Make fdct32 computation flow within 16bit range
This commit makes use of dual fdct32x32 versions for rate-distortion optimization loop and encoding process, respectively. The one for rd loop requires only 16 bits precision for intermediate steps. The original fdct32x32 that allows higher intermediate precision (18 bits) was retained for the encoding process only. This allows speed-up for fdct32x32 in the rd loop. No performance loss observed. Change-Id: I3237770e39a8f87ed17ae5513c87228533397cc3
This commit is contained in:
parent
c43af9a8a3
commit
a41a4860c0
@ -71,12 +71,6 @@ static INLINE int dct_const_round_shift(int input) {
|
||||
return rv;
|
||||
}
|
||||
|
||||
static INLINE int dct_32_round(int input) {
|
||||
int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
|
||||
assert(-131072 <= rv && rv <= 131071);
|
||||
return rv;
|
||||
}
|
||||
|
||||
typedef void (*transform_1d)(int16_t*, int16_t*);
|
||||
|
||||
typedef struct {
|
||||
|
@ -577,6 +577,9 @@ specialize vp9_short_fdct8x4 sse2
|
||||
prototype void vp9_short_fdct32x32 "int16_t *InputData, int16_t *OutputData, int pitch"
|
||||
specialize vp9_short_fdct32x32
|
||||
|
||||
prototype void vp9_short_fdct32x32_rd "int16_t *InputData, int16_t *OutputData, int pitch"
|
||||
specialize vp9_short_fdct32x32_rd
|
||||
|
||||
prototype void vp9_short_fdct16x16 "int16_t *InputData, int16_t *OutputData, int pitch"
|
||||
specialize vp9_short_fdct16x16 sse2
|
||||
|
||||
|
@ -139,6 +139,9 @@ struct macroblock {
|
||||
|
||||
int optimize;
|
||||
|
||||
// indicate if it is in the rd search loop or encoding process
|
||||
int rd_search;
|
||||
|
||||
// TODO(jingning): Need to refactor the structure arrays that buffers the
|
||||
// coding mode decisions of each partition type.
|
||||
PICK_MODE_CONTEXT ab4x4_context[4][4][4];
|
||||
|
@ -991,8 +991,18 @@ void vp9_short_fht16x16_c(int16_t *input, int16_t *output,
|
||||
}
|
||||
}
|
||||
|
||||
static INLINE int dct_32_round(int input) {
|
||||
int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
|
||||
assert(-131072 <= rv && rv <= 131071);
|
||||
return rv;
|
||||
}
|
||||
|
||||
static void dct32_1d(int *input, int *output) {
|
||||
static INLINE int half_round_shift(int input) {
|
||||
int rv = (input + 1 + (input < 0)) >> 2;
|
||||
return rv;
|
||||
}
|
||||
|
||||
static void dct32_1d(int *input, int *output, int round) {
|
||||
int step[32];
|
||||
// Stage 1
|
||||
step[0] = input[0] + input[(32 - 1)];
|
||||
@ -1101,6 +1111,44 @@ static void dct32_1d(int *input, int *output) {
|
||||
step[30] = output[30] + output[25];
|
||||
step[31] = output[31] + output[24];
|
||||
|
||||
// dump the magnitude by half, hence the intermediate values are within 1108
|
||||
// the range of 16 bits.
|
||||
if (round) {
|
||||
step[0] = half_round_shift(step[0]);
|
||||
step[1] = half_round_shift(step[1]);
|
||||
step[2] = half_round_shift(step[2]);
|
||||
step[3] = half_round_shift(step[3]);
|
||||
step[4] = half_round_shift(step[4]);
|
||||
step[5] = half_round_shift(step[5]);
|
||||
step[6] = half_round_shift(step[6]);
|
||||
step[7] = half_round_shift(step[7]);
|
||||
step[8] = half_round_shift(step[8]);
|
||||
step[9] = half_round_shift(step[9]);
|
||||
step[10] = half_round_shift(step[10]);
|
||||
step[11] = half_round_shift(step[11]);
|
||||
step[12] = half_round_shift(step[12]);
|
||||
step[13] = half_round_shift(step[13]);
|
||||
step[14] = half_round_shift(step[14]);
|
||||
step[15] = half_round_shift(step[15]);
|
||||
|
||||
step[16] = half_round_shift(step[16]);
|
||||
step[17] = half_round_shift(step[17]);
|
||||
step[18] = half_round_shift(step[18]);
|
||||
step[19] = half_round_shift(step[19]);
|
||||
step[20] = half_round_shift(step[20]);
|
||||
step[21] = half_round_shift(step[21]);
|
||||
step[22] = half_round_shift(step[22]);
|
||||
step[23] = half_round_shift(step[23]);
|
||||
step[24] = half_round_shift(step[24]);
|
||||
step[25] = half_round_shift(step[25]);
|
||||
step[26] = half_round_shift(step[26]);
|
||||
step[27] = half_round_shift(step[27]);
|
||||
step[28] = half_round_shift(step[28]);
|
||||
step[29] = half_round_shift(step[29]);
|
||||
step[30] = half_round_shift(step[30]);
|
||||
step[31] = half_round_shift(step[31]);
|
||||
}
|
||||
|
||||
// Stage 4
|
||||
output[0] = step[0] + step[3];
|
||||
output[1] = step[1] + step[2];
|
||||
@ -1283,12 +1331,12 @@ void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) {
|
||||
int output[32 * 32];
|
||||
|
||||
// Columns
|
||||
for (i = 0; i < 32; i++) {
|
||||
for (i = 0; i < 32; ++i) {
|
||||
int temp_in[32], temp_out[32];
|
||||
for (j = 0; j < 32; j++)
|
||||
for (j = 0; j < 32; ++j)
|
||||
temp_in[j] = input[j * shortpitch + i] << 2;
|
||||
dct32_1d(temp_in, temp_out);
|
||||
for (j = 0; j < 32; j++)
|
||||
dct32_1d(temp_in, temp_out, 0);
|
||||
for (j = 0; j < 32; ++j)
|
||||
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
|
||||
}
|
||||
|
||||
@ -1297,8 +1345,37 @@ void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) {
|
||||
int temp_in[32], temp_out[32];
|
||||
for (j = 0; j < 32; ++j)
|
||||
temp_in[j] = output[j + i * 32];
|
||||
dct32_1d(temp_in, temp_out);
|
||||
dct32_1d(temp_in, temp_out, 0);
|
||||
for (j = 0; j < 32; ++j)
|
||||
out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Note that although we use dct_32_round in dct32_1d computation flow,
|
||||
// this 2d fdct32x32 for rate-distortion optimization loop is operating
|
||||
// within 16 bits precision.
|
||||
void vp9_short_fdct32x32_rd_c(int16_t *input, int16_t *out, int pitch) {
|
||||
int shortpitch = pitch >> 1;
|
||||
int i, j;
|
||||
int output[32 * 32];
|
||||
|
||||
// Columns
|
||||
for (i = 0; i < 32; ++i) {
|
||||
int temp_in[32], temp_out[32];
|
||||
for (j = 0; j < 32; ++j)
|
||||
temp_in[j] = input[j * shortpitch + i] << 2;
|
||||
dct32_1d(temp_in, temp_out, 0);
|
||||
for (j = 0; j < 32; ++j)
|
||||
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
|
||||
}
|
||||
|
||||
// Rows
|
||||
for (i = 0; i < 32; ++i) {
|
||||
int temp_in[32], temp_out[32];
|
||||
for (j = 0; j < 32; ++j)
|
||||
temp_in[j] = output[j + i * 32];
|
||||
dct32_1d(temp_in, temp_out, 1);
|
||||
for (j = 0; j < 32; ++j)
|
||||
out[j + i * 32] = temp_out[j];
|
||||
}
|
||||
}
|
||||
|
@ -603,6 +603,8 @@ static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col,
|
||||
MACROBLOCK *const x = &cpi->mb;
|
||||
MACROBLOCKD *const xd = &x->e_mbd;
|
||||
|
||||
x->rd_search = 1;
|
||||
|
||||
if (bsize < BLOCK_SIZE_SB8X8)
|
||||
if (xd->ab_index != 0)
|
||||
return;
|
||||
@ -1975,6 +1977,7 @@ static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
|
||||
const int mis = cm->mode_info_stride;
|
||||
const int bwl = mi_width_log2(bsize);
|
||||
const int bw = 1 << bwl, bh = 1 << mi_height_log2(bsize);
|
||||
x->rd_search = 0;
|
||||
|
||||
if (cm->frame_type == KEY_FRAME) {
|
||||
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
||||
|
@ -454,7 +454,10 @@ static void xform_quant(int plane, int block, BLOCK_SIZE_TYPE bsize,
|
||||
|
||||
switch (ss_txfrm_size / 2) {
|
||||
case TX_32X32:
|
||||
vp9_short_fdct32x32(src_diff, coeff, bw * 2);
|
||||
if (x->rd_search)
|
||||
vp9_short_fdct32x32_rd(src_diff, coeff, bw * 2);
|
||||
else
|
||||
vp9_short_fdct32x32(src_diff, coeff, bw * 2);
|
||||
break;
|
||||
case TX_16X16:
|
||||
tx_type = plane == 0 ? get_tx_type_16x16(xd, raster_block) : DCT_DCT;
|
||||
|
Loading…
x
Reference in New Issue
Block a user