2010-05-18 17:58:33 +02:00
|
|
|
/*
|
2010-09-09 14:16:39 +02:00
|
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
2010-05-18 17:58:33 +02:00
|
|
|
*
|
2010-06-18 18:39:21 +02:00
|
|
|
* Use of this source code is governed by a BSD-style license
|
2010-06-04 22:19:40 +02:00
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
2010-06-18 18:39:21 +02:00
|
|
|
* in the file PATENTS. All contributing project authors may
|
2010-06-04 22:19:40 +02:00
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
2010-05-18 17:58:33 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
#include <assert.h>
|
2010-05-18 17:58:33 +02:00
|
|
|
#include <math.h>
|
2012-12-23 16:20:10 +01:00
|
|
|
#include "./vpx_config.h"
|
2012-11-27 22:59:17 +01:00
|
|
|
#include "vp9/common/vp9_systemdependent.h"
|
2011-02-14 23:18:18 +01:00
|
|
|
|
2012-11-27 22:59:17 +01:00
|
|
|
#include "vp9/common/vp9_blockd.h"
|
2012-06-25 21:26:09 +02:00
|
|
|
|
2012-08-02 18:07:33 +02:00
|
|
|
// TODO: these transforms can be converted into integer forms to reduce
|
|
|
|
// the complexity
|
2012-10-31 01:12:12 +01:00
|
|
|
static const float dct_4[16] = {
|
2012-06-25 21:26:09 +02:00
|
|
|
0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000,
|
|
|
|
0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188,
|
|
|
|
0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000,
|
|
|
|
0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const float adst_4[16] = {
|
2012-06-25 21:26:09 +02:00
|
|
|
0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139,
|
|
|
|
0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626,
|
|
|
|
0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359,
|
|
|
|
0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const float dct_8[64] = {
|
2012-08-02 18:07:33 +02:00
|
|
|
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
|
|
|
|
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
|
|
|
|
0.490392640201615, 0.415734806151273, 0.277785116509801, 0.097545161008064,
|
|
|
|
-0.097545161008064, -0.277785116509801, -0.415734806151273, -0.490392640201615,
|
|
|
|
0.461939766255643, 0.191341716182545, -0.191341716182545, -0.461939766255643,
|
|
|
|
-0.461939766255643, -0.191341716182545, 0.191341716182545, 0.461939766255643,
|
|
|
|
0.415734806151273, -0.097545161008064, -0.490392640201615, -0.277785116509801,
|
|
|
|
0.277785116509801, 0.490392640201615, 0.097545161008064, -0.415734806151273,
|
|
|
|
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
|
|
|
|
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
|
|
|
|
0.277785116509801, -0.490392640201615, 0.097545161008064, 0.415734806151273,
|
|
|
|
-0.415734806151273, -0.097545161008064, 0.490392640201615, -0.277785116509801,
|
|
|
|
0.191341716182545, -0.461939766255643, 0.461939766255643, -0.191341716182545,
|
|
|
|
-0.191341716182545, 0.461939766255643, -0.461939766255643, 0.191341716182545,
|
|
|
|
0.097545161008064, -0.277785116509801, 0.415734806151273, -0.490392640201615,
|
|
|
|
0.490392640201615, -0.415734806151273, 0.277785116509801, -0.097545161008064
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const float adst_8[64] = {
|
2012-08-02 18:07:33 +02:00
|
|
|
0.089131608307533, 0.175227946595735, 0.255357107325376, 0.326790388032145,
|
|
|
|
0.387095214016349, 0.434217976756762, 0.466553967085785, 0.483002021635509,
|
|
|
|
0.255357107325376, 0.434217976756762, 0.483002021635509, 0.387095214016349,
|
|
|
|
0.175227946595735, -0.089131608307533, -0.326790388032145, -0.466553967085785,
|
|
|
|
0.387095214016349, 0.466553967085785, 0.175227946595735, -0.255357107325376,
|
|
|
|
-0.483002021635509, -0.326790388032145, 0.089131608307533, 0.434217976756762,
|
|
|
|
0.466553967085785, 0.255357107325376, -0.326790388032145, -0.434217976756762,
|
|
|
|
0.089131608307533, 0.483002021635509, 0.175227946595735, -0.387095214016348,
|
|
|
|
0.483002021635509, -0.089131608307533, -0.466553967085785, 0.175227946595735,
|
|
|
|
0.434217976756762, -0.255357107325376, -0.387095214016348, 0.326790388032145,
|
|
|
|
0.434217976756762, -0.387095214016348, -0.089131608307533, 0.466553967085786,
|
|
|
|
-0.326790388032145, -0.175227946595735, 0.483002021635509, -0.255357107325375,
|
|
|
|
0.326790388032145, -0.483002021635509, 0.387095214016349, -0.089131608307534,
|
|
|
|
-0.255357107325377, 0.466553967085785, -0.434217976756762, 0.175227946595736,
|
|
|
|
0.175227946595735, -0.326790388032145, 0.434217976756762, -0.483002021635509,
|
|
|
|
0.466553967085785, -0.387095214016348, 0.255357107325376, -0.089131608307532
|
|
|
|
};
|
2012-06-25 21:26:09 +02:00
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
/* Converted the transforms to integers. */
|
2012-10-31 01:12:12 +01:00
|
|
|
static const int16_t dct_i4[16] = {
|
2012-10-19 01:31:59 +02:00
|
|
|
16384, 16384, 16384, 16384,
|
|
|
|
21407, 8867, -8867, -21407,
|
|
|
|
16384, -16384, -16384, 16384,
|
|
|
|
8867, -21407, 21407, -8867
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const int16_t adst_i4[16] = {
|
2012-10-19 01:31:59 +02:00
|
|
|
7472, 14042, 18919, 21513,
|
|
|
|
18919, 18919, 0, -18919,
|
|
|
|
21513, -7472, -18919, 14042,
|
|
|
|
14042, -21513, 18919, -7472
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const int16_t dct_i8[64] = {
|
2012-10-19 01:31:59 +02:00
|
|
|
11585, 11585, 11585, 11585,
|
|
|
|
11585, 11585, 11585, 11585,
|
|
|
|
16069, 13623, 9102, 3196,
|
|
|
|
-3196, -9102, -13623, -16069,
|
|
|
|
15137, 6270, -6270, -15137,
|
|
|
|
-15137, -6270, 6270, 15137,
|
|
|
|
13623, -3196, -16069, -9102,
|
|
|
|
9102, 16069, 3196, -13623,
|
|
|
|
11585, -11585, -11585, 11585,
|
|
|
|
11585, -11585, -11585, 11585,
|
|
|
|
9102, -16069, 3196, 13623,
|
|
|
|
-13623, -3196, 16069, -9102,
|
|
|
|
6270, -15137, 15137, -6270,
|
|
|
|
-6270, 15137, -15137, 6270,
|
|
|
|
3196, -9102, 13623, -16069,
|
|
|
|
16069, -13623, 9102, -3196
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const int16_t adst_i8[64] = {
|
2012-10-19 01:31:59 +02:00
|
|
|
2921, 5742, 8368, 10708,
|
|
|
|
12684, 14228, 15288, 15827,
|
|
|
|
8368, 14228, 15827, 12684,
|
|
|
|
5742, -2921, -10708, -15288,
|
|
|
|
12684, 15288, 5742, -8368,
|
|
|
|
-15827, -10708, 2921, 14228,
|
|
|
|
15288, 8368, -10708, -14228,
|
|
|
|
2921, 15827, 5742, -12684,
|
|
|
|
15827, -2921, -15288, 5742,
|
|
|
|
14228, -8368, -12684, 10708,
|
|
|
|
14228, -12684, -2921, 15288,
|
|
|
|
-10708, -5742, 15827, -8368,
|
|
|
|
10708, -15827, 12684, -2921,
|
|
|
|
-8368, 15288, -14228, 5742,
|
|
|
|
5742, -10708, 14228, -15827,
|
|
|
|
15288, -12684, 8368, -2921
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const float dct_16[256] = {
|
2012-08-29 20:25:38 +02:00
|
|
|
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
|
|
|
|
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
|
|
|
|
0.351851, 0.338330, 0.311806, 0.273300, 0.224292, 0.166664, 0.102631, 0.034654,
|
|
|
|
-0.034654, -0.102631, -0.166664, -0.224292, -0.273300, -0.311806, -0.338330, -0.351851,
|
|
|
|
0.346760, 0.293969, 0.196424, 0.068975, -0.068975, -0.196424, -0.293969, -0.346760,
|
|
|
|
-0.346760, -0.293969, -0.196424, -0.068975, 0.068975, 0.196424, 0.293969, 0.346760,
|
|
|
|
0.338330, 0.224292, 0.034654, -0.166664, -0.311806, -0.351851, -0.273300, -0.102631,
|
|
|
|
0.102631, 0.273300, 0.351851, 0.311806, 0.166664, -0.034654, -0.224292, -0.338330,
|
|
|
|
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
|
|
|
|
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
|
|
|
|
0.311806, 0.034654, -0.273300, -0.338330, -0.102631, 0.224292, 0.351851, 0.166664,
|
|
|
|
-0.166664, -0.351851, -0.224292, 0.102631, 0.338330, 0.273300, -0.034654, -0.311806,
|
|
|
|
0.293969, -0.068975, -0.346760, -0.196424, 0.196424, 0.346760, 0.068975, -0.293969,
|
|
|
|
-0.293969, 0.068975, 0.346760, 0.196424, -0.196424, -0.346760, -0.068975, 0.293969,
|
|
|
|
0.273300, -0.166664, -0.338330, 0.034654, 0.351851, 0.102631, -0.311806, -0.224292,
|
|
|
|
0.224292, 0.311806, -0.102631, -0.351851, -0.034654, 0.338330, 0.166664, -0.273300,
|
|
|
|
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
|
|
|
|
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
|
|
|
|
0.224292, -0.311806, -0.102631, 0.351851, -0.034654, -0.338330, 0.166664, 0.273300,
|
|
|
|
-0.273300, -0.166664, 0.338330, 0.034654, -0.351851, 0.102631, 0.311806, -0.224292,
|
|
|
|
0.196424, -0.346760, 0.068975, 0.293969, -0.293969, -0.068975, 0.346760, -0.196424,
|
|
|
|
-0.196424, 0.346760, -0.068975, -0.293969, 0.293969, 0.068975, -0.346760, 0.196424,
|
|
|
|
0.166664, -0.351851, 0.224292, 0.102631, -0.338330, 0.273300, 0.034654, -0.311806,
|
|
|
|
0.311806, -0.034654, -0.273300, 0.338330, -0.102631, -0.224292, 0.351851, -0.166664,
|
|
|
|
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
|
|
|
|
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
|
|
|
|
0.102631, -0.273300, 0.351851, -0.311806, 0.166664, 0.034654, -0.224292, 0.338330,
|
|
|
|
-0.338330, 0.224292, -0.034654, -0.166664, 0.311806, -0.351851, 0.273300, -0.102631,
|
|
|
|
0.068975, -0.196424, 0.293969, -0.346760, 0.346760, -0.293969, 0.196424, -0.068975,
|
|
|
|
-0.068975, 0.196424, -0.293969, 0.346760, -0.346760, 0.293969, -0.196424, 0.068975,
|
|
|
|
0.034654, -0.102631, 0.166664, -0.224292, 0.273300, -0.311806, 0.338330, -0.351851,
|
|
|
|
0.351851, -0.338330, 0.311806, -0.273300, 0.224292, -0.166664, 0.102631, -0.034654
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const float adst_16[256] = {
|
2012-08-29 20:25:38 +02:00
|
|
|
0.033094, 0.065889, 0.098087, 0.129396, 0.159534, 0.188227, 0.215215, 0.240255,
|
|
|
|
0.263118, 0.283599, 0.301511, 0.316693, 0.329007, 0.338341, 0.344612, 0.347761,
|
|
|
|
0.098087, 0.188227, 0.263118, 0.316693, 0.344612, 0.344612, 0.316693, 0.263118,
|
|
|
|
0.188227, 0.098087, 0.000000, -0.098087, -0.188227, -0.263118, -0.316693, -0.344612,
|
|
|
|
0.159534, 0.283599, 0.344612, 0.329007, 0.240255, 0.098087, -0.065889, -0.215215,
|
|
|
|
-0.316693, -0.347761, -0.301511, -0.188227, -0.033094, 0.129396, 0.263118, 0.338341,
|
|
|
|
0.215215, 0.338341, 0.316693, 0.159534, -0.065889, -0.263118, -0.347761, -0.283599,
|
|
|
|
-0.098087, 0.129396, 0.301511, 0.344612, 0.240255, 0.033094, -0.188227, -0.329007,
|
|
|
|
0.263118, 0.344612, 0.188227, -0.098087, -0.316693, -0.316693, -0.098087, 0.188227,
|
|
|
|
0.344612, 0.263118, 0.000000, -0.263118, -0.344612, -0.188227, 0.098087, 0.316693,
|
|
|
|
0.301511, 0.301511, 0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511,
|
|
|
|
0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511, 0.000000, -0.301511,
|
|
|
|
0.329007, 0.215215, -0.188227, -0.338341, -0.033094, 0.316693, 0.240255, -0.159534,
|
|
|
|
-0.344612, -0.065889, 0.301511, 0.263118, -0.129396, -0.347761, -0.098087, 0.283599,
|
|
|
|
0.344612, 0.098087, -0.316693, -0.188227, 0.263118, 0.263118, -0.188227, -0.316693,
|
|
|
|
0.098087, 0.344612, 0.000000, -0.344612, -0.098087, 0.316693, 0.188227, -0.263118,
|
|
|
|
0.347761, -0.033094, -0.344612, 0.065889, 0.338341, -0.098087, -0.329007, 0.129396,
|
|
|
|
0.316693, -0.159534, -0.301511, 0.188227, 0.283599, -0.215215, -0.263118, 0.240255,
|
|
|
|
0.338341, -0.159534, -0.263118, 0.283599, 0.129396, -0.344612, 0.033094, 0.329007,
|
|
|
|
-0.188227, -0.240255, 0.301511, 0.098087, -0.347761, 0.065889, 0.316693, -0.215215,
|
|
|
|
0.316693, -0.263118, -0.098087, 0.344612, -0.188227, -0.188227, 0.344612, -0.098087,
|
|
|
|
-0.263118, 0.316693, 0.000000, -0.316693, 0.263118, 0.098087, -0.344612, 0.188227,
|
|
|
|
0.283599, -0.329007, 0.098087, 0.215215, -0.347761, 0.188227, 0.129396, -0.338341,
|
|
|
|
0.263118, 0.033094, -0.301511, 0.316693, -0.065889, -0.240255, 0.344612, -0.159534,
|
|
|
|
0.240255, -0.347761, 0.263118, -0.033094, -0.215215, 0.344612, -0.283599, 0.065889,
|
|
|
|
0.188227, -0.338341, 0.301511, -0.098087, -0.159534, 0.329007, -0.316693, 0.129396,
|
|
|
|
0.188227, -0.316693, 0.344612, -0.263118, 0.098087, 0.098087, -0.263118, 0.344612,
|
|
|
|
-0.316693, 0.188227, 0.000000, -0.188227, 0.316693, -0.344612, 0.263118, -0.098087,
|
|
|
|
0.129396, -0.240255, 0.316693, -0.347761, 0.329007, -0.263118, 0.159534, -0.033094,
|
|
|
|
-0.098087, 0.215215, -0.301511, 0.344612, -0.338341, 0.283599, -0.188227, 0.065889,
|
|
|
|
0.065889, -0.129396, 0.188227, -0.240255, 0.283599, -0.316693, 0.338341, -0.347761,
|
|
|
|
0.344612, -0.329007, 0.301511, -0.263118, 0.215215, -0.159534, 0.098087, -0.033094
|
|
|
|
};
|
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
/* Converted the transforms to integers. */
|
2012-10-31 01:12:12 +01:00
|
|
|
static const int16_t dct_i16[256] = {
|
2012-10-19 01:31:59 +02:00
|
|
|
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
|
|
|
|
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
|
|
|
|
11529, 11086, 10217, 8955, 7350, 5461, 3363, 1136,
|
|
|
|
-1136, -3363, -5461, -7350, -8955, -10217, -11086, -11529,
|
|
|
|
11363, 9633, 6436, 2260, -2260, -6436, -9633, -11363,
|
|
|
|
-11363, -9633, -6436, -2260, 2260, 6436, 9633, 11363,
|
|
|
|
11086, 7350, 1136, -5461, -10217, -11529, -8955, -3363,
|
|
|
|
3363, 8955, 11529, 10217, 5461, -1136, -7350, -11086,
|
|
|
|
10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703,
|
|
|
|
10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703,
|
|
|
|
10217, 1136, -8955, -11086, -3363, 7350, 11529, 5461,
|
|
|
|
-5461, -11529, -7350, 3363, 11086, 8955, -1136, -10217,
|
|
|
|
9633, -2260, -11363, -6436, 6436, 11363, 2260, -9633,
|
|
|
|
-9633, 2260, 11363, 6436, -6436, -11363, -2260, 9633,
|
|
|
|
8955, -5461, -11086, 1136, 11529, 3363, -10217, -7350,
|
|
|
|
7350, 10217, -3363, -11529, -1136, 11086, 5461, -8955,
|
|
|
|
8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192,
|
|
|
|
8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192,
|
|
|
|
7350, -10217, -3363, 11529, -1136, -11086, 5461, 8955,
|
|
|
|
-8955, -5461, 11086, 1136, -11529, 3363, 10217, -7350,
|
|
|
|
6436, -11363, 2260, 9633, -9633, -2260, 11363, -6436,
|
|
|
|
-6436, 11363, -2260, -9633, 9633, 2260, -11363, 6436,
|
|
|
|
5461, -11529, 7350, 3363, -11086, 8955, 1136, -10217,
|
|
|
|
10217, -1136, -8955, 11086, -3363, -7350, 11529, -5461,
|
|
|
|
4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433,
|
|
|
|
4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433,
|
|
|
|
3363, -8955, 11529, -10217, 5461, 1136, -7350, 11086,
|
|
|
|
-11086, 7350, -1136, -5461, 10217, -11529, 8955, -3363,
|
|
|
|
2260, -6436, 9633, -11363, 11363, -9633, 6436, -2260,
|
|
|
|
-2260, 6436, -9633, 11363, -11363, 9633, -6436, 2260,
|
|
|
|
1136, -3363, 5461, -7350, 8955, -10217, 11086, -11529,
|
|
|
|
11529, -11086, 10217, -8955, 7350, -5461, 3363, -1136
|
|
|
|
};
|
|
|
|
|
2012-10-31 01:12:12 +01:00
|
|
|
static const int16_t adst_i16[256] = {
|
2012-10-19 01:31:59 +02:00
|
|
|
1084, 2159, 3214, 4240, 5228, 6168, 7052, 7873,
|
|
|
|
8622, 9293, 9880, 10377, 10781, 11087, 11292, 11395,
|
|
|
|
3214, 6168, 8622, 10377, 11292, 11292, 10377, 8622,
|
|
|
|
6168, 3214, 0, -3214, -6168, -8622, -10377, -11292,
|
|
|
|
5228, 9293, 11292, 10781, 7873, 3214, -2159, -7052,
|
|
|
|
-10377, -11395, -9880, -6168, -1084, 4240, 8622, 11087,
|
|
|
|
7052, 11087, 10377, 5228, -2159, -8622, -11395, -9293,
|
|
|
|
-3214, 4240, 9880, 11292, 7873, 1084, -6168, -10781,
|
|
|
|
8622, 11292, 6168, -3214, -10377, -10377, -3214, 6168,
|
|
|
|
11292, 8622, 0, -8622, -11292, -6168, 3214, 10377,
|
|
|
|
9880, 9880, 0, -9880, -9880, 0, 9880, 9880,
|
|
|
|
0, -9880, -9880, 0, 9880, 9880, 0, -9880,
|
|
|
|
10781, 7052, -6168, -11087, -1084, 10377, 7873, -5228,
|
|
|
|
-11292, -2159, 9880, 8622, -4240, -11395, -3214, 9293,
|
|
|
|
11292, 3214, -10377, -6168, 8622, 8622, -6168, -10377,
|
|
|
|
3214, 11292, 0, -11292, -3214, 10377, 6168, -8622,
|
|
|
|
11395, -1084, -11292, 2159, 11087, -3214, -10781, 4240,
|
|
|
|
10377, -5228, -9880, 6168, 9293, -7052, -8622, 7873,
|
|
|
|
11087, -5228, -8622, 9293, 4240, -11292, 1084, 10781,
|
|
|
|
-6168, -7873, 9880, 3214, -11395, 2159, 10377, -7052,
|
|
|
|
10377, -8622, -3214, 11292, -6168, -6168, 11292, -3214,
|
|
|
|
-8622, 10377, 0, -10377, 8622, 3214, -11292, 6168,
|
|
|
|
9293, -10781, 3214, 7052, -11395, 6168, 4240, -11087,
|
|
|
|
8622, 1084, -9880, 10377, -2159, -7873, 11292, -5228,
|
|
|
|
7873, -11395, 8622, -1084, -7052, 11292, -9293, 2159,
|
|
|
|
6168, -11087, 9880, -3214, -5228, 10781, -10377, 4240,
|
|
|
|
6168, -10377, 11292, -8622, 3214, 3214, -8622, 11292,
|
|
|
|
-10377, 6168, 0, -6168, 10377, -11292, 8622, -3214,
|
|
|
|
4240, -7873, 10377, -11395, 10781, -8622, 5228, -1084,
|
|
|
|
-3214, 7052, -9880, 11292, -11087, 9293, -6168, 2159,
|
|
|
|
2159, -4240, 6168, -7873, 9293, -10377, 11087, -11395,
|
|
|
|
11292, -10781, 9880, -8622, 7052, -5228, 3214, -1084
|
|
|
|
};
|
|
|
|
|
2012-05-09 18:31:14 +02:00
|
|
|
static const int xC1S7 = 16069;
|
|
|
|
static const int xC2S6 = 15137;
|
|
|
|
static const int xC3S5 = 13623;
|
|
|
|
static const int xC4S4 = 11585;
|
|
|
|
static const int xC5S3 = 9102;
|
|
|
|
static const int xC6S2 = 6270;
|
|
|
|
static const int xC7S1 = 3196;
|
|
|
|
|
|
|
|
#define SHIFT_BITS 14
|
|
|
|
#define DOROUND(X) X += (1<<(SHIFT_BITS-1));
|
|
|
|
|
|
|
|
#define FINAL_SHIFT 3
|
|
|
|
#define FINAL_ROUNDING (1<<(FINAL_SHIFT -1))
|
|
|
|
#define IN_SHIFT (FINAL_SHIFT+1)
|
|
|
|
|
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_fdct8x8_c(short *InputData, short *OutputData, int pitch) {
|
2012-07-14 00:21:29 +02:00
|
|
|
int loop;
|
|
|
|
int short_pitch = pitch >> 1;
|
|
|
|
int is07, is12, is34, is56;
|
|
|
|
int is0734, is1256;
|
|
|
|
int id07, id12, id34, id56;
|
|
|
|
int irot_input_x, irot_input_y;
|
|
|
|
int icommon_product1; // Re-used product (c4s4 * (s12 - s56))
|
|
|
|
int icommon_product2; // Re-used product (c4s4 * (d12 + d56))
|
|
|
|
int temp1, temp2; // intermediate variable for computation
|
|
|
|
|
|
|
|
int InterData[64];
|
|
|
|
int *ip = InterData;
|
|
|
|
short *op = OutputData;
|
|
|
|
|
|
|
|
for (loop = 0; loop < 8; loop++) {
|
|
|
|
// Pre calculate some common sums and differences.
|
|
|
|
is07 = (InputData[0] + InputData[7]) << IN_SHIFT;
|
|
|
|
is12 = (InputData[1] + InputData[2]) << IN_SHIFT;
|
|
|
|
is34 = (InputData[3] + InputData[4]) << IN_SHIFT;
|
|
|
|
is56 = (InputData[5] + InputData[6]) << IN_SHIFT;
|
|
|
|
id07 = (InputData[0] - InputData[7]) << IN_SHIFT;
|
|
|
|
id12 = (InputData[1] - InputData[2]) << IN_SHIFT;
|
|
|
|
id34 = (InputData[3] - InputData[4]) << IN_SHIFT;
|
|
|
|
id56 = (InputData[5] - InputData[6]) << IN_SHIFT;
|
|
|
|
|
|
|
|
is0734 = is07 + is34;
|
|
|
|
is1256 = is12 + is56;
|
|
|
|
|
|
|
|
// Pre-Calculate some common product terms.
|
|
|
|
icommon_product1 = xC4S4 * (is12 - is56);
|
|
|
|
DOROUND(icommon_product1)
|
|
|
|
icommon_product1 >>= SHIFT_BITS;
|
|
|
|
|
|
|
|
icommon_product2 = xC4S4 * (id12 + id56);
|
|
|
|
DOROUND(icommon_product2)
|
|
|
|
icommon_product2 >>= SHIFT_BITS;
|
|
|
|
|
|
|
|
|
|
|
|
ip[0] = (xC4S4 * (is0734 + is1256));
|
|
|
|
DOROUND(ip[0]);
|
|
|
|
ip[0] >>= SHIFT_BITS;
|
|
|
|
|
|
|
|
ip[4] = (xC4S4 * (is0734 - is1256));
|
|
|
|
DOROUND(ip[4]);
|
|
|
|
ip[4] >>= SHIFT_BITS;
|
|
|
|
|
|
|
|
// Define inputs to rotation for outputs 2 and 6
|
|
|
|
irot_input_x = id12 - id56;
|
|
|
|
irot_input_y = is07 - is34;
|
|
|
|
|
|
|
|
// Apply rotation for outputs 2 and 6.
|
|
|
|
temp1 = xC6S2 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC2S6 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
ip[2] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = xC6S2 * irot_input_y;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC2S6 * irot_input_x;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
ip[6] = temp1 - temp2;
|
|
|
|
|
|
|
|
// Define inputs to rotation for outputs 1 and 7
|
|
|
|
irot_input_x = icommon_product1 + id07;
|
|
|
|
irot_input_y = -(id34 + icommon_product2);
|
|
|
|
|
|
|
|
// Apply rotation for outputs 1 and 7.
|
|
|
|
temp1 = xC1S7 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC7S1 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
ip[1] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = xC7S1 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC1S7 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
ip[7] = temp1 + temp2;
|
|
|
|
|
|
|
|
// Define inputs to rotation for outputs 3 and 5
|
|
|
|
irot_input_x = id07 - icommon_product1;
|
|
|
|
irot_input_y = id34 - icommon_product2;
|
|
|
|
|
|
|
|
// Apply rotation for outputs 3 and 5.
|
|
|
|
temp1 = xC3S5 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC5S3 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
ip[3] = temp1 - temp2;
|
|
|
|
|
|
|
|
|
|
|
|
temp1 = xC5S3 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC3S5 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
ip[5] = temp1 + temp2;
|
|
|
|
|
|
|
|
// Increment data pointer for next row
|
|
|
|
InputData += short_pitch;
|
|
|
|
ip += 8;
|
|
|
|
}
|
2012-05-09 18:31:14 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
// Performed DCT on rows, now transform the columns
|
|
|
|
ip = InterData;
|
|
|
|
for (loop = 0; loop < 8; loop++) {
|
|
|
|
// Pre calculate some common sums and differences.
|
|
|
|
is07 = ip[0 * 8] + ip[7 * 8];
|
|
|
|
is12 = ip[1 * 8] + ip[2 * 8];
|
|
|
|
is34 = ip[3 * 8] + ip[4 * 8];
|
|
|
|
is56 = ip[5 * 8] + ip[6 * 8];
|
|
|
|
|
|
|
|
id07 = ip[0 * 8] - ip[7 * 8];
|
|
|
|
id12 = ip[1 * 8] - ip[2 * 8];
|
|
|
|
id34 = ip[3 * 8] - ip[4 * 8];
|
|
|
|
id56 = ip[5 * 8] - ip[6 * 8];
|
|
|
|
|
|
|
|
is0734 = is07 + is34;
|
|
|
|
is1256 = is12 + is56;
|
|
|
|
|
|
|
|
// Pre-Calculate some common product terms
|
|
|
|
icommon_product1 = xC4S4 * (is12 - is56);
|
|
|
|
icommon_product2 = xC4S4 * (id12 + id56);
|
|
|
|
DOROUND(icommon_product1)
|
|
|
|
DOROUND(icommon_product2)
|
|
|
|
icommon_product1 >>= SHIFT_BITS;
|
|
|
|
icommon_product2 >>= SHIFT_BITS;
|
|
|
|
|
|
|
|
|
|
|
|
temp1 = xC4S4 * (is0734 + is1256);
|
|
|
|
temp2 = xC4S4 * (is0734 - is1256);
|
|
|
|
DOROUND(temp1);
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[0 * 8] = (temp1 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
op[4 * 8] = (temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
// Define inputs to rotation for outputs 2 and 6
|
|
|
|
irot_input_x = id12 - id56;
|
|
|
|
irot_input_y = is07 - is34;
|
|
|
|
|
|
|
|
// Apply rotation for outputs 2 and 6.
|
|
|
|
temp1 = xC6S2 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC2S6 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[2 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
temp1 = xC6S2 * irot_input_y;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC2S6 * irot_input_x;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[6 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
// Define inputs to rotation for outputs 1 and 7
|
|
|
|
irot_input_x = icommon_product1 + id07;
|
|
|
|
irot_input_y = -(id34 + icommon_product2);
|
|
|
|
|
|
|
|
// Apply rotation for outputs 1 and 7.
|
|
|
|
temp1 = xC1S7 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC7S1 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[1 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
temp1 = xC7S1 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC1S7 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[7 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
// Define inputs to rotation for outputs 3 and 5
|
|
|
|
irot_input_x = id07 - icommon_product1;
|
|
|
|
irot_input_y = id34 - icommon_product2;
|
|
|
|
|
|
|
|
// Apply rotation for outputs 3 and 5.
|
|
|
|
temp1 = xC3S5 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC5S3 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[3 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
|
|
|
|
temp1 = xC5S3 * irot_input_x;
|
|
|
|
DOROUND(temp1);
|
|
|
|
temp1 >>= SHIFT_BITS;
|
|
|
|
temp2 = xC3S5 * irot_input_y;
|
|
|
|
DOROUND(temp2);
|
|
|
|
temp2 >>= SHIFT_BITS;
|
|
|
|
op[5 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
|
|
|
|
|
|
|
|
// Increment data pointer for next column.
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
2012-05-09 18:31:14 +02:00
|
|
|
}
|
2011-02-14 23:18:18 +01:00
|
|
|
|
2012-10-30 22:25:33 +01:00
|
|
|
void vp9_short_fhaar2x2_c(short *input, short *output, int pitch) {
|
2012-07-14 00:21:29 +02:00
|
|
|
/* [1 1; 1 -1] orthogonal transform */
|
|
|
|
/* use position: 0,1, 4, 8 */
|
|
|
|
int i;
|
|
|
|
short *ip1 = input;
|
|
|
|
short *op1 = output;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
op1[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
op1[0] = (ip1[0] + ip1[1] + ip1[4] + ip1[8] + 1) >> 1;
|
|
|
|
op1[1] = (ip1[0] - ip1[1] + ip1[4] - ip1[8]) >> 1;
|
|
|
|
op1[4] = (ip1[0] + ip1[1] - ip1[4] - ip1[8]) >> 1;
|
|
|
|
op1[8] = (ip1[0] - ip1[1] - ip1[4] + ip1[8]) >> 1;
|
2011-02-14 23:18:18 +01:00
|
|
|
}
|
2012-02-29 02:11:12 +01:00
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
/* For test */
|
|
|
|
#define TEST_INT 1
|
|
|
|
#if TEST_INT
|
2012-10-30 20:58:42 +01:00
|
|
|
#define vp9_fht_int_c vp9_fht_c
|
2012-10-19 01:31:59 +02:00
|
|
|
#else
|
2012-10-30 20:58:42 +01:00
|
|
|
#define vp9_fht_float_c vp9_fht_c
|
2012-10-19 01:31:59 +02:00
|
|
|
#endif
|
2012-08-02 18:07:33 +02:00
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_fht_float_c(const int16_t *input, int pitch, int16_t *output,
|
2012-10-19 01:31:59 +02:00
|
|
|
TX_TYPE tx_type, int tx_dim) {
|
2012-10-31 22:40:53 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 12:16:46 +02:00
|
|
|
{
|
|
|
|
int i, j, k;
|
2012-10-19 01:31:59 +02:00
|
|
|
float bufa[256], bufb[256]; // buffers are for floating-point test purpose
|
|
|
|
// the implementation could be simplified in
|
|
|
|
// conjunction with integer transform
|
|
|
|
const int16_t *ip = input;
|
|
|
|
int16_t *op = output;
|
2012-10-05 12:16:46 +02:00
|
|
|
|
|
|
|
float *pfa = &bufa[0];
|
|
|
|
float *pfb = &bufb[0];
|
|
|
|
|
|
|
|
// pointers to vertical and horizontal transforms
|
2012-10-31 01:12:12 +01:00
|
|
|
const float *ptv, *pth;
|
2012-10-05 12:16:46 +02:00
|
|
|
|
2012-10-16 01:41:41 +02:00
|
|
|
assert(tx_type != DCT_DCT);
|
2012-10-05 12:16:46 +02:00
|
|
|
// load and convert residual array into floating-point
|
2012-10-19 01:31:59 +02:00
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
2012-10-05 12:16:46 +02:00
|
|
|
pfa[i] = (float)ip[i];
|
2012-08-02 18:07:33 +02:00
|
|
|
}
|
2012-10-05 12:16:46 +02:00
|
|
|
pfa += tx_dim;
|
|
|
|
ip += pitch / 2;
|
2012-08-02 18:07:33 +02:00
|
|
|
}
|
2012-10-05 12:16:46 +02:00
|
|
|
|
|
|
|
// vertical transformation
|
2012-08-02 18:07:33 +02:00
|
|
|
pfa = &bufa[0];
|
2012-10-05 12:16:46 +02:00
|
|
|
pfb = &bufb[0];
|
2012-08-02 18:07:33 +02:00
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
switch (tx_type) {
|
2012-10-05 12:16:46 +02:00
|
|
|
case ADST_ADST :
|
|
|
|
case ADST_DCT :
|
|
|
|
ptv = (tx_dim == 4) ? &adst_4[0] :
|
|
|
|
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
|
|
|
|
break;
|
2012-08-02 18:07:33 +02:00
|
|
|
|
2012-10-05 12:16:46 +02:00
|
|
|
default :
|
|
|
|
ptv = (tx_dim == 4) ? &dct_4[0] :
|
|
|
|
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
2012-10-05 12:16:46 +02:00
|
|
|
pfb[i] = 0;
|
2012-10-19 01:31:59 +02:00
|
|
|
for (k = 0; k < tx_dim; k++) {
|
2012-10-05 12:16:46 +02:00
|
|
|
pfb[i] += ptv[k] * pfa[(k * tx_dim)];
|
|
|
|
}
|
|
|
|
pfa += 1;
|
2012-08-02 18:07:33 +02:00
|
|
|
}
|
2012-10-05 12:16:46 +02:00
|
|
|
pfb += tx_dim;
|
|
|
|
ptv += tx_dim;
|
|
|
|
pfa = &bufa[0];
|
2012-09-10 07:42:35 +02:00
|
|
|
}
|
2012-08-02 18:07:33 +02:00
|
|
|
|
2012-10-05 12:16:46 +02:00
|
|
|
// horizontal transformation
|
|
|
|
pfa = &bufa[0];
|
|
|
|
pfb = &bufb[0];
|
2012-08-02 18:07:33 +02:00
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
switch (tx_type) {
|
2012-08-02 18:07:33 +02:00
|
|
|
case ADST_ADST :
|
|
|
|
case DCT_ADST :
|
2012-08-29 20:25:38 +02:00
|
|
|
pth = (tx_dim == 4) ? &adst_4[0] :
|
|
|
|
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
|
2012-08-02 18:07:33 +02:00
|
|
|
break;
|
|
|
|
|
|
|
|
default :
|
2012-08-29 20:25:38 +02:00
|
|
|
pth = (tx_dim == 4) ? &dct_4[0] :
|
|
|
|
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
|
2012-08-02 18:07:33 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
2012-10-05 12:16:46 +02:00
|
|
|
pfa[i] = 0;
|
2012-10-19 01:31:59 +02:00
|
|
|
for (k = 0; k < tx_dim; k++) {
|
2012-10-05 12:16:46 +02:00
|
|
|
pfa[i] += pfb[k] * pth[k];
|
|
|
|
}
|
|
|
|
pth += tx_dim;
|
|
|
|
}
|
2012-08-02 18:07:33 +02:00
|
|
|
|
2012-10-05 12:16:46 +02:00
|
|
|
pfa += tx_dim;
|
|
|
|
pfb += tx_dim;
|
|
|
|
// pth -= tx_dim * tx_dim;
|
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
switch (tx_type) {
|
2012-10-05 12:16:46 +02:00
|
|
|
case ADST_ADST :
|
|
|
|
case DCT_ADST :
|
|
|
|
pth = (tx_dim == 4) ? &adst_4[0] :
|
|
|
|
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default :
|
|
|
|
pth = (tx_dim == 4) ? &dct_4[0] :
|
|
|
|
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert to short integer format and load BLOCKD buffer
|
2012-10-19 01:31:59 +02:00
|
|
|
op = output;
|
|
|
|
pfa = &bufa[0];
|
2012-10-05 12:16:46 +02:00
|
|
|
|
2012-10-19 01:31:59 +02:00
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
|
|
|
op[i] = (pfa[i] > 0 ) ? (int16_t)( 8 * pfa[i] + 0.49) :
|
|
|
|
-(int16_t)(- 8 * pfa[i] + 0.49);
|
2012-10-05 12:16:46 +02:00
|
|
|
}
|
|
|
|
op += tx_dim;
|
|
|
|
pfa += tx_dim;
|
2012-08-02 18:07:33 +02:00
|
|
|
}
|
|
|
|
}
|
2012-10-31 22:40:53 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-19 01:31:59 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Converted the transforms to integer form. */
|
|
|
|
#define VERTICAL_SHIFT 11
|
|
|
|
#define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1)
|
|
|
|
#define HORIZONTAL_SHIFT 16
|
|
|
|
#define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1)
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_fht_int_c(const int16_t *input, int pitch, int16_t *output,
|
2012-10-19 01:31:59 +02:00
|
|
|
TX_TYPE tx_type, int tx_dim) {
|
|
|
|
int i, j, k;
|
|
|
|
int16_t imbuf[256];
|
|
|
|
|
|
|
|
const int16_t *ip = input;
|
|
|
|
int16_t *op = output;
|
|
|
|
int16_t *im = &imbuf[0];
|
|
|
|
|
|
|
|
/* pointers to vertical and horizontal transforms. */
|
|
|
|
const int16_t *ptv = NULL, *pth = NULL;
|
|
|
|
|
|
|
|
switch (tx_type) {
|
|
|
|
case ADST_ADST :
|
|
|
|
ptv = pth = (tx_dim == 4) ? &adst_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &adst_i8[0]
|
|
|
|
: &adst_i16[0]);
|
|
|
|
break;
|
|
|
|
case ADST_DCT :
|
|
|
|
ptv = (tx_dim == 4) ? &adst_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]);
|
|
|
|
pth = (tx_dim == 4) ? &dct_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
|
|
|
|
break;
|
|
|
|
case DCT_ADST :
|
|
|
|
ptv = (tx_dim == 4) ? &dct_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
|
|
|
|
pth = (tx_dim == 4) ? &adst_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]);
|
|
|
|
break;
|
|
|
|
case DCT_DCT :
|
|
|
|
ptv = pth = (tx_dim == 4) ? &dct_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* vertical transformation */
|
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
|
|
|
int temp = 0;
|
|
|
|
|
|
|
|
for (k = 0; k < tx_dim; k++) {
|
|
|
|
temp += ptv[k] * ip[(k * (pitch >> 1))];
|
|
|
|
}
|
|
|
|
|
|
|
|
im[i] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT);
|
|
|
|
ip++;
|
|
|
|
}
|
2012-10-31 01:54:22 +01:00
|
|
|
im += tx_dim; // 16
|
2012-10-19 01:31:59 +02:00
|
|
|
ptv += tx_dim;
|
|
|
|
ip = input;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* horizontal transformation */
|
|
|
|
im = &imbuf[0];
|
|
|
|
|
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
const int16_t *pthc = pth;
|
|
|
|
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
|
|
|
int temp = 0;
|
|
|
|
|
|
|
|
for (k = 0; k < tx_dim; k++) {
|
|
|
|
temp += im[k] * pthc[k];
|
|
|
|
}
|
|
|
|
|
|
|
|
op[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT);
|
|
|
|
pthc += tx_dim;
|
|
|
|
}
|
|
|
|
|
2012-10-31 01:54:22 +01:00
|
|
|
im += tx_dim; // 16
|
2012-10-19 01:31:59 +02:00
|
|
|
op += tx_dim;
|
|
|
|
}
|
2012-08-02 18:07:33 +02:00
|
|
|
}
|
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_fdct4x4_c(short *input, short *output, int pitch) {
|
2012-07-14 00:21:29 +02:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ((ip[0] + ip[3]) << 5);
|
|
|
|
b1 = ((ip[1] + ip[2]) << 5);
|
|
|
|
c1 = ((ip[1] - ip[2]) << 5);
|
|
|
|
d1 = ((ip[0] - ip[3]) << 5);
|
2012-02-09 17:44:46 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
op[0] = a1 + b1;
|
|
|
|
op[2] = a1 - b1;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12;
|
|
|
|
op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
ip += pitch / 2;
|
|
|
|
op += 4;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
}
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[12];
|
|
|
|
b1 = ip[4] + ip[8];
|
|
|
|
c1 = ip[4] - ip[8];
|
|
|
|
d1 = ip[0] - ip[12];
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 7) >> 4;
|
|
|
|
op[8] = (a1 - b1 + 7) >> 4;
|
|
|
|
|
|
|
|
op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0);
|
|
|
|
op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16;
|
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_fdct8x4_c(short *input, short *output, int pitch)
|
2012-06-25 21:26:09 +02:00
|
|
|
{
|
2012-10-30 20:58:42 +01:00
|
|
|
vp9_short_fdct4x4_c(input, output, pitch);
|
|
|
|
vp9_short_fdct4x4_c(input + 4, output + 16, pitch);
|
2011-07-20 23:21:24 +02:00
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_walsh4x4_c(short *input, short *output, int pitch) {
|
2012-07-14 00:21:29 +02:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
int pitch_short = pitch >> 1;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
|
|
|
|
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
|
|
|
|
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
|
|
|
|
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[4] = (c1 + d1) >> 1;
|
|
|
|
op[8] = (a1 - b1) >> 1;
|
|
|
|
op[12] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[3];
|
|
|
|
b1 = ip[1] + ip[2];
|
|
|
|
c1 = ip[1] - ip[2];
|
|
|
|
d1 = ip[0] - ip[3];
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[1] = (c1 + d1) >> 1;
|
|
|
|
op[2] = (a1 - b1) >> 1;
|
|
|
|
op[3] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += 4;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
#if CONFIG_LOSSLESS
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_walsh4x4_lossless_c(short *input, short *output, int pitch) {
|
2012-07-14 00:21:29 +02:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
int pitch_short = pitch >> 1;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = (ip[0 * pitch_short] + ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
b1 = (ip[1 * pitch_short] + ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
c1 = (ip[1 * pitch_short] - ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
d1 = (ip[0 * pitch_short] - ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[4] = (c1 + d1) >> 1;
|
|
|
|
op[8] = (a1 - b1) >> 1;
|
|
|
|
op[12] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[3];
|
|
|
|
b1 = ip[1] + ip[2];
|
|
|
|
c1 = ip[1] - ip[2];
|
|
|
|
d1 = ip[0] - ip[3];
|
|
|
|
|
|
|
|
op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[1] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[2] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[3] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += 4;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
|
|
|
}
|
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_walsh4x4_x8_c(short *input, short *output, int pitch) {
|
2012-07-14 00:21:29 +02:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
int pitch_short = pitch >> 1;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
|
|
|
|
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
|
|
|
|
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
|
|
|
|
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[4] = (c1 + d1) >> 1;
|
|
|
|
op[8] = (a1 - b1) >> 1;
|
|
|
|
op[12] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[3];
|
|
|
|
b1 = ip[1] + ip[2];
|
|
|
|
c1 = ip[1] - ip[2];
|
|
|
|
d1 = ip[0] - ip[3];
|
|
|
|
|
|
|
|
op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR;
|
|
|
|
op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR;
|
|
|
|
op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR;
|
|
|
|
op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR;
|
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += 4;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
|
|
|
}
|
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_walsh8x4_x8_c(short *input, short *output, int pitch) {
|
|
|
|
vp9_short_walsh4x4_x8_c(input, output, pitch);
|
|
|
|
vp9_short_walsh4x4_x8_c(input + 4, output + 16, pitch);
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
|
|
|
}
|
|
|
|
#endif
|
2012-08-03 02:03:14 +02:00
|
|
|
|
2012-11-01 17:04:28 +01:00
|
|
|
#define TEST_INT_16x16_DCT 1
|
|
|
|
#if !TEST_INT_16x16_DCT
|
2012-08-07 22:55:49 +02:00
|
|
|
|
2012-08-03 02:03:14 +02:00
|
|
|
static void dct16x16_1d(double input[16], double output[16]) {
|
2012-12-12 02:06:35 +01:00
|
|
|
static const double C1 = 0.995184726672197;
|
|
|
|
static const double C2 = 0.98078528040323;
|
|
|
|
static const double C3 = 0.956940335732209;
|
|
|
|
static const double C4 = 0.923879532511287;
|
|
|
|
static const double C5 = 0.881921264348355;
|
|
|
|
static const double C6 = 0.831469612302545;
|
|
|
|
static const double C7 = 0.773010453362737;
|
|
|
|
static const double C8 = 0.707106781186548;
|
|
|
|
static const double C9 = 0.634393284163646;
|
|
|
|
static const double C10 = 0.555570233019602;
|
|
|
|
static const double C11 = 0.471396736825998;
|
|
|
|
static const double C12 = 0.38268343236509;
|
|
|
|
static const double C13 = 0.290284677254462;
|
|
|
|
static const double C14 = 0.195090322016128;
|
|
|
|
static const double C15 = 0.098017140329561;
|
|
|
|
|
2012-10-31 22:40:53 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 12:16:46 +02:00
|
|
|
{
|
|
|
|
double step[16];
|
|
|
|
double intermediate[16];
|
|
|
|
double temp1, temp2;
|
|
|
|
|
|
|
|
// step 1
|
|
|
|
step[ 0] = input[0] + input[15];
|
|
|
|
step[ 1] = input[1] + input[14];
|
|
|
|
step[ 2] = input[2] + input[13];
|
|
|
|
step[ 3] = input[3] + input[12];
|
|
|
|
step[ 4] = input[4] + input[11];
|
|
|
|
step[ 5] = input[5] + input[10];
|
|
|
|
step[ 6] = input[6] + input[ 9];
|
|
|
|
step[ 7] = input[7] + input[ 8];
|
|
|
|
step[ 8] = input[7] - input[ 8];
|
|
|
|
step[ 9] = input[6] - input[ 9];
|
|
|
|
step[10] = input[5] - input[10];
|
|
|
|
step[11] = input[4] - input[11];
|
|
|
|
step[12] = input[3] - input[12];
|
|
|
|
step[13] = input[2] - input[13];
|
|
|
|
step[14] = input[1] - input[14];
|
|
|
|
step[15] = input[0] - input[15];
|
|
|
|
|
|
|
|
// step 2
|
|
|
|
output[0] = step[0] + step[7];
|
|
|
|
output[1] = step[1] + step[6];
|
|
|
|
output[2] = step[2] + step[5];
|
|
|
|
output[3] = step[3] + step[4];
|
|
|
|
output[4] = step[3] - step[4];
|
|
|
|
output[5] = step[2] - step[5];
|
|
|
|
output[6] = step[1] - step[6];
|
|
|
|
output[7] = step[0] - step[7];
|
|
|
|
|
|
|
|
temp1 = step[ 8]*C7;
|
|
|
|
temp2 = step[15]*C9;
|
|
|
|
output[ 8] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = step[ 9]*C11;
|
|
|
|
temp2 = step[14]*C5;
|
|
|
|
output[ 9] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = step[10]*C3;
|
|
|
|
temp2 = step[13]*C13;
|
|
|
|
output[10] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = step[11]*C15;
|
|
|
|
temp2 = step[12]*C1;
|
|
|
|
output[11] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = step[11]*C1;
|
|
|
|
temp2 = step[12]*C15;
|
|
|
|
output[12] = temp2 + temp1;
|
|
|
|
|
|
|
|
temp1 = step[10]*C13;
|
|
|
|
temp2 = step[13]*C3;
|
|
|
|
output[13] = temp2 - temp1;
|
|
|
|
|
|
|
|
temp1 = step[ 9]*C5;
|
|
|
|
temp2 = step[14]*C11;
|
|
|
|
output[14] = temp2 + temp1;
|
|
|
|
|
|
|
|
temp1 = step[ 8]*C9;
|
|
|
|
temp2 = step[15]*C7;
|
|
|
|
output[15] = temp2 - temp1;
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
step[ 0] = output[0] + output[3];
|
|
|
|
step[ 1] = output[1] + output[2];
|
|
|
|
step[ 2] = output[1] - output[2];
|
|
|
|
step[ 3] = output[0] - output[3];
|
|
|
|
|
|
|
|
temp1 = output[4]*C14;
|
|
|
|
temp2 = output[7]*C2;
|
|
|
|
step[ 4] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = output[5]*C10;
|
|
|
|
temp2 = output[6]*C6;
|
|
|
|
step[ 5] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = output[5]*C6;
|
|
|
|
temp2 = output[6]*C10;
|
|
|
|
step[ 6] = temp2 - temp1;
|
|
|
|
|
|
|
|
temp1 = output[4]*C2;
|
|
|
|
temp2 = output[7]*C14;
|
|
|
|
step[ 7] = temp2 - temp1;
|
|
|
|
|
|
|
|
step[ 8] = output[ 8] + output[11];
|
|
|
|
step[ 9] = output[ 9] + output[10];
|
|
|
|
step[10] = output[ 9] - output[10];
|
|
|
|
step[11] = output[ 8] - output[11];
|
|
|
|
|
|
|
|
step[12] = output[12] + output[15];
|
|
|
|
step[13] = output[13] + output[14];
|
|
|
|
step[14] = output[13] - output[14];
|
|
|
|
step[15] = output[12] - output[15];
|
|
|
|
|
|
|
|
// step 4
|
|
|
|
output[ 0] = (step[ 0] + step[ 1]);
|
|
|
|
output[ 8] = (step[ 0] - step[ 1]);
|
|
|
|
|
|
|
|
temp1 = step[2]*C12;
|
|
|
|
temp2 = step[3]*C4;
|
|
|
|
temp1 = temp1 + temp2;
|
|
|
|
output[ 4] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
temp1 = step[2]*C4;
|
|
|
|
temp2 = step[3]*C12;
|
|
|
|
temp1 = temp2 - temp1;
|
|
|
|
output[12] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
output[ 2] = 2*((step[4] + step[ 5])*C8);
|
|
|
|
output[14] = 2*((step[7] - step[ 6])*C8);
|
|
|
|
|
|
|
|
temp1 = step[4] - step[5];
|
|
|
|
temp2 = step[6] + step[7];
|
|
|
|
output[ 6] = (temp1 + temp2);
|
|
|
|
output[10] = (temp1 - temp2);
|
|
|
|
|
|
|
|
intermediate[8] = step[8] + step[14];
|
|
|
|
intermediate[9] = step[9] + step[15];
|
|
|
|
|
|
|
|
temp1 = intermediate[8]*C12;
|
|
|
|
temp2 = intermediate[9]*C4;
|
|
|
|
temp1 = temp1 - temp2;
|
|
|
|
output[3] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
temp1 = intermediate[8]*C4;
|
|
|
|
temp2 = intermediate[9]*C12;
|
|
|
|
temp1 = temp2 + temp1;
|
|
|
|
output[13] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
output[ 9] = 2*((step[10] + step[11])*C8);
|
|
|
|
|
|
|
|
intermediate[11] = step[10] - step[11];
|
|
|
|
intermediate[12] = step[12] + step[13];
|
|
|
|
intermediate[13] = step[12] - step[13];
|
|
|
|
intermediate[14] = step[ 8] - step[14];
|
|
|
|
intermediate[15] = step[ 9] - step[15];
|
|
|
|
|
|
|
|
output[15] = (intermediate[11] + intermediate[12]);
|
|
|
|
output[ 1] = -(intermediate[11] - intermediate[12]);
|
|
|
|
|
|
|
|
output[ 7] = 2*(intermediate[13]*C8);
|
|
|
|
|
|
|
|
temp1 = intermediate[14]*C12;
|
|
|
|
temp2 = intermediate[15]*C4;
|
|
|
|
temp1 = temp1 - temp2;
|
|
|
|
output[11] = -2*(temp1*C8);
|
|
|
|
|
|
|
|
temp1 = intermediate[14]*C4;
|
|
|
|
temp2 = intermediate[15]*C12;
|
|
|
|
temp1 = temp2 + temp1;
|
|
|
|
output[ 5] = 2*(temp1*C8);
|
|
|
|
}
|
2012-10-31 22:40:53 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-03 02:03:14 +02:00
|
|
|
}
|
|
|
|
|
2012-10-30 20:58:42 +01:00
|
|
|
void vp9_short_fdct16x16_c(short *input, short *out, int pitch) {
|
2012-10-31 22:40:53 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 12:16:46 +02:00
|
|
|
{
|
2012-08-03 02:03:14 +02:00
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
double output[256];
|
|
|
|
// First transform columns
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
double temp_in[16], temp_out[16];
|
|
|
|
for (j = 0; j < 16; j++)
|
|
|
|
temp_in[j] = input[j*shortpitch + i];
|
|
|
|
dct16x16_1d(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; j++)
|
|
|
|
output[j*16 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Then transform rows
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
double temp_in[16], temp_out[16];
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = output[j + i*16];
|
|
|
|
dct16x16_1d(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
output[j + i*16] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Scale by some magic number
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
out[i] = (short)round(output[i]/2);
|
2012-10-05 12:16:46 +02:00
|
|
|
}
|
2012-10-31 22:40:53 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-03 02:03:14 +02:00
|
|
|
}
|
2012-11-01 17:04:28 +01:00
|
|
|
|
|
|
|
#else
|
|
|
|
static const int16_t C1 = 16305;
|
|
|
|
static const int16_t C2 = 16069;
|
|
|
|
static const int16_t C3 = 15679;
|
|
|
|
static const int16_t C4 = 15137;
|
|
|
|
static const int16_t C5 = 14449;
|
|
|
|
static const int16_t C6 = 13623;
|
|
|
|
static const int16_t C7 = 12665;
|
|
|
|
static const int16_t C8 = 11585;
|
|
|
|
static const int16_t C9 = 10394;
|
|
|
|
static const int16_t C10 = 9102;
|
|
|
|
static const int16_t C11 = 7723;
|
|
|
|
static const int16_t C12 = 6270;
|
|
|
|
static const int16_t C13 = 4756;
|
|
|
|
static const int16_t C14 = 3196;
|
|
|
|
static const int16_t C15 = 1606;
|
|
|
|
|
|
|
|
#define RIGHT_SHIFT 14
|
|
|
|
#define ROUNDING (1 << (RIGHT_SHIFT - 1))
|
|
|
|
|
|
|
|
static void dct16x16_1d(int16_t input[16], int16_t output[16],
|
|
|
|
int last_shift_bits) {
|
|
|
|
int16_t step[16];
|
|
|
|
int intermediate[16];
|
|
|
|
int temp1, temp2;
|
|
|
|
int final_shift = RIGHT_SHIFT;
|
|
|
|
int final_rounding = ROUNDING;
|
|
|
|
int output_shift = 0;
|
|
|
|
int output_rounding = 0;
|
|
|
|
|
|
|
|
final_shift += last_shift_bits;
|
|
|
|
if (final_shift > 0)
|
|
|
|
final_rounding = 1 << (final_shift - 1);
|
|
|
|
|
|
|
|
output_shift += last_shift_bits;
|
|
|
|
if (output_shift > 0)
|
|
|
|
output_rounding = 1 << (output_shift - 1);
|
|
|
|
|
|
|
|
// step 1
|
|
|
|
step[ 0] = input[0] + input[15];
|
|
|
|
step[ 1] = input[1] + input[14];
|
|
|
|
step[ 2] = input[2] + input[13];
|
|
|
|
step[ 3] = input[3] + input[12];
|
|
|
|
step[ 4] = input[4] + input[11];
|
|
|
|
step[ 5] = input[5] + input[10];
|
|
|
|
step[ 6] = input[6] + input[ 9];
|
|
|
|
step[ 7] = input[7] + input[ 8];
|
|
|
|
step[ 8] = input[7] - input[ 8];
|
|
|
|
step[ 9] = input[6] - input[ 9];
|
|
|
|
step[10] = input[5] - input[10];
|
|
|
|
step[11] = input[4] - input[11];
|
|
|
|
step[12] = input[3] - input[12];
|
|
|
|
step[13] = input[2] - input[13];
|
|
|
|
step[14] = input[1] - input[14];
|
|
|
|
step[15] = input[0] - input[15];
|
|
|
|
|
|
|
|
// step 2
|
|
|
|
output[0] = step[0] + step[7];
|
|
|
|
output[1] = step[1] + step[6];
|
|
|
|
output[2] = step[2] + step[5];
|
|
|
|
output[3] = step[3] + step[4];
|
|
|
|
output[4] = step[3] - step[4];
|
|
|
|
output[5] = step[2] - step[5];
|
|
|
|
output[6] = step[1] - step[6];
|
|
|
|
output[7] = step[0] - step[7];
|
|
|
|
|
|
|
|
temp1 = step[ 8] * C7;
|
|
|
|
temp2 = step[15] * C9;
|
|
|
|
output[ 8] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 9] * C11;
|
|
|
|
temp2 = step[14] * C5;
|
|
|
|
output[ 9] = (temp1 - temp2 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[10] * C3;
|
|
|
|
temp2 = step[13] * C13;
|
|
|
|
output[10] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[11] * C15;
|
|
|
|
temp2 = step[12] * C1;
|
|
|
|
output[11] = (temp1 - temp2 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[11] * C1;
|
|
|
|
temp2 = step[12] * C15;
|
|
|
|
output[12] = (temp2 + temp1 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[10] * C13;
|
|
|
|
temp2 = step[13] * C3;
|
|
|
|
output[13] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 9] * C5;
|
|
|
|
temp2 = step[14] * C11;
|
|
|
|
output[14] = (temp2 + temp1 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 8] * C9;
|
|
|
|
temp2 = step[15] * C7;
|
|
|
|
output[15] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
step[ 0] = output[0] + output[3];
|
|
|
|
step[ 1] = output[1] + output[2];
|
|
|
|
step[ 2] = output[1] - output[2];
|
|
|
|
step[ 3] = output[0] - output[3];
|
|
|
|
|
|
|
|
temp1 = output[4] * C14;
|
|
|
|
temp2 = output[7] * C2;
|
|
|
|
step[ 4] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[5] * C10;
|
|
|
|
temp2 = output[6] * C6;
|
|
|
|
step[ 5] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[5] * C6;
|
|
|
|
temp2 = output[6] * C10;
|
|
|
|
step[ 6] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[4] * C2;
|
|
|
|
temp2 = output[7] * C14;
|
|
|
|
step[ 7] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
step[ 8] = output[ 8] + output[11];
|
|
|
|
step[ 9] = output[ 9] + output[10];
|
|
|
|
step[10] = output[ 9] - output[10];
|
|
|
|
step[11] = output[ 8] - output[11];
|
|
|
|
|
|
|
|
step[12] = output[12] + output[15];
|
|
|
|
step[13] = output[13] + output[14];
|
|
|
|
step[14] = output[13] - output[14];
|
|
|
|
step[15] = output[12] - output[15];
|
|
|
|
|
|
|
|
// step 4
|
|
|
|
output[ 0] = (step[ 0] + step[ 1] + output_rounding) >> output_shift;
|
|
|
|
output[ 8] = (step[ 0] - step[ 1] + output_rounding) >> output_shift;
|
|
|
|
|
|
|
|
temp1 = step[2] * C12;
|
|
|
|
temp2 = step[3] * C4;
|
|
|
|
temp1 = (temp1 + temp2 + final_rounding) >> final_shift;
|
|
|
|
output[ 4] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[2] * C4;
|
|
|
|
temp2 = step[3] * C12;
|
|
|
|
temp1 = (temp2 - temp1 + final_rounding) >> final_shift;
|
|
|
|
output[12] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
output[ 2] = (2 * ((step[4] + step[ 5]) * C8) + final_rounding)
|
|
|
|
>> final_shift;
|
|
|
|
output[14] = (2 * ((step[7] - step[ 6]) * C8) + final_rounding)
|
|
|
|
>> final_shift;
|
|
|
|
|
|
|
|
temp1 = step[4] - step[5];
|
|
|
|
temp2 = step[6] + step[7];
|
|
|
|
output[ 6] = (temp1 + temp2 + output_rounding) >> output_shift;
|
|
|
|
output[10] = (temp1 - temp2 + output_rounding) >> output_shift;
|
|
|
|
|
|
|
|
intermediate[8] = step[8] + step[14];
|
|
|
|
intermediate[9] = step[9] + step[15];
|
|
|
|
|
|
|
|
temp1 = intermediate[8] * C12;
|
|
|
|
temp2 = intermediate[9] * C4;
|
|
|
|
temp1 = (temp1 - temp2 + final_rounding) >> final_shift;
|
|
|
|
output[3] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = intermediate[8] * C4;
|
|
|
|
temp2 = intermediate[9] * C12;
|
|
|
|
temp1 = (temp2 + temp1 + final_rounding) >> final_shift;
|
|
|
|
output[13] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
output[ 9] = (2 * ((step[10] + step[11]) * C8) + final_rounding)
|
|
|
|
>> final_shift;
|
|
|
|
|
|
|
|
intermediate[11] = step[10] - step[11];
|
|
|
|
intermediate[12] = step[12] + step[13];
|
|
|
|
intermediate[13] = step[12] - step[13];
|
|
|
|
intermediate[14] = step[ 8] - step[14];
|
|
|
|
intermediate[15] = step[ 9] - step[15];
|
|
|
|
|
|
|
|
output[15] = (intermediate[11] + intermediate[12] + output_rounding)
|
|
|
|
>> output_shift;
|
2013-02-01 00:39:41 +01:00
|
|
|
output[ 1] = (intermediate[12] - intermediate[11] + output_rounding)
|
2012-11-01 17:04:28 +01:00
|
|
|
>> output_shift;
|
|
|
|
|
|
|
|
output[ 7] = (2 * (intermediate[13] * C8) + final_rounding) >> final_shift;
|
|
|
|
|
|
|
|
temp1 = intermediate[14] * C12;
|
|
|
|
temp2 = intermediate[15] * C4;
|
|
|
|
temp1 = (temp1 - temp2 + final_rounding) >> final_shift;
|
|
|
|
output[11] = (-2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = intermediate[14] * C4;
|
|
|
|
temp2 = intermediate[15] * C12;
|
|
|
|
temp1 = (temp2 + temp1 + final_rounding) >> final_shift;
|
|
|
|
output[ 5] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_fdct16x16_c(int16_t *input, int16_t *out, int pitch) {
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
int16_t output[256];
|
|
|
|
int16_t *outptr = &output[0];
|
|
|
|
|
|
|
|
// First transform columns
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
int16_t temp_in[16];
|
|
|
|
int16_t temp_out[16];
|
|
|
|
for (j = 0; j < 16; j++)
|
|
|
|
temp_in[j] = input[j * shortpitch + i];
|
|
|
|
dct16x16_1d(temp_in, temp_out, 0);
|
|
|
|
for (j = 0; j < 16; j++)
|
|
|
|
output[j * 16 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Then transform rows
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
dct16x16_1d(outptr, out, 1);
|
|
|
|
outptr += 16;
|
|
|
|
out += 16;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#undef RIGHT_SHIFT
|
|
|
|
#undef ROUNDING
|
|
|
|
#endif
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
|
2013-01-08 21:18:16 +01:00
|
|
|
#if !CONFIG_DWTDCTHYBRID
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
static void dct32_1d(double *input, double *output, int stride) {
|
|
|
|
static const double C1 = 0.998795456205; // cos(pi * 1 / 64)
|
|
|
|
static const double C2 = 0.995184726672; // cos(pi * 2 / 64)
|
|
|
|
static const double C3 = 0.989176509965; // cos(pi * 3 / 64)
|
|
|
|
static const double C4 = 0.980785280403; // cos(pi * 4 / 64)
|
|
|
|
static const double C5 = 0.970031253195; // cos(pi * 5 / 64)
|
|
|
|
static const double C6 = 0.956940335732; // cos(pi * 6 / 64)
|
|
|
|
static const double C7 = 0.941544065183; // cos(pi * 7 / 64)
|
|
|
|
static const double C8 = 0.923879532511; // cos(pi * 8 / 64)
|
|
|
|
static const double C9 = 0.903989293123; // cos(pi * 9 / 64)
|
|
|
|
static const double C10 = 0.881921264348; // cos(pi * 10 / 64)
|
|
|
|
static const double C11 = 0.857728610000; // cos(pi * 11 / 64)
|
|
|
|
static const double C12 = 0.831469612303; // cos(pi * 12 / 64)
|
|
|
|
static const double C13 = 0.803207531481; // cos(pi * 13 / 64)
|
|
|
|
static const double C14 = 0.773010453363; // cos(pi * 14 / 64)
|
|
|
|
static const double C15 = 0.740951125355; // cos(pi * 15 / 64)
|
|
|
|
static const double C16 = 0.707106781187; // cos(pi * 16 / 64)
|
|
|
|
static const double C17 = 0.671558954847; // cos(pi * 17 / 64)
|
|
|
|
static const double C18 = 0.634393284164; // cos(pi * 18 / 64)
|
|
|
|
static const double C19 = 0.595699304492; // cos(pi * 19 / 64)
|
|
|
|
static const double C20 = 0.555570233020; // cos(pi * 20 / 64)
|
|
|
|
static const double C21 = 0.514102744193; // cos(pi * 21 / 64)
|
|
|
|
static const double C22 = 0.471396736826; // cos(pi * 22 / 64)
|
|
|
|
static const double C23 = 0.427555093430; // cos(pi * 23 / 64)
|
|
|
|
static const double C24 = 0.382683432365; // cos(pi * 24 / 64)
|
|
|
|
static const double C25 = 0.336889853392; // cos(pi * 25 / 64)
|
|
|
|
static const double C26 = 0.290284677254; // cos(pi * 26 / 64)
|
|
|
|
static const double C27 = 0.242980179903; // cos(pi * 27 / 64)
|
|
|
|
static const double C28 = 0.195090322016; // cos(pi * 28 / 64)
|
|
|
|
static const double C29 = 0.146730474455; // cos(pi * 29 / 64)
|
|
|
|
static const double C30 = 0.098017140330; // cos(pi * 30 / 64)
|
|
|
|
static const double C31 = 0.049067674327; // cos(pi * 31 / 64)
|
|
|
|
|
|
|
|
double step[32];
|
|
|
|
|
|
|
|
// Stage 1
|
|
|
|
step[0] = input[stride*0] + input[stride*(32 - 1)];
|
|
|
|
step[1] = input[stride*1] + input[stride*(32 - 2)];
|
|
|
|
step[2] = input[stride*2] + input[stride*(32 - 3)];
|
|
|
|
step[3] = input[stride*3] + input[stride*(32 - 4)];
|
|
|
|
step[4] = input[stride*4] + input[stride*(32 - 5)];
|
|
|
|
step[5] = input[stride*5] + input[stride*(32 - 6)];
|
|
|
|
step[6] = input[stride*6] + input[stride*(32 - 7)];
|
|
|
|
step[7] = input[stride*7] + input[stride*(32 - 8)];
|
|
|
|
step[8] = input[stride*8] + input[stride*(32 - 9)];
|
|
|
|
step[9] = input[stride*9] + input[stride*(32 - 10)];
|
|
|
|
step[10] = input[stride*10] + input[stride*(32 - 11)];
|
|
|
|
step[11] = input[stride*11] + input[stride*(32 - 12)];
|
|
|
|
step[12] = input[stride*12] + input[stride*(32 - 13)];
|
|
|
|
step[13] = input[stride*13] + input[stride*(32 - 14)];
|
|
|
|
step[14] = input[stride*14] + input[stride*(32 - 15)];
|
|
|
|
step[15] = input[stride*15] + input[stride*(32 - 16)];
|
|
|
|
step[16] = -input[stride*16] + input[stride*(32 - 17)];
|
|
|
|
step[17] = -input[stride*17] + input[stride*(32 - 18)];
|
|
|
|
step[18] = -input[stride*18] + input[stride*(32 - 19)];
|
|
|
|
step[19] = -input[stride*19] + input[stride*(32 - 20)];
|
|
|
|
step[20] = -input[stride*20] + input[stride*(32 - 21)];
|
|
|
|
step[21] = -input[stride*21] + input[stride*(32 - 22)];
|
|
|
|
step[22] = -input[stride*22] + input[stride*(32 - 23)];
|
|
|
|
step[23] = -input[stride*23] + input[stride*(32 - 24)];
|
|
|
|
step[24] = -input[stride*24] + input[stride*(32 - 25)];
|
|
|
|
step[25] = -input[stride*25] + input[stride*(32 - 26)];
|
|
|
|
step[26] = -input[stride*26] + input[stride*(32 - 27)];
|
|
|
|
step[27] = -input[stride*27] + input[stride*(32 - 28)];
|
|
|
|
step[28] = -input[stride*28] + input[stride*(32 - 29)];
|
|
|
|
step[29] = -input[stride*29] + input[stride*(32 - 30)];
|
|
|
|
step[30] = -input[stride*30] + input[stride*(32 - 31)];
|
|
|
|
step[31] = -input[stride*31] + input[stride*(32 - 32)];
|
|
|
|
|
|
|
|
// Stage 2
|
|
|
|
output[stride*0] = step[0] + step[16 - 1];
|
|
|
|
output[stride*1] = step[1] + step[16 - 2];
|
|
|
|
output[stride*2] = step[2] + step[16 - 3];
|
|
|
|
output[stride*3] = step[3] + step[16 - 4];
|
|
|
|
output[stride*4] = step[4] + step[16 - 5];
|
|
|
|
output[stride*5] = step[5] + step[16 - 6];
|
|
|
|
output[stride*6] = step[6] + step[16 - 7];
|
|
|
|
output[stride*7] = step[7] + step[16 - 8];
|
|
|
|
output[stride*8] = -step[8] + step[16 - 9];
|
|
|
|
output[stride*9] = -step[9] + step[16 - 10];
|
|
|
|
output[stride*10] = -step[10] + step[16 - 11];
|
|
|
|
output[stride*11] = -step[11] + step[16 - 12];
|
|
|
|
output[stride*12] = -step[12] + step[16 - 13];
|
|
|
|
output[stride*13] = -step[13] + step[16 - 14];
|
|
|
|
output[stride*14] = -step[14] + step[16 - 15];
|
|
|
|
output[stride*15] = -step[15] + step[16 - 16];
|
|
|
|
|
|
|
|
output[stride*16] = step[16];
|
|
|
|
output[stride*17] = step[17];
|
|
|
|
output[stride*18] = step[18];
|
|
|
|
output[stride*19] = step[19];
|
|
|
|
|
|
|
|
output[stride*20] = (-step[20] + step[27])*C16;
|
|
|
|
output[stride*21] = (-step[21] + step[26])*C16;
|
|
|
|
output[stride*22] = (-step[22] + step[25])*C16;
|
|
|
|
output[stride*23] = (-step[23] + step[24])*C16;
|
|
|
|
|
|
|
|
output[stride*24] = (step[24] + step[23])*C16;
|
|
|
|
output[stride*25] = (step[25] + step[22])*C16;
|
|
|
|
output[stride*26] = (step[26] + step[21])*C16;
|
|
|
|
output[stride*27] = (step[27] + step[20])*C16;
|
|
|
|
|
|
|
|
output[stride*28] = step[28];
|
|
|
|
output[stride*29] = step[29];
|
|
|
|
output[stride*30] = step[30];
|
|
|
|
output[stride*31] = step[31];
|
|
|
|
|
|
|
|
// Stage 3
|
|
|
|
step[0] = output[stride*0] + output[stride*(8 - 1)];
|
|
|
|
step[1] = output[stride*1] + output[stride*(8 - 2)];
|
|
|
|
step[2] = output[stride*2] + output[stride*(8 - 3)];
|
|
|
|
step[3] = output[stride*3] + output[stride*(8 - 4)];
|
|
|
|
step[4] = -output[stride*4] + output[stride*(8 - 5)];
|
|
|
|
step[5] = -output[stride*5] + output[stride*(8 - 6)];
|
|
|
|
step[6] = -output[stride*6] + output[stride*(8 - 7)];
|
|
|
|
step[7] = -output[stride*7] + output[stride*(8 - 8)];
|
|
|
|
step[8] = output[stride*8];
|
|
|
|
step[9] = output[stride*9];
|
|
|
|
step[10] = (-output[stride*10] + output[stride*13])*C16;
|
|
|
|
step[11] = (-output[stride*11] + output[stride*12])*C16;
|
|
|
|
step[12] = (output[stride*12] + output[stride*11])*C16;
|
|
|
|
step[13] = (output[stride*13] + output[stride*10])*C16;
|
|
|
|
step[14] = output[stride*14];
|
|
|
|
step[15] = output[stride*15];
|
|
|
|
|
|
|
|
step[16] = output[stride*16] + output[stride*23];
|
|
|
|
step[17] = output[stride*17] + output[stride*22];
|
|
|
|
step[18] = output[stride*18] + output[stride*21];
|
|
|
|
step[19] = output[stride*19] + output[stride*20];
|
|
|
|
step[20] = -output[stride*20] + output[stride*19];
|
|
|
|
step[21] = -output[stride*21] + output[stride*18];
|
|
|
|
step[22] = -output[stride*22] + output[stride*17];
|
|
|
|
step[23] = -output[stride*23] + output[stride*16];
|
|
|
|
step[24] = -output[stride*24] + output[stride*31];
|
|
|
|
step[25] = -output[stride*25] + output[stride*30];
|
|
|
|
step[26] = -output[stride*26] + output[stride*29];
|
|
|
|
step[27] = -output[stride*27] + output[stride*28];
|
|
|
|
step[28] = output[stride*28] + output[stride*27];
|
|
|
|
step[29] = output[stride*29] + output[stride*26];
|
|
|
|
step[30] = output[stride*30] + output[stride*25];
|
|
|
|
step[31] = output[stride*31] + output[stride*24];
|
|
|
|
|
|
|
|
// Stage 4
|
|
|
|
output[stride*0] = step[0] + step[3];
|
|
|
|
output[stride*1] = step[1] + step[2];
|
|
|
|
output[stride*2] = -step[2] + step[1];
|
|
|
|
output[stride*3] = -step[3] + step[0];
|
|
|
|
output[stride*4] = step[4];
|
|
|
|
output[stride*5] = (-step[5] + step[6])*C16;
|
|
|
|
output[stride*6] = (step[6] + step[5])*C16;
|
|
|
|
output[stride*7] = step[7];
|
|
|
|
output[stride*8] = step[8] + step[11];
|
|
|
|
output[stride*9] = step[9] + step[10];
|
|
|
|
output[stride*10] = -step[10] + step[9];
|
|
|
|
output[stride*11] = -step[11] + step[8];
|
|
|
|
output[stride*12] = -step[12] + step[15];
|
|
|
|
output[stride*13] = -step[13] + step[14];
|
|
|
|
output[stride*14] = step[14] + step[13];
|
|
|
|
output[stride*15] = step[15] + step[12];
|
|
|
|
|
|
|
|
output[stride*16] = step[16];
|
|
|
|
output[stride*17] = step[17];
|
|
|
|
output[stride*18] = step[18]*-C8 + step[29]*C24;
|
|
|
|
output[stride*19] = step[19]*-C8 + step[28]*C24;
|
|
|
|
output[stride*20] = step[20]*-C24 + step[27]*-C8;
|
|
|
|
output[stride*21] = step[21]*-C24 + step[26]*-C8;
|
|
|
|
output[stride*22] = step[22];
|
|
|
|
output[stride*23] = step[23];
|
|
|
|
output[stride*24] = step[24];
|
|
|
|
output[stride*25] = step[25];
|
|
|
|
output[stride*26] = step[26]*C24 + step[21]*-C8;
|
|
|
|
output[stride*27] = step[27]*C24 + step[20]*-C8;
|
|
|
|
output[stride*28] = step[28]*C8 + step[19]*C24;
|
|
|
|
output[stride*29] = step[29]*C8 + step[18]*C24;
|
|
|
|
output[stride*30] = step[30];
|
|
|
|
output[stride*31] = step[31];
|
|
|
|
|
|
|
|
// Stage 5
|
|
|
|
step[0] = (output[stride*0] + output[stride*1]) * C16;
|
|
|
|
step[1] = (-output[stride*1] + output[stride*0]) * C16;
|
|
|
|
step[2] = output[stride*2]*C24 + output[stride*3] * C8;
|
|
|
|
step[3] = output[stride*3]*C24 - output[stride*2] * C8;
|
|
|
|
step[4] = output[stride*4] + output[stride*5];
|
|
|
|
step[5] = -output[stride*5] + output[stride*4];
|
|
|
|
step[6] = -output[stride*6] + output[stride*7];
|
|
|
|
step[7] = output[stride*7] + output[stride*6];
|
|
|
|
step[8] = output[stride*8];
|
|
|
|
step[9] = output[stride*9]*-C8 + output[stride*14]*C24;
|
|
|
|
step[10] = output[stride*10]*-C24 + output[stride*13]*-C8;
|
|
|
|
step[11] = output[stride*11];
|
|
|
|
step[12] = output[stride*12];
|
|
|
|
step[13] = output[stride*13]*C24 + output[stride*10]*-C8;
|
|
|
|
step[14] = output[stride*14]*C8 + output[stride*9]*C24;
|
|
|
|
step[15] = output[stride*15];
|
|
|
|
|
|
|
|
step[16] = output[stride*16] + output[stride*19];
|
|
|
|
step[17] = output[stride*17] + output[stride*18];
|
|
|
|
step[18] = -output[stride*18] + output[stride*17];
|
|
|
|
step[19] = -output[stride*19] + output[stride*16];
|
|
|
|
step[20] = -output[stride*20] + output[stride*23];
|
|
|
|
step[21] = -output[stride*21] + output[stride*22];
|
|
|
|
step[22] = output[stride*22] + output[stride*21];
|
|
|
|
step[23] = output[stride*23] + output[stride*20];
|
|
|
|
step[24] = output[stride*24] + output[stride*27];
|
|
|
|
step[25] = output[stride*25] + output[stride*26];
|
|
|
|
step[26] = -output[stride*26] + output[stride*25];
|
|
|
|
step[27] = -output[stride*27] + output[stride*24];
|
|
|
|
step[28] = -output[stride*28] + output[stride*31];
|
|
|
|
step[29] = -output[stride*29] + output[stride*30];
|
|
|
|
step[30] = output[stride*30] + output[stride*29];
|
|
|
|
step[31] = output[stride*31] + output[stride*28];
|
|
|
|
|
|
|
|
// Stage 6
|
|
|
|
output[stride*0] = step[0];
|
|
|
|
output[stride*1] = step[1];
|
|
|
|
output[stride*2] = step[2];
|
|
|
|
output[stride*3] = step[3];
|
|
|
|
output[stride*4] = step[4]*C28 + step[7]*C4;
|
|
|
|
output[stride*5] = step[5]*C12 + step[6]*C20;
|
|
|
|
output[stride*6] = step[6]*C12 + step[5]*-C20;
|
|
|
|
output[stride*7] = step[7]*C28 + step[4]*-C4;
|
|
|
|
output[stride*8] = step[8] + step[9];
|
|
|
|
output[stride*9] = -step[9] + step[8];
|
|
|
|
output[stride*10] = -step[10] + step[11];
|
|
|
|
output[stride*11] = step[11] + step[10];
|
|
|
|
output[stride*12] = step[12] + step[13];
|
|
|
|
output[stride*13] = -step[13] + step[12];
|
|
|
|
output[stride*14] = -step[14] + step[15];
|
|
|
|
output[stride*15] = step[15] + step[14];
|
|
|
|
|
|
|
|
output[stride*16] = step[16];
|
|
|
|
output[stride*17] = step[17]*-C4 + step[30]*C28;
|
|
|
|
output[stride*18] = step[18]*-C28 + step[29]*-C4;
|
|
|
|
output[stride*19] = step[19];
|
|
|
|
output[stride*20] = step[20];
|
|
|
|
output[stride*21] = step[21]*-C20 + step[26]*C12;
|
|
|
|
output[stride*22] = step[22]*-C12 + step[25]*-C20;
|
|
|
|
output[stride*23] = step[23];
|
|
|
|
output[stride*24] = step[24];
|
|
|
|
output[stride*25] = step[25]*C12 + step[22]*-C20;
|
|
|
|
output[stride*26] = step[26]*C20 + step[21]*C12;
|
|
|
|
output[stride*27] = step[27];
|
|
|
|
output[stride*28] = step[28];
|
|
|
|
output[stride*29] = step[29]*C28 + step[18]*-C4;
|
|
|
|
output[stride*30] = step[30]*C4 + step[17]*C28;
|
|
|
|
output[stride*31] = step[31];
|
|
|
|
|
|
|
|
// Stage 7
|
|
|
|
step[0] = output[stride*0];
|
|
|
|
step[1] = output[stride*1];
|
|
|
|
step[2] = output[stride*2];
|
|
|
|
step[3] = output[stride*3];
|
|
|
|
step[4] = output[stride*4];
|
|
|
|
step[5] = output[stride*5];
|
|
|
|
step[6] = output[stride*6];
|
|
|
|
step[7] = output[stride*7];
|
|
|
|
step[8] = output[stride*8]*C30 + output[stride*15]*C2;
|
|
|
|
step[9] = output[stride*9]*C14 + output[stride*14]*C18;
|
|
|
|
step[10] = output[stride*10]*C22 + output[stride*13]*C10;
|
|
|
|
step[11] = output[stride*11]*C6 + output[stride*12]*C26;
|
|
|
|
step[12] = output[stride*12]*C6 + output[stride*11]*-C26;
|
|
|
|
step[13] = output[stride*13]*C22 + output[stride*10]*-C10;
|
|
|
|
step[14] = output[stride*14]*C14 + output[stride*9]*-C18;
|
|
|
|
step[15] = output[stride*15]*C30 + output[stride*8]*-C2;
|
|
|
|
|
|
|
|
step[16] = output[stride*16] + output[stride*17];
|
|
|
|
step[17] = -output[stride*17] + output[stride*16];
|
|
|
|
step[18] = -output[stride*18] + output[stride*19];
|
|
|
|
step[19] = output[stride*19] + output[stride*18];
|
|
|
|
step[20] = output[stride*20] + output[stride*21];
|
|
|
|
step[21] = -output[stride*21] + output[stride*20];
|
|
|
|
step[22] = -output[stride*22] + output[stride*23];
|
|
|
|
step[23] = output[stride*23] + output[stride*22];
|
|
|
|
step[24] = output[stride*24] + output[stride*25];
|
|
|
|
step[25] = -output[stride*25] + output[stride*24];
|
|
|
|
step[26] = -output[stride*26] + output[stride*27];
|
|
|
|
step[27] = output[stride*27] + output[stride*26];
|
|
|
|
step[28] = output[stride*28] + output[stride*29];
|
|
|
|
step[29] = -output[stride*29] + output[stride*28];
|
|
|
|
step[30] = -output[stride*30] + output[stride*31];
|
|
|
|
step[31] = output[stride*31] + output[stride*30];
|
|
|
|
|
|
|
|
// Final stage --- outputs indices are bit-reversed.
|
|
|
|
output[stride*0] = step[0];
|
|
|
|
output[stride*16] = step[1];
|
|
|
|
output[stride*8] = step[2];
|
|
|
|
output[stride*24] = step[3];
|
|
|
|
output[stride*4] = step[4];
|
|
|
|
output[stride*20] = step[5];
|
|
|
|
output[stride*12] = step[6];
|
|
|
|
output[stride*28] = step[7];
|
|
|
|
output[stride*2] = step[8];
|
|
|
|
output[stride*18] = step[9];
|
|
|
|
output[stride*10] = step[10];
|
|
|
|
output[stride*26] = step[11];
|
|
|
|
output[stride*6] = step[12];
|
|
|
|
output[stride*22] = step[13];
|
|
|
|
output[stride*14] = step[14];
|
|
|
|
output[stride*30] = step[15];
|
|
|
|
|
|
|
|
output[stride*1] = step[16]*C31 + step[31]*C1;
|
|
|
|
output[stride*17] = step[17]*C15 + step[30]*C17;
|
|
|
|
output[stride*9] = step[18]*C23 + step[29]*C9;
|
|
|
|
output[stride*25] = step[19]*C7 + step[28]*C25;
|
|
|
|
output[stride*5] = step[20]*C27 + step[27]*C5;
|
|
|
|
output[stride*21] = step[21]*C11 + step[26]*C21;
|
|
|
|
output[stride*13] = step[22]*C19 + step[25]*C13;
|
|
|
|
output[stride*29] = step[23]*C3 + step[24]*C29;
|
|
|
|
output[stride*3] = step[24]*C3 + step[23]*-C29;
|
|
|
|
output[stride*19] = step[25]*C19 + step[22]*-C13;
|
|
|
|
output[stride*11] = step[26]*C11 + step[21]*-C21;
|
|
|
|
output[stride*27] = step[27]*C27 + step[20]*-C5;
|
|
|
|
output[stride*7] = step[28]*C7 + step[19]*-C25;
|
|
|
|
output[stride*23] = step[29]*C23 + step[18]*-C9;
|
|
|
|
output[stride*15] = step[30]*C15 + step[17]*-C17;
|
|
|
|
output[stride*31] = step[31]*C31 + step[16]*-C1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) {
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
{
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
double output[1024];
|
|
|
|
// First transform columns
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
double temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; j++)
|
|
|
|
temp_in[j] = input[j*shortpitch + i];
|
|
|
|
dct32_1d(temp_in, temp_out, 1);
|
|
|
|
for (j = 0; j < 32; j++)
|
|
|
|
output[j*32 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Then transform rows
|
|
|
|
for (i = 0; i < 32; ++i) {
|
|
|
|
double temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
temp_in[j] = output[j + i*32];
|
|
|
|
dct32_1d(temp_in, temp_out, 1);
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
output[j + i*32] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Scale by some magic number
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
|
|
out[i] = (short)round(output[i]/4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
}
|
|
|
|
|
2013-01-08 21:18:16 +01:00
|
|
|
#else // CONFIG_DWTDCTHYBRID
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
|
2012-12-12 02:06:35 +01:00
|
|
|
#if DWT_TYPE == 53
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
|
|
|
|
// Note: block length must be even for this implementation
|
|
|
|
static void analysis_53_row(int length, short *x,
|
|
|
|
short *lowpass, short *highpass) {
|
|
|
|
int n;
|
2012-12-12 02:06:35 +01:00
|
|
|
short r, *a, *b;
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
while (--n) {
|
|
|
|
*a++ = (r = *x++) << 1;
|
|
|
|
*b++ = *x - ((r + x[1] + 1) >> 1);
|
|
|
|
x++;
|
|
|
|
}
|
|
|
|
*a = (r = *x++) << 1;
|
|
|
|
*b = *x - r;
|
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
r = *highpass;
|
|
|
|
while (n--) {
|
|
|
|
*a++ += (r + (*b) + 1) >> 1;
|
|
|
|
r = *b++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void analysis_53_col(int length, short *x,
|
|
|
|
short *lowpass, short *highpass) {
|
|
|
|
int n;
|
2012-12-12 02:06:35 +01:00
|
|
|
short r, *a, *b;
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
while (--n) {
|
|
|
|
*a++ = (r = *x++);
|
|
|
|
*b++ = (((*x) << 1) - (r + x[1]) + 2) >> 2;
|
|
|
|
x++;
|
|
|
|
}
|
|
|
|
*a = (r = *x++);
|
|
|
|
*b = (*x - r + 1) >> 1;
|
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
r = *highpass;
|
|
|
|
while (n--) {
|
|
|
|
*a++ += (r + (*b) + 1) >> 1;
|
|
|
|
r = *b++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-12 02:06:35 +01:00
|
|
|
static void dyadic_analyze_53(int levels, int width, int height,
|
|
|
|
short *x, int pitch_x, short *c, int pitch_c) {
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
int lv, i, j, nh, nw, hh = height, hw = width;
|
2012-12-12 02:06:35 +01:00
|
|
|
short buffer[2 * DWT_MAX_LENGTH];
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
for (i = 0; i < height; i++) {
|
|
|
|
for (j = 0; j < width; j++) {
|
2012-12-12 02:06:35 +01:00
|
|
|
c[i * pitch_c + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS;
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
for (lv = 0; lv < levels; lv++) {
|
|
|
|
nh = hh;
|
|
|
|
hh = (hh + 1) >> 1;
|
|
|
|
nw = hw;
|
|
|
|
hw = (hw + 1) >> 1;
|
|
|
|
if ((nh < 2) || (nw < 2)) return;
|
|
|
|
for (i = 0; i < nh; i++) {
|
|
|
|
memcpy(buffer, &c[i * pitch_c], nw * sizeof(short));
|
|
|
|
analysis_53_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw);
|
|
|
|
}
|
|
|
|
for (j = 0; j < nw; j++) {
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
buffer[i + nh] = c[i * pitch_c + j];
|
|
|
|
analysis_53_col(nh, buffer + nh, buffer, buffer + hh);
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
c[i * pitch_c + j] = buffer[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-12 02:06:35 +01:00
|
|
|
#elif DWT_TYPE == 26
|
|
|
|
|
|
|
|
static void analysis_26_row(int length, short *x,
|
|
|
|
short *lowpass, short *highpass) {
|
|
|
|
int i, n;
|
|
|
|
short r, s, *a, *b;
|
|
|
|
a = lowpass;
|
|
|
|
b = highpass;
|
|
|
|
for (i = length >> 1; i; i--) {
|
|
|
|
r = *x++;
|
|
|
|
s = *x++;
|
|
|
|
*a++ = r + s;
|
|
|
|
*b++ = r - s;
|
|
|
|
}
|
|
|
|
n = length >> 1;
|
|
|
|
if (n >= 4) {
|
|
|
|
a = lowpass;
|
|
|
|
b = highpass;
|
|
|
|
r = *lowpass;
|
|
|
|
while (--n) {
|
|
|
|
*b++ -= (r - a[1] + 4) >> 3;
|
|
|
|
r = *a++;
|
|
|
|
}
|
|
|
|
*b -= (r - *a + 4) >> 3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void analysis_26_col(int length, short *x,
|
|
|
|
short *lowpass, short *highpass) {
|
|
|
|
int i, n;
|
|
|
|
short r, s, *a, *b;
|
|
|
|
a = lowpass;
|
|
|
|
b = highpass;
|
|
|
|
for (i = length >> 1; i; i--) {
|
|
|
|
r = *x++;
|
|
|
|
s = *x++;
|
|
|
|
*a++ = (r + s + 1) >> 1;
|
|
|
|
*b++ = (r - s + 1) >> 1;
|
|
|
|
}
|
|
|
|
n = length >> 1;
|
|
|
|
if (n >= 4) {
|
|
|
|
a = lowpass;
|
|
|
|
b = highpass;
|
|
|
|
r = *lowpass;
|
|
|
|
while (--n) {
|
|
|
|
*b++ -= (r - a[1] + 4) >> 3;
|
|
|
|
r = *a++;
|
|
|
|
}
|
|
|
|
*b -= (r - *a + 4) >> 3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dyadic_analyze_26(int levels, int width, int height,
|
|
|
|
short *x, int pitch_x, short *c, int pitch_c) {
|
|
|
|
int lv, i, j, nh, nw, hh = height, hw = width;
|
|
|
|
short buffer[2 * DWT_MAX_LENGTH];
|
|
|
|
for (i = 0; i < height; i++) {
|
|
|
|
for (j = 0; j < width; j++) {
|
|
|
|
c[i * pitch_c + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (lv = 0; lv < levels; lv++) {
|
|
|
|
nh = hh;
|
|
|
|
hh = (hh + 1) >> 1;
|
|
|
|
nw = hw;
|
|
|
|
hw = (hw + 1) >> 1;
|
|
|
|
if ((nh < 2) || (nw < 2)) return;
|
|
|
|
for (i = 0; i < nh; i++) {
|
|
|
|
memcpy(buffer, &c[i * pitch_c], nw * sizeof(short));
|
|
|
|
analysis_26_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw);
|
|
|
|
}
|
|
|
|
for (j = 0; j < nw; j++) {
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
buffer[i + nh] = c[i * pitch_c + j];
|
|
|
|
analysis_26_col(nh, buffer + nh, buffer, buffer + hh);
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
c[i * pitch_c + j] = buffer[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif DWT_TYPE == 97
|
|
|
|
|
|
|
|
static void analysis_97(int length, double *x,
|
|
|
|
double *lowpass, double *highpass) {
|
|
|
|
static const double a_predict1 = -1.586134342;
|
|
|
|
static const double a_update1 = -0.05298011854;
|
|
|
|
static const double a_predict2 = 0.8829110762;
|
|
|
|
static const double a_update2 = 0.4435068522;
|
|
|
|
static const double s_low = 1.149604398;
|
|
|
|
static const double s_high = 1/1.149604398;
|
|
|
|
int i;
|
|
|
|
double y[DWT_MAX_LENGTH];
|
|
|
|
// Predict 1
|
|
|
|
for (i = 1; i < length - 2; i += 2) {
|
|
|
|
x[i] += a_predict1 * (x[i - 1] + x[i + 1]);
|
|
|
|
}
|
|
|
|
x[length - 1] += 2 * a_predict1 * x[length - 2];
|
|
|
|
// Update 1
|
|
|
|
for (i = 2; i < length; i += 2) {
|
|
|
|
x[i] += a_update1 * (x[i - 1] + x[i + 1]);
|
|
|
|
}
|
|
|
|
x[0] += 2 * a_update1 * x[1];
|
|
|
|
// Predict 2
|
|
|
|
for (i = 1; i < length - 2; i += 2) {
|
|
|
|
x[i] += a_predict2 * (x[i - 1] + x[i + 1]);
|
|
|
|
}
|
|
|
|
x[length - 1] += 2 * a_predict2 * x[length - 2];
|
|
|
|
// Update 2
|
|
|
|
for (i = 2; i < length; i += 2) {
|
|
|
|
x[i] += a_update2 * (x[i - 1] + x[i + 1]);
|
|
|
|
}
|
|
|
|
x[0] += 2 * a_update2 * x[1];
|
|
|
|
memcpy(y, x, sizeof(*y) * length);
|
|
|
|
// Scale and pack
|
|
|
|
for (i = 0; i < length / 2; i++) {
|
|
|
|
lowpass[i] = y[2 * i] * s_low;
|
|
|
|
highpass[i] = y[2 * i + 1] * s_high;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dyadic_analyze_97(int levels, int width, int height,
|
|
|
|
short *x, int pitch_x, short *c, int pitch_c) {
|
|
|
|
int lv, i, j, nh, nw, hh = height, hw = width;
|
|
|
|
double buffer[2 * DWT_MAX_LENGTH];
|
|
|
|
double y[DWT_MAX_LENGTH * DWT_MAX_LENGTH];
|
|
|
|
for (i = 0; i < height; i++) {
|
|
|
|
for (j = 0; j < width; j++) {
|
|
|
|
y[i * DWT_MAX_LENGTH + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (lv = 0; lv < levels; lv++) {
|
|
|
|
nh = hh;
|
|
|
|
hh = (hh + 1) >> 1;
|
|
|
|
nw = hw;
|
|
|
|
hw = (hw + 1) >> 1;
|
|
|
|
if ((nh < 2) || (nw < 2)) return;
|
|
|
|
for (i = 0; i < nh; i++) {
|
|
|
|
memcpy(buffer, &y[i * DWT_MAX_LENGTH], nw * sizeof(*buffer));
|
|
|
|
analysis_97(nw, buffer, &y[i * DWT_MAX_LENGTH],
|
|
|
|
&y[i * DWT_MAX_LENGTH] + hw);
|
|
|
|
}
|
|
|
|
for (j = 0; j < nw; j++) {
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
buffer[i + nh] = y[i * DWT_MAX_LENGTH + j];
|
|
|
|
analysis_97(nh, buffer + nh, buffer, buffer + hh);
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
c[i * pitch_c + j] = round(buffer[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // DWT_TYPE
|
|
|
|
|
|
|
|
// TODO(debargha): Implement the scaling differently so as not to have to
|
|
|
|
// use the floating point dct
|
|
|
|
static void dct16x16_1d_f(double input[16], double output[16]) {
|
|
|
|
static const double C1 = 0.995184726672197;
|
|
|
|
static const double C2 = 0.98078528040323;
|
|
|
|
static const double C3 = 0.956940335732209;
|
|
|
|
static const double C4 = 0.923879532511287;
|
|
|
|
static const double C5 = 0.881921264348355;
|
|
|
|
static const double C6 = 0.831469612302545;
|
|
|
|
static const double C7 = 0.773010453362737;
|
|
|
|
static const double C8 = 0.707106781186548;
|
|
|
|
static const double C9 = 0.634393284163646;
|
|
|
|
static const double C10 = 0.555570233019602;
|
|
|
|
static const double C11 = 0.471396736825998;
|
|
|
|
static const double C12 = 0.38268343236509;
|
|
|
|
static const double C13 = 0.290284677254462;
|
|
|
|
static const double C14 = 0.195090322016128;
|
|
|
|
static const double C15 = 0.098017140329561;
|
|
|
|
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
{
|
|
|
|
double step[16];
|
|
|
|
double intermediate[16];
|
|
|
|
double temp1, temp2;
|
|
|
|
|
|
|
|
// step 1
|
|
|
|
step[ 0] = input[0] + input[15];
|
|
|
|
step[ 1] = input[1] + input[14];
|
|
|
|
step[ 2] = input[2] + input[13];
|
|
|
|
step[ 3] = input[3] + input[12];
|
|
|
|
step[ 4] = input[4] + input[11];
|
|
|
|
step[ 5] = input[5] + input[10];
|
|
|
|
step[ 6] = input[6] + input[ 9];
|
|
|
|
step[ 7] = input[7] + input[ 8];
|
|
|
|
step[ 8] = input[7] - input[ 8];
|
|
|
|
step[ 9] = input[6] - input[ 9];
|
|
|
|
step[10] = input[5] - input[10];
|
|
|
|
step[11] = input[4] - input[11];
|
|
|
|
step[12] = input[3] - input[12];
|
|
|
|
step[13] = input[2] - input[13];
|
|
|
|
step[14] = input[1] - input[14];
|
|
|
|
step[15] = input[0] - input[15];
|
|
|
|
|
|
|
|
// step 2
|
|
|
|
output[0] = step[0] + step[7];
|
|
|
|
output[1] = step[1] + step[6];
|
|
|
|
output[2] = step[2] + step[5];
|
|
|
|
output[3] = step[3] + step[4];
|
|
|
|
output[4] = step[3] - step[4];
|
|
|
|
output[5] = step[2] - step[5];
|
|
|
|
output[6] = step[1] - step[6];
|
|
|
|
output[7] = step[0] - step[7];
|
|
|
|
|
|
|
|
temp1 = step[ 8]*C7;
|
|
|
|
temp2 = step[15]*C9;
|
|
|
|
output[ 8] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = step[ 9]*C11;
|
|
|
|
temp2 = step[14]*C5;
|
|
|
|
output[ 9] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = step[10]*C3;
|
|
|
|
temp2 = step[13]*C13;
|
|
|
|
output[10] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = step[11]*C15;
|
|
|
|
temp2 = step[12]*C1;
|
|
|
|
output[11] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = step[11]*C1;
|
|
|
|
temp2 = step[12]*C15;
|
|
|
|
output[12] = temp2 + temp1;
|
|
|
|
|
|
|
|
temp1 = step[10]*C13;
|
|
|
|
temp2 = step[13]*C3;
|
|
|
|
output[13] = temp2 - temp1;
|
|
|
|
|
|
|
|
temp1 = step[ 9]*C5;
|
|
|
|
temp2 = step[14]*C11;
|
|
|
|
output[14] = temp2 + temp1;
|
|
|
|
|
|
|
|
temp1 = step[ 8]*C9;
|
|
|
|
temp2 = step[15]*C7;
|
|
|
|
output[15] = temp2 - temp1;
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
step[ 0] = output[0] + output[3];
|
|
|
|
step[ 1] = output[1] + output[2];
|
|
|
|
step[ 2] = output[1] - output[2];
|
|
|
|
step[ 3] = output[0] - output[3];
|
|
|
|
|
|
|
|
temp1 = output[4]*C14;
|
|
|
|
temp2 = output[7]*C2;
|
|
|
|
step[ 4] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = output[5]*C10;
|
|
|
|
temp2 = output[6]*C6;
|
|
|
|
step[ 5] = temp1 + temp2;
|
|
|
|
|
|
|
|
temp1 = output[5]*C6;
|
|
|
|
temp2 = output[6]*C10;
|
|
|
|
step[ 6] = temp2 - temp1;
|
|
|
|
|
|
|
|
temp1 = output[4]*C2;
|
|
|
|
temp2 = output[7]*C14;
|
|
|
|
step[ 7] = temp2 - temp1;
|
|
|
|
|
|
|
|
step[ 8] = output[ 8] + output[11];
|
|
|
|
step[ 9] = output[ 9] + output[10];
|
|
|
|
step[10] = output[ 9] - output[10];
|
|
|
|
step[11] = output[ 8] - output[11];
|
|
|
|
|
|
|
|
step[12] = output[12] + output[15];
|
|
|
|
step[13] = output[13] + output[14];
|
|
|
|
step[14] = output[13] - output[14];
|
|
|
|
step[15] = output[12] - output[15];
|
|
|
|
|
|
|
|
// step 4
|
|
|
|
output[ 0] = (step[ 0] + step[ 1]);
|
|
|
|
output[ 8] = (step[ 0] - step[ 1]);
|
|
|
|
|
|
|
|
temp1 = step[2]*C12;
|
|
|
|
temp2 = step[3]*C4;
|
|
|
|
temp1 = temp1 + temp2;
|
|
|
|
output[ 4] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
temp1 = step[2]*C4;
|
|
|
|
temp2 = step[3]*C12;
|
|
|
|
temp1 = temp2 - temp1;
|
|
|
|
output[12] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
output[ 2] = 2*((step[4] + step[ 5])*C8);
|
|
|
|
output[14] = 2*((step[7] - step[ 6])*C8);
|
|
|
|
|
|
|
|
temp1 = step[4] - step[5];
|
|
|
|
temp2 = step[6] + step[7];
|
|
|
|
output[ 6] = (temp1 + temp2);
|
|
|
|
output[10] = (temp1 - temp2);
|
|
|
|
|
|
|
|
intermediate[8] = step[8] + step[14];
|
|
|
|
intermediate[9] = step[9] + step[15];
|
|
|
|
|
|
|
|
temp1 = intermediate[8]*C12;
|
|
|
|
temp2 = intermediate[9]*C4;
|
|
|
|
temp1 = temp1 - temp2;
|
|
|
|
output[3] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
temp1 = intermediate[8]*C4;
|
|
|
|
temp2 = intermediate[9]*C12;
|
|
|
|
temp1 = temp2 + temp1;
|
|
|
|
output[13] = 2*(temp1*C8);
|
|
|
|
|
|
|
|
output[ 9] = 2*((step[10] + step[11])*C8);
|
|
|
|
|
|
|
|
intermediate[11] = step[10] - step[11];
|
|
|
|
intermediate[12] = step[12] + step[13];
|
|
|
|
intermediate[13] = step[12] - step[13];
|
|
|
|
intermediate[14] = step[ 8] - step[14];
|
|
|
|
intermediate[15] = step[ 9] - step[15];
|
|
|
|
|
|
|
|
output[15] = (intermediate[11] + intermediate[12]);
|
|
|
|
output[ 1] = -(intermediate[11] - intermediate[12]);
|
|
|
|
|
|
|
|
output[ 7] = 2*(intermediate[13]*C8);
|
|
|
|
|
|
|
|
temp1 = intermediate[14]*C12;
|
|
|
|
temp2 = intermediate[15]*C4;
|
|
|
|
temp1 = temp1 - temp2;
|
|
|
|
output[11] = -2*(temp1*C8);
|
|
|
|
|
|
|
|
temp1 = intermediate[14]*C4;
|
|
|
|
temp2 = intermediate[15]*C12;
|
|
|
|
temp1 = temp2 + temp1;
|
|
|
|
output[ 5] = 2*(temp1*C8);
|
|
|
|
}
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
}
|
|
|
|
|
2013-01-08 21:18:16 +01:00
|
|
|
static void vp9_short_fdct16x16_c_f(short *input, short *out, int pitch,
|
|
|
|
int scale) {
|
2012-12-12 02:06:35 +01:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
{
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
double output[256];
|
|
|
|
// First transform columns
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
double temp_in[16], temp_out[16];
|
|
|
|
for (j = 0; j < 16; j++)
|
|
|
|
temp_in[j] = input[j*shortpitch + i];
|
|
|
|
dct16x16_1d_f(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; j++)
|
|
|
|
output[j*16 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Then transform rows
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
double temp_in[16], temp_out[16];
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = output[j + i*16];
|
|
|
|
dct16x16_1d_f(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
output[j + i*16] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Scale by some magic number
|
|
|
|
for (i = 0; i < 256; i++)
|
2013-01-08 21:18:16 +01:00
|
|
|
out[i] = (short)round(output[i] / (2 << scale));
|
2012-12-12 02:06:35 +01:00
|
|
|
}
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
}
|
|
|
|
|
2013-01-09 15:26:54 +01:00
|
|
|
void vp9_short_fdct8x8_c_f(short *block, short *coefs, int pitch, int scale) {
|
|
|
|
int j1, i, j, k;
|
|
|
|
float b[8];
|
|
|
|
float b1[8];
|
|
|
|
float d[8][8];
|
|
|
|
float f0 = (float) .7071068;
|
|
|
|
float f1 = (float) .4903926;
|
|
|
|
float f2 = (float) .4619398;
|
|
|
|
float f3 = (float) .4157348;
|
|
|
|
float f4 = (float) .3535534;
|
|
|
|
float f5 = (float) .2777851;
|
|
|
|
float f6 = (float) .1913417;
|
|
|
|
float f7 = (float) .0975452;
|
|
|
|
pitch = pitch / 2;
|
|
|
|
for (i = 0, k = 0; i < 8; i++, k += pitch) {
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
|
b[j] = (float)(block[k + j] << (3 - scale));
|
|
|
|
}
|
|
|
|
/* Horizontal transform */
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
|
|
j1 = 7 - j;
|
|
|
|
b1[j] = b[j] + b[j1];
|
|
|
|
b1[j1] = b[j] - b[j1];
|
|
|
|
}
|
|
|
|
b[0] = b1[0] + b1[3];
|
|
|
|
b[1] = b1[1] + b1[2];
|
|
|
|
b[2] = b1[1] - b1[2];
|
|
|
|
b[3] = b1[0] - b1[3];
|
|
|
|
b[4] = b1[4];
|
|
|
|
b[5] = (b1[6] - b1[5]) * f0;
|
|
|
|
b[6] = (b1[6] + b1[5]) * f0;
|
|
|
|
b[7] = b1[7];
|
|
|
|
d[i][0] = (b[0] + b[1]) * f4;
|
|
|
|
d[i][4] = (b[0] - b[1]) * f4;
|
|
|
|
d[i][2] = b[2] * f6 + b[3] * f2;
|
|
|
|
d[i][6] = b[3] * f6 - b[2] * f2;
|
|
|
|
b1[4] = b[4] + b[5];
|
|
|
|
b1[7] = b[7] + b[6];
|
|
|
|
b1[5] = b[4] - b[5];
|
|
|
|
b1[6] = b[7] - b[6];
|
|
|
|
d[i][1] = b1[4] * f7 + b1[7] * f1;
|
|
|
|
d[i][5] = b1[5] * f3 + b1[6] * f5;
|
|
|
|
d[i][7] = b1[7] * f7 - b1[4] * f1;
|
|
|
|
d[i][3] = b1[6] * f3 - b1[5] * f5;
|
|
|
|
}
|
|
|
|
/* Vertical transform */
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
|
|
j1 = 7 - j;
|
|
|
|
b1[j] = d[j][i] + d[j1][i];
|
|
|
|
b1[j1] = d[j][i] - d[j1][i];
|
|
|
|
}
|
|
|
|
b[0] = b1[0] + b1[3];
|
|
|
|
b[1] = b1[1] + b1[2];
|
|
|
|
b[2] = b1[1] - b1[2];
|
|
|
|
b[3] = b1[0] - b1[3];
|
|
|
|
b[4] = b1[4];
|
|
|
|
b[5] = (b1[6] - b1[5]) * f0;
|
|
|
|
b[6] = (b1[6] + b1[5]) * f0;
|
|
|
|
b[7] = b1[7];
|
|
|
|
d[0][i] = (b[0] + b[1]) * f4;
|
|
|
|
d[4][i] = (b[0] - b[1]) * f4;
|
|
|
|
d[2][i] = b[2] * f6 + b[3] * f2;
|
|
|
|
d[6][i] = b[3] * f6 - b[2] * f2;
|
|
|
|
b1[4] = b[4] + b[5];
|
|
|
|
b1[7] = b[7] + b[6];
|
|
|
|
b1[5] = b[4] - b[5];
|
|
|
|
b1[6] = b[7] - b[6];
|
|
|
|
d[1][i] = b1[4] * f7 + b1[7] * f1;
|
|
|
|
d[5][i] = b1[5] * f3 + b1[6] * f5;
|
|
|
|
d[7][i] = b1[7] * f7 - b1[4] * f1;
|
|
|
|
d[3][i] = b1[6] * f3 - b1[5] * f5;
|
|
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
|
*(coefs + j + i * 8) = (short) floor(d[i][j] + 0.5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define divide_bits(d, n) ((n) < 0 ? (d) << (n) : (d) >> (n))
|
|
|
|
|
|
|
|
#if DWTDCT_TYPE == DWTDCT16X16_LEAN
|
|
|
|
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
void vp9_short_fdct32x32_c(short *input, short *out, int pitch) {
|
|
|
|
// assume out is a 32x32 buffer
|
|
|
|
short buffer[16 * 16];
|
2013-01-09 15:26:54 +01:00
|
|
|
int i, j;
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
const int short_pitch = pitch >> 1;
|
2012-12-12 02:06:35 +01:00
|
|
|
#if DWT_TYPE == 26
|
|
|
|
dyadic_analyze_26(1, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#elif DWT_TYPE == 97
|
|
|
|
dyadic_analyze_97(1, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#elif DWT_TYPE == 53
|
|
|
|
dyadic_analyze_53(1, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#endif
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
// TODO(debargha): Implement more efficiently by adding output pitch
|
|
|
|
// argument to the dct16x16 function
|
2013-01-08 21:18:16 +01:00
|
|
|
vp9_short_fdct16x16_c_f(out, buffer, 64, 1 + DWT_PRECISION_BITS);
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 32, buffer + i * 16, sizeof(short) * 16);
|
2013-01-09 15:26:54 +01:00
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 16; j < 32; ++j) {
|
|
|
|
out[i * 32 + j] = divide_bits(out[i * 32 + j], DWT_PRECISION_BITS - 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 16; i < 32; ++i) {
|
|
|
|
for (j = 0; j < 32; ++j) {
|
|
|
|
out[i * 32 + j] = divide_bits(out[i * 32 + j], DWT_PRECISION_BITS - 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2012-12-12 02:06:35 +01:00
|
|
|
|
2013-01-09 15:26:54 +01:00
|
|
|
#elif DWTDCT_TYPE == DWTDCT16X16
|
|
|
|
|
|
|
|
void vp9_short_fdct32x32_c(short *input, short *out, int pitch) {
|
|
|
|
// assume out is a 32x32 buffer
|
|
|
|
short buffer[16 * 16];
|
|
|
|
int i, j;
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
#if DWT_TYPE == 26
|
|
|
|
dyadic_analyze_26(1, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#elif DWT_TYPE == 97
|
|
|
|
dyadic_analyze_97(1, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#elif DWT_TYPE == 53
|
|
|
|
dyadic_analyze_53(1, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#endif
|
|
|
|
// TODO(debargha): Implement more efficiently by adding output pitch
|
|
|
|
// argument to the dct16x16 function
|
|
|
|
vp9_short_fdct16x16_c_f(out, buffer, 64, 1 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 32, buffer + i * 16, sizeof(short) * 16);
|
2013-01-08 21:18:16 +01:00
|
|
|
vp9_short_fdct16x16_c_f(out + 16, buffer, 64, 1 + DWT_PRECISION_BITS);
|
2012-12-12 02:06:35 +01:00
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 32 + 16, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
|
2013-01-08 21:18:16 +01:00
|
|
|
vp9_short_fdct16x16_c_f(out + 32 * 16, buffer, 64, 1 + DWT_PRECISION_BITS);
|
2012-12-12 02:06:35 +01:00
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 32 + 32 * 16, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
|
2013-01-08 21:18:16 +01:00
|
|
|
vp9_short_fdct16x16_c_f(out + 33 * 16, buffer, 64, 1 + DWT_PRECISION_BITS);
|
2012-12-12 02:06:35 +01:00
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 32 + 33 * 16, buffer + i * 16, sizeof(short) * 16);
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
|
|
|
}
|
2013-01-08 21:18:16 +01:00
|
|
|
|
2013-01-09 15:26:54 +01:00
|
|
|
#elif DWTDCT_TYPE == DWTDCT8X8
|
|
|
|
|
|
|
|
void vp9_short_fdct32x32_c(short *input, short *out, int pitch) {
|
|
|
|
// assume out is a 32x32 buffer
|
|
|
|
short buffer[8 * 8];
|
|
|
|
int i, j;
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
#if DWT_TYPE == 26
|
|
|
|
dyadic_analyze_26(2, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#elif DWT_TYPE == 97
|
|
|
|
dyadic_analyze_97(2, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#elif DWT_TYPE == 53
|
|
|
|
dyadic_analyze_53(2, 32, 32, input, short_pitch, out, 32);
|
|
|
|
#endif
|
|
|
|
// TODO(debargha): Implement more efficiently by adding output pitch
|
|
|
|
// argument to the dct16x16 function
|
|
|
|
vp9_short_fdct8x8_c_f(out, buffer, 64, 1 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
|
|
vpx_memcpy(out + i * 32, buffer + i * 8, sizeof(short) * 8);
|
|
|
|
|
|
|
|
vp9_short_fdct8x8_c_f(out + 8, buffer, 64, 1 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
|
|
vpx_memcpy(out + i * 32 + 8, buffer + i * 8, sizeof(short) * 8);
|
|
|
|
|
|
|
|
vp9_short_fdct8x8_c_f(out + 32 * 8, buffer, 64, 1 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
|
|
vpx_memcpy(out + i * 32 + 32 * 8, buffer + i * 8, sizeof(short) * 8);
|
|
|
|
|
|
|
|
vp9_short_fdct8x8_c_f(out + 33 * 8, buffer, 64, 1 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
|
|
vpx_memcpy(out + i * 32 + 33 * 8, buffer + i * 8, sizeof(short) * 8);
|
|
|
|
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 16; j < 32; ++j) {
|
|
|
|
out[i * 32 + j] = divide_bits(out[i * 32 + j], DWT_PRECISION_BITS - 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 16; i < 32; ++i) {
|
|
|
|
for (j = 0; j < 32; ++j) {
|
|
|
|
out[i * 32 + j] = divide_bits(out[i * 32 + j], DWT_PRECISION_BITS - 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2013-01-08 21:18:16 +01:00
|
|
|
#if CONFIG_TX64X64
|
|
|
|
void vp9_short_fdct64x64_c(short *input, short *out, int pitch) {
|
|
|
|
// assume out is a 64x64 buffer
|
|
|
|
short buffer[16 * 16];
|
|
|
|
int i, j;
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
#if DWT_TYPE == 26
|
|
|
|
dyadic_analyze_26(2, 64, 64, input, short_pitch, out, 64);
|
|
|
|
#elif DWT_TYPE == 97
|
|
|
|
dyadic_analyze_97(2, 64, 64, input, short_pitch, out, 64);
|
|
|
|
#elif DWT_TYPE == 53
|
|
|
|
dyadic_analyze_53(2, 64, 64, input, short_pitch, out, 64);
|
|
|
|
#endif
|
|
|
|
// TODO(debargha): Implement more efficiently by adding output pitch
|
|
|
|
// argument to the dct16x16 function
|
|
|
|
vp9_short_fdct16x16_c_f(out, buffer, 128, 2 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 64, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
|
2013-01-09 15:26:54 +01:00
|
|
|
#if DWTDCT_TYPE == DWTDCT16X16_LEAN
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 16; j < 48; ++j) {
|
|
|
|
out[i * 64 + j] = divide_bits(out[i * 64 + j], DWT_PRECISION_BITS - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 16; i < 64; ++i) {
|
|
|
|
for (j = 0; j < 64; ++j) {
|
|
|
|
out[i * 64 + j] = divide_bits(out[i * 64 + j], DWT_PRECISION_BITS - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#elif DWTDCT_TYPE == DWTDCT16X16
|
2013-01-08 21:18:16 +01:00
|
|
|
vp9_short_fdct16x16_c_f(out + 16, buffer, 128, 2 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 64 + 16, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
|
|
|
|
vp9_short_fdct16x16_c_f(out + 64 * 16, buffer, 128, 2 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 64 + 64 * 16, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
|
|
|
|
vp9_short_fdct16x16_c_f(out + 65 * 16, buffer, 128, 2 + DWT_PRECISION_BITS);
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
|
|
vpx_memcpy(out + i * 64 + 65 * 16, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
|
|
|
|
// There is no dct used on the highest bands for now.
|
|
|
|
// Need to scale these coeffs by a factor of 2/2^DWT_PRECISION_BITS
|
|
|
|
// TODO(debargha): experiment with turning these coeffs to 0
|
|
|
|
for (i = 0; i < 32; ++i) {
|
2013-01-09 15:26:54 +01:00
|
|
|
for (j = 32; j < 64; ++j) {
|
|
|
|
out[i * 64 + j] = divide_bits(out[i * 64 + j], DWT_PRECISION_BITS - 1);
|
2013-01-08 21:18:16 +01:00
|
|
|
}
|
|
|
|
}
|
2013-01-09 15:26:54 +01:00
|
|
|
for (i = 32; i < 64; ++i) {
|
2013-01-08 21:18:16 +01:00
|
|
|
for (j = 0; j < 64; ++j) {
|
2013-01-09 15:26:54 +01:00
|
|
|
out[i * 64 + j] = divide_bits(out[i * 64 + j], DWT_PRECISION_BITS - 1);
|
2013-01-08 21:18:16 +01:00
|
|
|
}
|
|
|
|
}
|
2013-01-09 15:26:54 +01:00
|
|
|
#endif // DWTDCT_TYPE
|
2013-01-08 21:18:16 +01:00
|
|
|
}
|
|
|
|
#endif // CONFIG_TX64X64
|
|
|
|
#endif // CONFIG_DWTDCTHYBRID
|