This probably has a mildly negative impact on performance, but will
(in future commits - or possibly merged with this one) allow SIMD
implementations of individual intra prediction functions. We may
perhaps want to consider having separate functions per txfm-size
also (i.e. 4x4, 8x8, 16x16 and 32x32 intra prediction functions for
each intra prediction mode), but I haven't played much with that
yet.
Change-Id: Ie739985eee0a3fcbb7aed29ee6910fdb653ea269
In the rare case were 4x4 interior filtering was called for but no
8x8 or larger filtering takes place, the previous code was skipping
the filtering. This patch fixes the issue by including the interior
mask in the overall mask for the filter application loops.
Change-Id: I4a0b65056c64f97478827c2ff41e0914fc7779d0
Encode time for first 50 frames of bus (speed 0) @ 1500kbps goes from
2min10.9 to 2min10.5, i.e. 0.3% faster overall, basically because we
prevent the call overhead.
Change-Id: I1eab1a95dd3eae282f9b866f1f0b3dcadff073d5
intermediate_height for horizontal filtering must be at least 8
pixels to be able to do vertical filtering correctly. Currently
it can be less for small block and y_step_q4 sizes.
Change-Id: I2ee28b0591b2041c2fa9844d0ae2ff8a1a59cc21
(1) Refines the modeling function and uses that to add some speed
features. Specifically, intead of using a flag use_largest_txfm as
a speed feature, an enum tx_size_search_method is used, of which
two of the types are USE_FULL_RD and USE_LARGESTALL. Two other
new types are added:
USE_LARGESTINTRA (use largest only for intra)
USE_LARGESTINTRA_MODELINTER (use largest for intra, and model for
inter)
(2) Another change is that the framework for deciding transform type
is simplified to use a heuristic count based method rather than
an rd based method using txfm_cache. In practice the new method
is found to work just as well - with derf only -0.01 down.
The new method is more compatible with the new framework where
certain rd costs are based on full rd and certain others are
based on modeled rd or are not computed. In this patch the existing
rd based method is still kept for use in the USE_FULL_RD mode.
In the other modes, the count based method is used.
However the recommendation is to remove it eventually since the
benefit is limited, and will remove a lot of complications in
the code
(3) Finally a bug is fixed with the existing use_largest_txfm speed feature
that causes mismatches when the lossless mode and 4x4 WH transform is
forced.
Results on derf:
USE_FULL_RD: +0.03% (due to change in the tables), 0% encode time reduction
USE_LARGESTINTRA: -0.21%, 15% encode time reduction (this one is a
pretty good compromise)
USE_LARGESTINTRA_MODELINTER: -0.98%, 22% encode time reduction
(currently the benefit of modeling is limited for txfm size selection,
but keeping this enum as a placeholder) .
USE_LARGESTALL: -1.05%, 27% encode-time reduction (same as existing
use_largest_txfm speed feature).
Change-Id: I4d60a5f9ce78fbc90cddf2f97ed91d8bc0d4f936
This should significantly speedup cost_coeffs(). Basically what the
patch does is to make the neighbour arrays padded by one item to
prevent an eob check in get_coef_context(), then it populates each
col/row scan and left/top edge coefficient with two times the same
neighbour - this prevents a single/double context branch in
get_coef_context(). Lastly, it populates neighbour arrays in pixel
order (rather than scan order), so we don't have to dereference the
scantable to get the correct neighbours.
Total encoding time of first 50 frames of bus (speed 0) at 1500kbps
goes from 2min10.1 to 2min5.3, i.e. a 2.6% overall speed increase.
Change-Id: I42bcd2210fd7bec03767ef0e2945a665b851df56
Encode time of bus (speed 0) 50 frames @ 1500kbps goes from 2min14.4 to
2min10.1, i.e. a 2.3% overall speed increase.
Change-Id: I3699580e74ec26c7d24e03681bc47ba25ee1ee87
Total encoding time for first 50 frames of bus (speed 0) @ 1500kbps
goes 2min34.8 to 2min14.4, i.e. a 10.4% overall speedup. The code is
x86-64 only, it needs some minor modifications to be 32bit compatible,
because it uses 15 xmm registers, whereas 32bit only has 8.
Change-Id: I2df53770c2e850813ffa713e1a91b45b0082b904
since:
92479d9 Make update_partition_context faster
fixes:
vp9/common/vp9_blockd.h:408:22: error:
non-constant-expression cannot be narrowed from type 'int' to 'char' in
initializer list [-Wc++11-narrowing]
char pcvalue[2] = {~(0xe << boffset), ~(0xf <<boffset)};
^~~~~~~~~~~~~~~~~
Change-Id: Id5b00b9a72d00a2b314081a23879bd1fa3ce983b
This commit enables SSE2 4x4 foward hybrid transform. The runtime
goes from 249 cycles down to 74 cycles. Overall around 2% speed-up
at no compression performance change.
Change-Id: Iad4d526346e05c7be896466c05500711bb763660
Makes cost_coeffs() a lot faster:
4x4: 236 -> 181 cycles
8x8: 888 -> 588 cycles
16x16: 3550 -> 2483 cycles
32x32: 17392 -> 12010 cycles
Total encode time of first 50 frames of bus (speed 0) @ 1500kbps goes
from 2min51.6 to 2min43.9, i.e. 4.7% overall speedup.
Change-Id: I16b8d595946393c8dc661599550b3f37f5718896
Adding CHECK_MEM_ERROR macro to vp9_common.h and removing two duplicated
ones from vp9_onyx_int.h and vp9_onyxd_int.h.
Change-Id: I916afec61b3019f18193135dac7c35ed0f89b8b6
This commit replaces zrun_zbin_boost, a method of biasing non-zero
coefficients following runs of zero-coefficients to be rounded towards
zero, with an explicit skip-block choice in the RD loop.
The logic is basically that if individual coefficients should be rounded
towards zero (from a RD point of view), the trellis/optimize loop should
take care of it. If whole blocks should be zero (from a RD point of
view), a single RD check is much more efficient than a complete
serialization of the quantization loop.
Quality change: derf +0.5% psnr, +1.6% ssim; yt +0.6% psnr, +1.1% ssim.
SIMD for quantize will follow in a separate patch. Results for other
test sets pending.
Change-Id: Ife5fa641163ac5150ac428011e87188f1937c1f4
Using vp9_set_pred_flag function instead of custom code, adding
decode_tokens function which is now called from decode_atom,
decode_sb_intra, and decode_sb.
Change-Id: Ie163a7106c0241099da9c5fe03069bd71f9d9ff8
- Added vp9_loop_filter_horizontal_edge_neon and
vp9_loop_filter_vertical_edge_neon.
- The functions are based off the vp8 loopfilter
functions.
- Matches x86 md5 checksum.
Change-Id: Id1c4dddb03584227e5ecd29f574a6ac27738fdd0
This commit enables configurable reference buffer pointer for intra
predictor. This allows later removal of spatial dependency between
blocks inside a 64x64 superblock in the rate-distortion optimization
loop.
Change-Id: I02418c2077efe19adc86e046a6b49364a980f5b1
Use vpx_memset for updating the partition contexts. Thanks to Noah
for pointing out the need of refactoring in this part.
Change-Id: I67fb78429d632298f1cd8a0be346cc76f79392a6
Makes first 50 frames of bus @ 1500kbps encode from 3min22.7 to 3min18.2,
i.e. 2.3% faster. In addition, use the sub_pixel_avg functions to calc
the variance of the averaging predictor. This is slightly suboptimal
because the function is subpixel-position-aware, but it will (at least
for the SSE2 version) not actually use a bilinear filter for a full-pixel
position, thus leading to approximately the same performance compared to
if we implemented an actual average-aware full-pixel variance function.
That gains another 0.3 seconds (i.e. encode time goes to 3min17.4), thus
leading to a total gain of 2.7%.
Change-Id: I3f059d2b04243921868cfed2568d4fa65d7b5acd
This commit makes use of the butterfly structure to enable the sse2
version implementation of 8x8 ADST/DCT hybrid transform coding.
The runtime of hybrid transform module goes down from 1170 cycles
to 245 cycles. Overall speed-up around 1.5%.
Change-Id: Ic808ffd21ece8a9d0410d8c0243d7b6c28ac3b3f
This reduced the size of the MODE_INFO array (mip and prev_mip)
by 425,568 bytes each for 1080p resolutions.
Change-Id: Ifa513ec2d0a49e8ec0867ec90620762fb7f1261d
For cases where there's no transform set in bit 0 (the left edge of
the SB) but bit 0 of mask_4x4_int is set (the edge 4 pixels from the
left edge needs filtering), it was incorrectly being skipped before.
This situation only happens on the leftmost edge of the image, as
the edge at column 0 is intentionally skipped since there aren't
pixels to the left to read.
Change-Id: Ib2fbbcb40166e90af31b1a0e13b85b68c226cbd3
Change vp9_block_error() to return a 64bit error variable, change all
callers to expect a 64bit return value (this will prevent overflows,
which we basically don't check for at all right now). Remove duplicate
block_error() function, which fixed that through truncation. Remove
old (incompatible) mmx/sse2 block_error SIMD versions and replace with
a new one that returns a 64bit value.
Encoding time of first 50 frames of bus @ 1500kbps goes from 3min29 to
3min23, i.e. a 3% overall speedup.
Change-Id: Ib71ac5508b5ee8a80f1753cd85d72df1629abe68
Encoding of bus @ 1500kbps (first 50 frames) goes from 3min57 to
3min35, i.e. approximately a 10.5% speedup. Note that the SIMD versions
which use a bilinear filter (x_offset & 7 || y_offset & 7) aren't
perfectly interleaved, and can probably be improved further in the
future. I've marked this with a few TODOs/FIXMEs in the code.
Change-Id: I5c9e900c0f0d32e431a50fecae213b510b2549f9
The new print out includes skips and has prefixed sections so you can
grep to find things like transforms chosen on each frame.
Change-Id: I195043424647d9514cfc3ff6720a5b20d010fa1b
This commit makes use of dual fdct32x32 versions for rate-distortion
optimization loop and encoding process, respectively. The one for
rd loop requires only 16 bits precision for intermediate steps.
The original fdct32x32 that allows higher intermediate precision (18
bits) was retained for the encoding process only.
This allows speed-up for fdct32x32 in the rd loop. No performance
loss observed.
Change-Id: I3237770e39a8f87ed17ae5513c87228533397cc3
This seems to only be used in the encoder. Also remove an empty wrapper
file that contained forward declarations for this function, but didn't
actually define any actual functions.
Change-Id: Ifc561eef7ebe374a7d03698055e51e105f6d614b