
|
|
x2 = s0 - s2;
|
|
|
|
x3 = s1 - s3;
|
2013-11-15 15:21:38 -08:00
|
|
|
x4 = fdct_round_shift(s4 + s6);
|
|
|
|
x5 = fdct_round_shift(s5 + s7);
|
|
|
|
x6 = fdct_round_shift(s4 - s6);
|
|
|
|
x7 = fdct_round_shift(s5 - s7);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 3
|
|
|
|
s2 = cospi_16_64 * (x2 + x3);
|
|
|
|
s3 = cospi_16_64 * (x2 - x3);
|
|
|
|
s6 = cospi_16_64 * (x6 + x7);
|
|
|
|
s7 = cospi_16_64 * (x6 - x7);
|
|
|
|
|
2013-11-15 15:21:38 -08:00
|
|
|
x2 = fdct_round_shift(s2);
|
|
|
|
x3 = fdct_round_shift(s3);
|
|
|
|
x6 = fdct_round_shift(s6);
|
|
|
|
x7 = fdct_round_shift(s7);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
output[0] = x0;
|
|
|
|
output[1] = - x4;
|
|
|
|
output[2] = x6;
|
|
|
|
output[3] = - x2;
|
|
|
|
output[4] = x3;
|
|
|
|
output[5] = - x7;
|
|
|
|
output[6] = x5;
|
|
|
|
output[7] = - x1;
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
static const transform_2d FHT_8[] = {
|
2013-10-10 11:53:55 -07:00
|
|
|
{ fdct8, fdct8 }, // DCT_DCT = 0
|
|
|
|
{ fadst8, fdct8 }, // ADST_DCT = 1
|
|
|
|
{ fdct8, fadst8 }, // DCT_ADST = 2
|
|
|
|
{ fadst8, fadst8 } // ADST_ADST = 3
|
2013-02-27 11:17:38 -08:00
|
|
|
};
|
2012-07-13 15:21:29 -07:00
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
void vp9_fht8x8_c(const int16_t *input, int16_t *output,
|
|
|
|
int stride, int tx_type) {
|
|
|
|
if (tx_type == DCT_DCT) {
|
|
|
|
vp9_fdct8x8_c(input, output, stride);
|
|
|
|
} else {
|
|
|
|
int16_t out[64];
|
|
|
|
int16_t *outptr = &out[0];
|
|
|
|
int i, j;
|
|
|
|
int16_t temp_in[8], temp_out[8];
|
|
|
|
const transform_2d ht = FHT_8[tx_type];
|
|
|
|
|
|
|
|
// Columns
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
|
|
for (j = 0; j < 8; ++j)
|
|
|
|
temp_in[j] = input[j * stride + i] * 4;
|
|
|
|
ht.cols(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 8; ++j)
|
|
|
|
outptr[j * 8 + i] = temp_out[j];
|
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
// Rows
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
|
|
for (j = 0; j < 8; ++j)
|
|
|
|
temp_in[j] = out[j + i * 8];
|
|
|
|
ht.rows(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 8; ++j)
|
|
|
|
output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
|
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2013-05-17 10:11:30 -07:00
|
|
|
/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
|
|
|
|
pixel. */
|
2013-10-24 11:48:25 -07:00
|
|
|
void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
2013-05-17 10:11:30 -07:00
|
|
|
int a1, b1, c1, d1, e1;
|
2013-10-24 11:48:25 -07:00
|
|
|
const int16_t *ip = input;
|
2013-10-04 13:47:59 -07:00
|
|
|
int16_t *op = output;
|
2012-07-13 15:21:29 -07:00
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
2013-10-21 15:27:35 -07:00
|
|
|
a1 = ip[0 * stride];
|
|
|
|
b1 = ip[1 * stride];
|
|
|
|
c1 = ip[2 * stride];
|
|
|
|
d1 = ip[3 * stride];
|
2013-05-17 10:11:30 -07:00
|
|
|
|
2013-05-30 14:24:12 -07:00
|
|
|
a1 += b1;
|
|
|
|
d1 = d1 - c1;
|
|
|
|
e1 = (a1 - d1) >> 1;
|
|
|
|
b1 = e1 - b1;
|
|
|
|
c1 = e1 - c1;
|
|
|
|
a1 -= c1;
|
|
|
|
d1 += b1;
|
2013-05-17 10:11:30 -07:00
|
|
|
op[0] = a1;
|
|
|
|
op[4] = c1;
|
|
|
|
op[8] = d1;
|
|
|
|
op[12] = b1;
|
2012-07-13 15:21:29 -07:00
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
2013-05-17 10:11:30 -07:00
|
|
|
a1 = ip[0];
|
|
|
|
b1 = ip[1];
|
|
|
|
c1 = ip[2];
|
|
|
|
d1 = ip[3];
|
|
|
|
|
2013-05-30 14:24:12 -07:00
|
|
|
a1 += b1;
|
|
|
|
d1 -= c1;
|
|
|
|
e1 = (a1 - d1) >> 1;
|
|
|
|
b1 = e1 - b1;
|
|
|
|
c1 = e1 - c1;
|
|
|
|
a1 -= c1;
|
|
|
|
d1 += b1;
|
2013-09-24 10:09:06 -07:00
|
|
|
op[0] = a1 * UNIT_QUANT_FACTOR;
|
|
|
|
op[1] = c1 * UNIT_QUANT_FACTOR;
|
|
|
|
op[2] = d1 * UNIT_QUANT_FACTOR;
|
|
|
|
op[3] = b1 * UNIT_QUANT_FACTOR;
|
2012-07-13 15:21:29 -07:00
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += 4;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2013-02-13 00:19:32 -08:00
|
|
|
// Rewrote to use same algorithm as others.
|
2013-10-11 11:19:58 -07:00
|
|
|
static void fdct16(const int16_t in[16], int16_t out[16]) {
|
2013-03-15 15:50:55 -07:00
|
|
|
/*canbe16*/ int step1[8];
|
|
|
|
/*canbe16*/ int step2[8];
|
|
|
|
/*canbe16*/ int step3[8];
|
|
|
|
/*canbe16*/ int input[8];
|
|
|
|
/*needs32*/ int temp1, temp2;
|
2013-02-13 00:19:32 -08:00
|
|
|
|
|
|
|
// step 1
|
2013-03-15 15:50:55 -07:00
|
|
|
input[0] = in[0] + in[15];
|
|
|
|
input[1] = in[1] + in[14];
|
|
|
|
input[2] = in[2] + in[13];
|
|
|
|
input[3] = in[3] + in[12];
|
|
|
|
input[4] = in[4] + in[11];
|
|
|
|
input[5] = in[5] + in[10];
|
|
|
|
input[6] = in[6] + in[ 9];
|
|
|
|
input[7] = in[7] + in[ 8];
|
|
|
|
|
|
|
|
step1[0] = in[7] - in[ 8];
|
|
|
|
step1[1] = in[6] - in[ 9];
|
|
|
|
step1[2] = in[5] - in[10];
|
|
|
|
step1[3] = in[4] - in[11];
|
|
|
|
step1[4] = in[3] - in[12];
|
|
|
|
step1[5] = in[2] - in[13];
|
|
|
|
step1[6] = in[1] - in[14];
|
|
|
|
step1[7] = in[0] - in[15];
|
|
|
|
|
2013-10-10 11:53:55 -07:00
|
|
|
// fdct8(step, step);
|
2012-10-05 11:16:46 +01:00
|
|
|
{
|
2013-03-15 15:50:55 -07:00
|
|
|
/*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
|
|
|
|
/*needs32*/ int t0, t1, t2, t3;
|
|
|
|
/*canbe16*/ int x0, x1, x2, x3;
|
|
|
|
|
|
|
|
// stage 1
|
|
|
|
s0 = input[0] + input[7];
|
|
|
|
s1 = input[1] + input[6];
|
|
|
|
s2 = input[2] + input[5];
|
|
|
|
s3 = input[3] + input[4];
|
|
|
|
s4 = input[3] - input[4];
|
|
|
|
s5 = input[2] - input[5];
|
|
|
|
s6 = input[1] - input[6];
|
|
|
|
s7 = input[0] - input[7];
|
|
|
|
|
2013-10-10 11:53:55 -07:00
|
|
|
// fdct4(step, step);
|
2013-03-15 15:50:55 -07:00
|
|
|
x0 = s0 + s3;
|
|
|
|
x1 = s1 + s2;
|
|
|
|
x2 = s1 - s2;
|
|
|
|
x3 = s0 - s3;
|
|
|
|
t0 = (x0 + x1) * cospi_16_64;
|
|
|
|
t1 = (x0 - x1) * cospi_16_64;
|
|
|
|
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
|
|
|
|
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[0] = fdct_round_shift(t0);
|
|
|
|
out[4] = fdct_round_shift(t2);
|
|
|
|
out[8] = fdct_round_shift(t1);
|
|
|
|
out[12] = fdct_round_shift(t3);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
// Stage 2
|
|
|
|
t0 = (s6 - s5) * cospi_16_64;
|
|
|
|
t1 = (s6 + s5) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
t2 = fdct_round_shift(t0);
|
|
|
|
t3 = fdct_round_shift(t1);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
// Stage 3
|
|
|
|
x0 = s4 + t2;
|
|
|
|
x1 = s4 - t2;
|
|
|
|
x2 = s7 - t3;
|
|
|
|
x3 = s7 + t3;
|
|
|
|
|
|
|
|
// Stage 4
|
|
|
|
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
|
|
|
|
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
|
|
|
|
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
|
|
|
|
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[2] = fdct_round_shift(t0);
|
|
|
|
out[6] = fdct_round_shift(t2);
|
|
|
|
out[10] = fdct_round_shift(t1);
|
|
|
|
out[14] = fdct_round_shift(t3);
|
2012-10-05 11:16:46 +01:00
|
|
|
}
|
2013-02-13 00:19:32 -08:00
|
|
|
|
|
|
|
// step 2
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = (step1[5] - step1[2]) * cospi_16_64;
|
|
|
|
temp2 = (step1[4] - step1[3]) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[2] = fdct_round_shift(temp1);
|
|
|
|
step2[3] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = (step1[4] + step1[3]) * cospi_16_64;
|
|
|
|
temp2 = (step1[5] + step1[2]) * cospi_16_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[4] = fdct_round_shift(temp1);
|
|
|
|
step2[5] = fdct_round_shift(temp2);
|
2013-02-13 00:19:32 -08:00
|
|
|
|
|
|
|
// step 3
|
2013-03-15 15:50:55 -07:00
|
|
|
step3[0] = step1[0] + step2[3];
|
|
|
|
step3[1] = step1[1] + step2[2];
|
|
|
|
step3[2] = step1[1] - step2[2];
|
|
|
|
step3[3] = step1[0] - step2[3];
|
|
|
|
step3[4] = step1[7] - step2[4];
|
|
|
|
step3[5] = step1[6] - step2[5];
|
|
|
|
step3[6] = step1[6] + step2[5];
|
|
|
|
step3[7] = step1[7] + step2[4];
|
2013-02-13 00:19:32 -08:00
|
|
|
|
|
|
|
// step 4
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
|
|
|
|
temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[1] = fdct_round_shift(temp1);
|
|
|
|
step2[2] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64;
|
|
|
|
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
step2[5] = fdct_round_shift(temp1);
|
|
|
|
step2[6] = fdct_round_shift(temp2);
|
2013-02-13 00:19:32 -08:00
|
|
|
|
|
|
|
// step 5
|
2013-03-15 15:50:55 -07:00
|
|
|
step1[0] = step3[0] + step2[1];
|
|
|
|
step1[1] = step3[0] - step2[1];
|
|
|
|
step1[2] = step3[3] - step2[2];
|
|
|
|
step1[3] = step3[3] + step2[2];
|
|
|
|
step1[4] = step3[4] + step2[5];
|
|
|
|
step1[5] = step3[4] - step2[5];
|
|
|
|
step1[6] = step3[7] - step2[6];
|
|
|
|
step1[7] = step3[7] + step2[6];
|
2013-02-13 00:19:32 -08:00
|
|
|
|
|
|
|
// step 6
|
2013-03-15 15:50:55 -07:00
|
|
|
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
|
|
|
|
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[1] = fdct_round_shift(temp1);
|
|
|
|
out[9] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
|
|
|
|
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[5] = fdct_round_shift(temp1);
|
|
|
|
out[13] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
|
|
|
|
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[3] = fdct_round_shift(temp1);
|
|
|
|
out[11] = fdct_round_shift(temp2);
|
2013-03-15 15:50:55 -07:00
|
|
|
|
|
|
|
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
|
|
|
|
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
|
2013-11-15 15:21:38 -08:00
|
|
|
out[7] = fdct_round_shift(temp1);
|
|
|
|
out[15] = fdct_round_shift(temp2);
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
2012-11-01 09:04:28 -07:00
|
|
|
|
2013-10-11 11:19:58 -07:00
|
|
|
static void fadst16(const int16_t *input, int16_t *output) {
|
2013-02-13 09:03:21 -08:00
|
|
|
int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15;
|
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
int x0 = input[15];
|
|
|
|
int x1 = input[0];
|
|
|
|
int x2 = input[13];
|
|
|
|
int x3 = input[2];
|
|
|
|
int x4 = input[11];
|
|
|
|
int x5 = input[4];
|
|
|
|
int x6 = input[9];
|
|
|
|
int x7 = input[6];
|
|
|
|
int x8 = input[7];
|
|
|
|
int x9 = input[8];
|
|
|
|
int x10 = input[5];
|
|
|
|
int x11 = input[10];
|
|
|
|
int x12 = input[3];
|
|
|
|
int x13 = input[12];
|
|
|
|
int x14 = input[1];
|
|
|
|
int x15 = input[14];
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 1
|
|
|
|
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
|
|
|
|
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
|
|
|
|
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
|
|
|
|
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
|
|
|
|
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
|
|
|
|
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
|
|
|
|
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
|
|
|
|
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
|
|
|
|
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
|
|
|
|
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
|
|
|
|
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
|
|
|
|
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
|
|
|
|
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
|
|
|
|
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
|
|
|
|
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
|
|
|
|
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
|
|
|
|
|
2013-11-15 15:21:38 -08:00
|
|
|
x0 = fdct_round_shift(s0 + s8);
|
|
|
|
x1 = fdct_round_shift(s1 + s9);
|
|
|
|
x2 = fdct_round_shift(s2 + s10);
|
|
|
|
x3 = fdct_round_shift(s3 + s11);
|
|
|
|
x4 = fdct_round_shift(s4 + s12);
|
|
|
|
x5 = fdct_round_shift(s5 + s13);
|
|
|
|
x6 = fdct_round_shift(s6 + s14);
|
|
|
|
x7 = fdct_round_shift(s7 + s15);
|
|
|
|
x8 = fdct_round_shift(s0 - s8);
|
|
|
|
x9 = fdct_round_shift(s1 - s9);
|
|
|
|
x10 = fdct_round_shift(s2 - s10);
|
|
|
|
x11 = fdct_round_shift(s3 - s11);
|
|
|
|
x12 = fdct_round_shift(s4 - s12);
|
|
|
|
x13 = fdct_round_shift(s5 - s13);
|
|
|
|
x14 = fdct_round_shift(s6 - s14);
|
|
|
|
x15 = fdct_round_shift(s7 - s15);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 2
|
|
|
|
s0 = x0;
|
|
|
|
s1 = x1;
|
|
|
|
s2 = x2;
|
|
|
|
s3 = x3;
|
|
|
|
s4 = x4;
|
|
|
|
s5 = x5;
|
|
|
|
s6 = x6;
|
|
|
|
s7 = x7;
|
|
|
|
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
|
|
|
|
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
|
|
|
|
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
|
|
|
|
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
|
|
|
|
s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
|
|
|
|
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
|
|
|
|
s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
|
|
|
|
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
|
|
|
|
|
|
|
|
x0 = s0 + s4;
|
|
|
|
x1 = s1 + s5;
|
|
|
|
x2 = s2 + s6;
|
|
|
|
x3 = s3 + s7;
|
|
|
|
x4 = s0 - s4;
|
|
|
|
x5 = s1 - s5;
|
|
|
|
x6 = s2 - s6;
|
|
|
|
x7 = s3 - s7;
|
2013-11-15 15:21:38 -08:00
|
|
|
x8 = fdct_round_shift(s8 + s12);
|
|
|
|
x9 = fdct_round_shift(s9 + s13);
|
|
|
|
x10 = fdct_round_shift(s10 + s14);
|
|
|
|
x11 = fdct_round_shift(s11 + s15);
|
|
|
|
x12 = fdct_round_shift(s8 - s12);
|
|
|
|
x13 = fdct_round_shift(s9 - s13);
|
|
|
|
x14 = fdct_round_shift(s10 - s14);
|
|
|
|
x15 = fdct_round_shift(s11 - s15);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 3
|
|
|
|
s0 = x0;
|
|
|
|
s1 = x1;
|
|
|
|
s2 = x2;
|
|
|
|
s3 = x3;
|
|
|
|
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
|
|
|
|
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
|
|
|
|
s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
|
|
|
|
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
|
|
|
|
s8 = x8;
|
|
|
|
s9 = x9;
|
|
|
|
s10 = x10;
|
|
|
|
s11 = x11;
|
|
|
|
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
|
|
|
|
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
|
|
|
|
s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
|
|
|
|
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
|
|
|
|
|
|
|
|
x0 = s0 + s2;
|
|
|
|
x1 = s1 + s3;
|
|
|
|
x2 = s0 - s2;
|
|
|
|
x3 = s1 - s3;
|
2013-11-15 15:21:38 -08:00
|
|
|
x4 = fdct_round_shift(s4 + s6);
|
|
|
|
x5 = fdct_round_shift(s5 + s7);
|
|
|
|
x6 = fdct_round_shift(s4 - s6);
|
|
|
|
x7 = fdct_round_shift(s5 - s7);
|
2013-02-13 09:03:21 -08:00
|
|
|
x8 = s8 + s10;
|
|
|
|
x9 = s9 + s11;
|
|
|
|
x10 = s8 - s10;
|
|
|
|
x11 = s9 - s11;
|
2013-11-15 15:21:38 -08:00
|
|
|
x12 = fdct_round_shift(s12 + s14);
|
|
|
|
x13 = fdct_round_shift(s13 + s15);
|
|
|
|
x14 = fdct_round_shift(s12 - s14);
|
|
|
|
x15 = fdct_round_shift(s13 - s15);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
// stage 4
|
|
|
|
s2 = (- cospi_16_64) * (x2 + x3);
|
|
|
|
s3 = cospi_16_64 * (x2 - x3);
|
|
|
|
s6 = cospi_16_64 * (x6 + x7);
|
|
|
|
s7 = cospi_16_64 * (- x6 + x7);
|
|
|
|
s10 = cospi_16_64 * (x10 + x11);
|
|
|
|
s11 = cospi_16_64 * (- x10 + x11);
|
|
|
|
s14 = (- cospi_16_64) * (x14 + x15);
|
|
|
|
s15 = cospi_16_64 * (x14 - x15);
|
|
|
|
|
2013-11-15 15:21:38 -08:00
|
|
|
x2 = fdct_round_shift(s2);
|
|
|
|
x3 = fdct_round_shift(s3);
|
|
|
|
x6 = fdct_round_shift(s6);
|
|
|
|
x7 = fdct_round_shift(s7);
|
|
|
|
x10 = fdct_round_shift(s10);
|
|
|
|
x11 = fdct_round_shift(s11);
|
|
|
|
x14 = fdct_round_shift(s14);
|
|
|
|
x15 = fdct_round_shift(s15);
|
2013-02-13 09:03:21 -08:00
|
|
|
|
|
|
|
output[0] = x0;
|
|
|
|
output[1] = - x8;
|
|
|
|
output[2] = x12;
|
|
|
|
output[3] = - x4;
|
|
|
|
output[4] = x6;
|
|
|
|
output[5] = x14;
|
|
|
|
output[6] = x10;
|
|
|
|
output[7] = x2;
|
|
|
|
output[8] = x3;
|
|
|
|
output[9] = x11;
|
|
|
|
output[10] = x15;
|
|
|
|
output[11] = x7;
|
|
|
|
output[12] = x5;
|
|
|
|
output[13] = - x13;
|
|
|
|
output[14] = x9;
|
|
|
|
output[15] = - x1;
|
2012-11-01 09:04:28 -07:00
|
|
|
}
|
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
static const transform_2d FHT_16[] = {
|
2013-10-10 11:53:55 -07:00
|
|
|
{ fdct16, fdct16 }, // DCT_DCT = 0
|
|
|
|
{ fadst16, fdct16 }, // ADST_DCT = 1
|
|
|
|
{ fdct16, fadst16 }, // DCT_ADST = 2
|
|
|
|
{ fadst16, fadst16 } // ADST_ADST = 3
|
2013-02-27 11:17:38 -08:00
|
|
|
};
|
2012-11-01 09:04:28 -07:00
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
void vp9_fht16x16_c(const int16_t *input, int16_t *output,
|
|
|
|
int stride, int tx_type) {
|
|
|
|
if (tx_type == DCT_DCT) {
|
|
|
|
vp9_fdct16x16_c(input, output, stride);
|
|
|
|
} else {
|
|
|
|
int16_t out[256];
|
|
|
|
int16_t *outptr = &out[0];
|
|
|
|
int i, j;
|
|
|
|
int16_t temp_in[16], temp_out[16];
|
|
|
|
const transform_2d ht = FHT_16[tx_type];
|
|
|
|
|
|
|
|
// Columns
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = input[j * stride + i] * 4;
|
|
|
|
ht.cols(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
|
|
|
|
}
|
2013-02-13 09:03:21 -08:00
|
|
|
|
2014-02-06 11:54:15 -08:00
|
|
|
// Rows
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = out[j + i * 16];
|
|
|
|
ht.rows(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
output[j + i * 16] = temp_out[j];
|
|
|
|
}
|
2013-02-13 09:03:21 -08:00
|
|
|
}
|
2012-11-01 09:04:28 -07:00
|
|
|
}
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
2013-06-14 11:28:56 -07:00
|
|
|
static INLINE int dct_32_round(int input) {
|
|
|
|
int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
|
|
|
|
assert(-131072 <= rv && rv <= 131071);
|
|
|
|
return rv;
|
|
|
|
}
|
|
|
|
|
|
|
|
static INLINE int half_round_shift(int input) {
|
|
|
|
int rv = (input + 1 + (input < 0)) >> 2;
|
|
|
|
return rv;
|
|
|
|
}
|
2013-01-18 17:04:58 -08:00
|
|
|
|
2014-01-27 16:15:36 -08:00
|
|
|
static void fdct32(const int *input, int *output, int round) {
|
2013-01-18 17:04:58 -08:00
|
|
|
int step[32];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
// Stage 1
|
2013-01-18 17:04:58 -08:00
|
|
|
step[0] = input[0] + input[(32 - 1)];
|
|
|
|
step[1] = input[1] + input[(32 - 2)];
|
|
|
|
step[2] = input[2] + input[(32 - 3)];
|
|
|
|
step[3] = input[3] + input[(32 - 4)];
|
|
|
|
step[4] = input[4] + input[(32 - 5)];
|
|
|
|
step[5] = input[5] + input[(32 - 6)];
|
|
|
|
step[6] = input[6] + input[(32 - 7)];
|
|
|
|
step[7] = input[7] + input[(32 - 8)];
|
|
|
|
step[8] = input[8] + input[(32 - 9)];
|
|
|
|
step[9] = input[9] + input[(32 - 10)];
|
|
|
|
step[10] = input[10] + input[(32 - 11)];
|
|
|
|
step[11] = input[11] + input[(32 - 12)];
|
|
|
|
step[12] = input[12] + input[(32 - 13)];
|
|
|
|
step[13] = input[13] + input[(32 - 14)];
|
|
|
|
step[14] = input[14] + input[(32 - 15)];
|
|
|
|
step[15] = input[15] + input[(32 - 16)];
|
|
|
|
step[16] = -input[16] + input[(32 - 17)];
|
|
|
|
step[17] = -input[17] + input[(32 - 18)];
|
|
|
|
step[18] = -input[18] + input[(32 - 19)];
|
|
|
|
step[19] = -input[19] + input[(32 - 20)];
|
|
|
|
step[20] = -input[20] + input[(32 - 21)];
|
|
|
|
step[21] = -input[21] + input[(32 - 22)];
|
|
|
|
step[22] = -input[22] + input[(32 - 23)];
|
|
|
|
step[23] = -input[23] + input[(32 - 24)];
|
|
|
|
step[24] = -input[24] + input[(32 - 25)];
|
|
|
|
step[25] = -input[25] + input[(32 - 26)];
|
|
|
|
step[26] = -input[26] + input[(32 - 27)];
|
|
|
|
step[27] = -input[27] + input[(32 - 28)];
|
|
|
|
step[28] = -input[28] + input[(32 - 29)];
|
|
|
|
step[29] = -input[29] + input[(32 - 30)];
|
|
|
|
step[30] = -input[30] + input[(32 - 31)];
|
|
|
|
step[31] = -input[31] + input[(32 - 32)];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
// Stage 2
|
2013-01-18 17:04:58 -08:00
|
|
|
output[0] = step[0] + step[16 - 1];
|
|
|
|
output[1] = step[1] + step[16 - 2];
|
|
|
|
output[2] = step[2] + step[16 - 3];
|
|
|
|
output[3] = step[3] + step[16 - 4];
|
|
|
|
output[4] = step[4] + step[16 - 5];
|
|
|
|
output[5] = step[5] + step[16 - 6];
|
|
|
|
output[6] = step[6] + step[16 - 7];
|
|
|
|
output[7] = step[7] + step[16 - 8];
|
|
|
|
output[8] = -step[8] + step[16 - 9];
|
|
|
|
output[9] = -step[9] + step[16 - 10];
|
|
|
|
output[10] = -step[10] + step[16 - 11];
|
|
|
|
output[11] = -step[11] + step[16 - 12];
|
|
|
|
output[12] = -step[12] + step[16 - 13];
|
|
|
|
output[13] = -step[13] + step[16 - 14];
|
|
|
|
output[14] = -step[14] + step[16 - 15];
|
|
|
|
output[15] = -step[15] + step[16 - 16];
|
|
|
|
|
|
|
|
output[16] = step[16];
|
|
|
|
output[17] = step[17];
|
|
|
|
output[18] = step[18];
|
|
|
|
output[19] = step[19];
|
|
|
|
|
2013-02-25 15:21:01 -08:00
|
|
|
output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
|
|
|
|
output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
|
|
|
|
output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
|
|
|
|
output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
|
2013-02-25 15:21:01 -08:00
|
|
|
output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
|
|
|
|
output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
|
|
|
|
output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
|
|
|
|
output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
|
|
|
|
output[28] = step[28];
|
|
|
|
output[29] = step[29];
|
|
|
|
output[30] = step[30];
|
|
|
|
output[31] = step[31];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
2013-08-30 10:57:23 -07:00
|
|
|
// dump the magnitude by 4, hence the intermediate values are within
|
|
|
|
// the range of 16 bits.
|
|
|
|
if (round) {
|
|
|
|
output[0] = half_round_shift(output[0]);
|
|
|
|
output[1] = half_round_shift(output[1]);
|
|
|
|
output[2] = half_round_shift(output[2]);
|
|
|
|
output[3] = half_round_shift(output[3]);
|
|
|
|
output[4] = half_round_shift(output[4]);
|
|
|
|
output[5] = half_round_shift(output[5]);
|
|
|
|
output[6] = half_round_shift(output[6]);
|
|
|
|
output[7] = half_round_shift(output[7]);
|
|
|
|
output[8] = half_round_shift(output[8]);
|
|
|
|
output[9] = half_round_shift(output[9]);
|
|
|
|
output[10] = half_round_shift(output[10]);
|
|
|
|
output[11] = half_round_shift(output[11]);
|
|
|
|
output[12] = half_round_shift(output[12]);
|
|
|
|
output[13] = half_round_shift(output[13]);
|
|
|
|
output[14] = half_round_shift(output[14]);
|
|
|
|
output[15] = half_round_shift(output[15]);
|
|
|
|
|
|
|
|
output[16] = half_round_shift(output[16]);
|
|
|
|
output[17] = half_round_shift(output[17]);
|
|
|
|
output[18] = half_round_shift(output[18]);
|
|
|
|
output[19] = half_round_shift(output[19]);
|
|
|
|
output[20] = half_round_shift(output[20]);
|
|
|
|
output[21] = half_round_shift(output[21]);
|
|
|
|
output[22] = half_round_shift(output[22]);
|
|
|
|
output[23] = half_round_shift(output[23]);
|
|
|
|
output[24] = half_round_shift(output[24]);
|
|
|
|
output[25] = half_round_shift(output[25]);
|
|
|
|
output[26] = half_round_shift(output[26]);
|
|
|
|
output[27] = half_round_shift(output[27]);
|
|
|
|
output[28] = half_round_shift(output[28]);
|
|
|
|
output[29] = half_round_shift(output[29]);
|
|
|
|
output[30] = half_round_shift(output[30]);
|
|
|
|
output[31] = half_round_shift(output[31]);
|
|
|
|
}
|
|
|
|
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
// Stage 3
|
2013-01-18 17:04:58 -08:00
|
|
|
step[0] = output[0] + output[(8 - 1)];
|
|
|
|
step[1] = output[1] + output[(8 - 2)];
|
|
|
|
step[2] = output[2] + output[(8 - 3)];
|
|
|
|
step[3] = output[3] + output[(8 - 4)];
|
|
|
|
step[4] = -output[4] + output[(8 - 5)];
|
|
|
|
step[5] = -output[5] + output[(8 - 6)];
|
|
|
|
step[6] = -output[6] + output[(8 - 7)];
|
|
|
|
step[7] = -output[7] + output[(8 - 8)];
|
|
|
|
step[8] = output[8];
|
|
|
|
step[9] = output[9];
|
2013-02-25 15:21:01 -08:00
|
|
|
step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
|
|
|
|
step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
|
|
|
|
step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
|
|
|
|
step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
step[14] = output[14];
|
|
|
|
step[15] = output[15];
|
|
|
|
|
|
|
|
step[16] = output[16] + output[23];
|
|
|
|
step[17] = output[17] + output[22];
|
|
|
|
step[18] = output[18] + output[21];
|
|
|
|
step[19] = output[19] + output[20];
|
|
|
|
step[20] = -output[20] + output[19];
|
|
|
|
step[21] = -output[21] + output[18];
|
|
|
|
step[22] = -output[22] + output[17];
|
|
|
|
step[23] = -output[23] + output[16];
|
|
|
|
step[24] = -output[24] + output[31];
|
|
|
|
step[25] = -output[25] + output[30];
|
|
|
|
step[26] = -output[26] + output[29];
|
|
|
|
step[27] = -output[27] + output[28];
|
|
|
|
step[28] = output[28] + output[27];
|
|
|
|
step[29] = output[29] + output[26];
|
|
|
|
step[30] = output[30] + output[25];
|
|
|
|
step[31] = output[31] + output[24];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
// Stage 4
|
2013-01-18 17:04:58 -08:00
|
|
|
output[0] = step[0] + step[3];
|
|
|
|
output[1] = step[1] + step[2];
|
|
|
|
output[2] = -step[2] + step[1];
|
|
|
|
output[3] = -step[3] + step[0];
|
|
|
|
output[4] = step[4];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
|
|
|
|
output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[7] = step[7];
|
|
|
|
output[8] = step[8] + step[11];
|
|
|
|
output[9] = step[9] + step[10];
|
|
|
|
output[10] = -step[10] + step[9];
|
|
|
|
output[11] = -step[11] + step[8];
|
|
|
|
output[12] = -step[12] + step[15];
|
|
|
|
output[13] = -step[13] + step[14];
|
|
|
|
output[14] = step[14] + step[13];
|
|
|
|
output[15] = step[15] + step[12];
|
|
|
|
|
|
|
|
output[16] = step[16];
|
|
|
|
output[17] = step[17];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
|
|
|
|
output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
|
|
|
|
output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
|
|
|
|
output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[22] = step[22];
|
|
|
|
output[23] = step[23];
|
|
|
|
output[24] = step[24];
|
|
|
|
output[25] = step[25];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
|
|
|
|
output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
|
|
|
|
output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
|
|
|
|
output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[30] = step[30];
|
|
|
|
output[31] = step[31];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
// Stage 5
|
2013-02-25 15:21:01 -08:00
|
|
|
step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
|
|
|
|
step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
|
|
|
|
step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
|
|
|
|
step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
step[4] = output[4] + output[5];
|
|
|
|
step[5] = -output[5] + output[4];
|
|
|
|
step[6] = -output[6] + output[7];
|
|
|
|
step[7] = output[7] + output[6];
|
|
|
|
step[8] = output[8];
|
2013-02-25 15:21:01 -08:00
|
|
|
step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
|
|
|
|
step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
step[11] = output[11];
|
|
|
|
step[12] = output[12];
|
2013-02-25 15:21:01 -08:00
|
|
|
step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
|
|
|
|
step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
step[15] = output[15];
|
|
|
|
|
|
|
|
step[16] = output[16] + output[19];
|
|
|
|
step[17] = output[17] + output[18];
|
|
|
|
step[18] = -output[18] + output[17];
|
|
|
|
step[19] = -output[19] + output[16];
|
|
|
|
step[20] = -output[20] + output[23];
|
|
|
|
step[21] = -output[21] + output[22];
|
|
|
|
step[22] = output[22] + output[21];
|
|
|
|
step[23] = output[23] + output[20];
|
|
|
|
step[24] = output[24] + output[27];
|
|
|
|
step[25] = output[25] + output[26];
|
|
|
|
step[26] = -output[26] + output[25];
|
|
|
|
step[27] = -output[27] + output[24];
|
|
|
|
step[28] = -output[28] + output[31];
|
|
|
|
step[29] = -output[29] + output[30];
|
|
|
|
step[30] = output[30] + output[29];
|
|
|
|
step[31] = output[31] + output[28];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
// Stage 6
|
2013-01-18 17:04:58 -08:00
|
|
|
output[0] = step[0];
|
|
|
|
output[1] = step[1];
|
|
|
|
output[2] = step[2];
|
|
|
|
output[3] = step[3];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
|
|
|
|
output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
|
|
|
|
output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
|
|
|
|
output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[8] = step[8] + step[9];
|
|
|
|
output[9] = -step[9] + step[8];
|
|
|
|
output[10] = -step[10] + step[11];
|
|
|
|
output[11] = step[11] + step[10];
|
|
|
|
output[12] = step[12] + step[13];
|
|
|
|
output[13] = -step[13] + step[12];
|
|
|
|
output[14] = -step[14] + step[15];
|
|
|
|
output[15] = step[15] + step[14];
|
|
|
|
|
|
|
|
output[16] = step[16];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
|
|
|
|
output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[19] = step[19];
|
|
|
|
output[20] = step[20];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
|
|
|
|
output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[23] = step[23];
|
|
|
|
output[24] = step[24];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
|
|
|
|
output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[27] = step[27];
|
|
|
|
output[28] = step[28];
|
2013-02-25 15:21:01 -08:00
|
|
|
output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
|
|
|
|
output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
output[31] = step[31];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
// Stage 7
|
2013-01-18 17:04:58 -08:00
|
|
|
step[0] = output[0];
|
|
|
|
step[1] = output[1];
|
|
|
|
step[2] = output[2];
|
|
|
|
step[3] = output[3];
|
|
|
|
step[4] = output[4];
|
|
|
|
step[5] = output[5];
|
|
|
|
step[6] = output[6];
|
|
|
|
step[7] = output[7];
|
2013-02-25 15:21:01 -08:00
|
|
|
step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
|
|
|
|
step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
|
|
|
|
step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
|
|
|
|
step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
|
|
|
|
step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
|
|
|
|
step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
|
|
|
|
step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
|
|
|
|
step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
|
2013-01-18 17:04:58 -08:00
|
|
|
|
|
|
|
step[16] = output[16] + output[17];
|
|
|
|
step[17] = -output[17] + output[16];
|
|
|
|
step[18] = -output[18] + output[19];
|
|
|
|
step[19] = output[19] + output[18];
|
|
|
|
step[20] = output[20] + output[21];
|
|
|
|
step[21] = -output[21] + output[20];
|
|
|
|
step[22] = -output[22] + output[23];
|
|
|
|
step[23] = output[23] + output[22];
|
|
|
|
step[24] = output[24] + output[25];
|
|
|
|
step[25] = -output[25] + output[24];
|
|
|
|
step[26] = -output[26] + output[27];
|
|
|
|
step[27] = output[27] + output[26];
|
|
|
|
step[28] = output[28] + output[29];
|
|
|
|
step[29] = -output[29] + output[28];
|
|
|
|
step[30] = -output[30] + output[31];
|
|
|
|
step[31] = output[31] + output[30];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
// Final stage --- outputs indices are bit-reversed.
|
2013-02-25 15:21:01 -08:00
|
|
|
output[0] = step[0];
|
|
|
|
output[16] = step[1];
|
|
|
|
output[8] = step[2];
|
|
|
|
output[24] = step[3];
|
|
|
|
output[4] = step[4];
|
|
|
|
output[20] = step[5];
|
|
|
|
output[12] = step[6];
|
|
|
|
output[28] = step[7];
|
|
|
|
output[2] = step[8];
|
|
|
|
output[18] = step[9];
|
|
|
|
output[10] = step[10];
|
|
|
|
output[26] = step[11];
|
|
|
|
output[6] = step[12];
|
|
|
|
output[22] = step[13];
|
|
|
|
output[14] = step[14];
|
|
|
|
output[30] = step[15];
|
|
|
|
|
|
|
|
output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
|
|
|
|
output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
|
|
|
|
output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
|
|
|
|
output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
|
|
|
|
output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
|
|
|
|
output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
|
|
|
|
output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
|
|
|
|
output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
|
|
|
|
output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
|
|
|
|
output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
|
|
|
|
output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
|
|
|
|
output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
|
|
|
|
output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
|
|
|
|
output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
|
|
|
|
output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
|
|
|
|
output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
}
|
|
|
|
|
2013-10-24 11:48:25 -07:00
|
|
|
void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
|
2013-01-09 06:26:54 -08:00
|
|
|
int i, j;
|
2013-02-27 11:17:38 -08:00
|
|
|
int output[32 * 32];
|
|
|
|
|
|
|
|
// Columns
|
2013-06-14 11:28:56 -07:00
|
|
|
for (i = 0; i < 32; ++i) {
|
2013-01-18 17:04:58 -08:00
|
|
|
int temp_in[32], temp_out[32];
|
2013-06-14 11:28:56 -07:00
|
|
|
for (j = 0; j < 32; ++j)
|
2013-10-17 13:02:28 -07:00
|
|
|
temp_in[j] = input[j * stride + i] * 4;
|
2014-01-27 16:15:36 -08:00
|
|
|
fdct32(temp_in, temp_out, 0);
|
2013-06-14 11:28:56 -07:00
|
|
|
for (j = 0; j < 32; ++j)
|
2013-02-25 15:21:01 -08:00
|
|
|
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
|
2013-01-09 06:26:54 -08:00
|
|
|
}
|
|
|
|
|
2013-02-27 11:17:38 -08:00
|
|
|
// Rows
|
2013-01-08 12:18:16 -08:00
|
|
|
for (i = 0; i < 32; ++i) {
|
2013-01-18 17:04:58 -08:00
|
|
|
int temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
temp_in[j] = output[j + i * 32];
|
2014-01-27 16:15:36 -08:00
|
|
|
fdct32(temp_in, temp_out, 0);
|
2013-01-18 17:04:58 -08:00
|
|
|
for (j = 0; j < 32; ++j)
|
2013-02-25 15:21:01 -08:00
|
|
|
out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
|
2013-01-08 12:18:16 -08:00
|
|
|
}
|
|
|
|
}
|
2013-06-14 11:28:56 -07:00
|
|
|
|
2014-01-27 16:15:36 -08:00
|
|
|
// Note that although we use dct_32_round in dct32 computation flow,
|
2013-06-14 11:28:56 -07:00
|
|
|
// this 2d fdct32x32 for rate-distortion optimization loop is operating
|
|
|
|
// within 16 bits precision.
|
2013-10-24 11:48:25 -07:00
|
|
|
void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
|
2013-06-14 11:28:56 -07:00
|
|
|
int i, j;
|
|
|
|
int output[32 * 32];
|
|
|
|
|
|
|
|
// Columns
|
|
|
|
for (i = 0; i < 32; ++i) {
|
|
|
|
int temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; ++j)
|
2013-10-17 13:02:28 -07:00
|
|
|
temp_in[j] = input[j * stride + i] * 4;
|
2014-01-27 16:15:36 -08:00
|
|
|
fdct32(temp_in, temp_out, 0);
|
2013-06-14 11:28:56 -07:00
|
|
|
for (j = 0; j < 32; ++j)
|
2013-06-18 15:23:25 -07:00
|
|
|
// TODO(cd): see quality impact of only doing
|
|
|
|
// output[j * 32 + i] = (temp_out[j] + 1) >> 2;
|
|
|
|
// PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c
|
2013-06-14 11:28:56 -07:00
|
|
|
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Rows
|
|
|
|
for (i = 0; i < 32; ++i) {
|
|
|
|
int temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
temp_in[j] = output[j + i * 32];
|
2014-01-27 16:15:36 -08:00
|
|
|
fdct32(temp_in, temp_out, 1);
|
2013-06-14 11:28:56 -07:00
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
out[j + i * 32] = temp_out[j];
|
|
|
|
}
|
|
|
|
}
|