Enable sse2 implmentation of 8x8 ADST/DCT

This commit makes use of the butterfly structure to enable the sse2
version implementation of 8x8 ADST/DCT hybrid transform coding.

The runtime of hybrid transform module goes down from 1170 cycles
to 245 cycles. Overall speed-up around 1.5%.

Change-Id: Ic808ffd21ece8a9d0410d8c0243d7b6c28ac3b3f
This commit is contained in:
Jingning Han 2013-06-20 09:00:23 -07:00
parent 869d770610
commit a32a086d23
2 changed files with 494 additions and 1 deletions

View File

@ -551,7 +551,7 @@ prototype void vp9_short_fht4x4 "int16_t *InputData, int16_t *OutputData, int pi
specialize vp9_short_fht4x4
prototype void vp9_short_fht8x8 "int16_t *InputData, int16_t *OutputData, int pitch, int tx_type"
specialize vp9_short_fht8x8
specialize vp9_short_fht8x8 sse2
prototype void vp9_short_fht16x16 "int16_t *InputData, int16_t *OutputData, int pitch, int tx_type"
specialize vp9_short_fht16x16

View File

@ -10,6 +10,7 @@
#include <emmintrin.h> // SSE2
#include "vp9/common/vp9_idct.h" // for cospi constants
#include "vpx_ports/mem.h"
void vp9_short_fdct4x4_sse2(int16_t *input, int16_t *output, int pitch) {
// The 2D transform is done with two passes which are actually pretty
@ -373,6 +374,498 @@ void vp9_short_fdct8x8_sse2(int16_t *input, int16_t *output, int pitch) {
}
}
// load 8x8 array
static INLINE void load_buffer_8x8(int16_t *input, __m128i in[8], int stride) {
in[0] = _mm_load_si128((__m128i *)(input + 0 * stride));
in[1] = _mm_load_si128((__m128i *)(input + 1 * stride));
in[2] = _mm_load_si128((__m128i *)(input + 2 * stride));
in[3] = _mm_load_si128((__m128i *)(input + 3 * stride));
in[4] = _mm_load_si128((__m128i *)(input + 4 * stride));
in[5] = _mm_load_si128((__m128i *)(input + 5 * stride));
in[6] = _mm_load_si128((__m128i *)(input + 6 * stride));
in[7] = _mm_load_si128((__m128i *)(input + 7 * stride));
in[0] = _mm_slli_epi16(in[0], 2);
in[1] = _mm_slli_epi16(in[1], 2);
in[2] = _mm_slli_epi16(in[2], 2);
in[3] = _mm_slli_epi16(in[3], 2);
in[4] = _mm_slli_epi16(in[4], 2);
in[5] = _mm_slli_epi16(in[5], 2);
in[6] = _mm_slli_epi16(in[6], 2);
in[7] = _mm_slli_epi16(in[7], 2);
}
// write 8x8 array
static INLINE void write_buffer_8x8(int16_t *output, __m128i res[8]) {
res[0] = _mm_srai_epi16(res[0], 1);
res[1] = _mm_srai_epi16(res[1], 1);
res[2] = _mm_srai_epi16(res[2], 1);
res[3] = _mm_srai_epi16(res[3], 1);
res[4] = _mm_srai_epi16(res[4], 1);
res[5] = _mm_srai_epi16(res[5], 1);
res[6] = _mm_srai_epi16(res[6], 1);
res[7] = _mm_srai_epi16(res[7], 1);
_mm_store_si128((__m128i *)(output + 0 * 8), res[0]);
_mm_store_si128((__m128i *)(output + 1 * 8), res[1]);
_mm_store_si128((__m128i *)(output + 2 * 8), res[2]);
_mm_store_si128((__m128i *)(output + 3 * 8), res[3]);
_mm_store_si128((__m128i *)(output + 4 * 8), res[4]);
_mm_store_si128((__m128i *)(output + 5 * 8), res[5]);
_mm_store_si128((__m128i *)(output + 6 * 8), res[6]);
_mm_store_si128((__m128i *)(output + 7 * 8), res[7]);
}
// perform in-place transpose
static INLINE void array_transpose_8x8(__m128i res[8]) {
const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]);
const __m128i tr0_1 = _mm_unpacklo_epi16(res[2], res[3]);
const __m128i tr0_2 = _mm_unpackhi_epi16(res[0], res[1]);
const __m128i tr0_3 = _mm_unpackhi_epi16(res[2], res[3]);
const __m128i tr0_4 = _mm_unpacklo_epi16(res[4], res[5]);
const __m128i tr0_5 = _mm_unpacklo_epi16(res[6], res[7]);
const __m128i tr0_6 = _mm_unpackhi_epi16(res[4], res[5]);
const __m128i tr0_7 = _mm_unpackhi_epi16(res[6], res[7]);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 44 54 45 55 46 56 47 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 25 35
// 44 54 64 74 45 55 65 75
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
}
void fdct8_1d_sse2(__m128i in[8]) {
// constants
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u0, u1, u2, u3, u4, u5, u6, u7;
__m128i v0, v1, v2, v3, v4, v5, v6, v7;
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
// stage 1
s0 = _mm_add_epi16(in[0], in[7]);
s1 = _mm_add_epi16(in[1], in[6]);
s2 = _mm_add_epi16(in[2], in[5]);
s3 = _mm_add_epi16(in[3], in[4]);
s4 = _mm_sub_epi16(in[3], in[4]);
s5 = _mm_sub_epi16(in[2], in[5]);
s6 = _mm_sub_epi16(in[1], in[6]);
s7 = _mm_sub_epi16(in[0], in[7]);
u0 = _mm_add_epi16(s0, s3);
u1 = _mm_add_epi16(s1, s2);
u2 = _mm_sub_epi16(s1, s2);
u3 = _mm_sub_epi16(s0, s3);
// interleave and perform butterfly multiplication/addition
v0 = _mm_unpacklo_epi16(u0, u1);
v1 = _mm_unpackhi_epi16(u0, u1);
v2 = _mm_unpacklo_epi16(u2, u3);
v3 = _mm_unpackhi_epi16(u2, u3);
u0 = _mm_madd_epi16(v0, k__cospi_p16_p16);
u1 = _mm_madd_epi16(v1, k__cospi_p16_p16);
u2 = _mm_madd_epi16(v0, k__cospi_p16_m16);
u3 = _mm_madd_epi16(v1, k__cospi_p16_m16);
u4 = _mm_madd_epi16(v2, k__cospi_p24_p08);
u5 = _mm_madd_epi16(v3, k__cospi_p24_p08);
u6 = _mm_madd_epi16(v2, k__cospi_m08_p24);
u7 = _mm_madd_epi16(v3, k__cospi_m08_p24);
// shift and rounding
v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u0, u1);
in[2] = _mm_packs_epi32(u4, u5);
in[4] = _mm_packs_epi32(u2, u3);
in[6] = _mm_packs_epi32(u6, u7);
// stage 2
// interleave and perform butterfly multiplication/addition
u0 = _mm_unpacklo_epi16(s6, s5);
u1 = _mm_unpackhi_epi16(s6, s5);
v0 = _mm_madd_epi16(u0, k__cospi_p16_m16);
v1 = _mm_madd_epi16(u1, k__cospi_p16_m16);
v2 = _mm_madd_epi16(u0, k__cospi_p16_p16);
v3 = _mm_madd_epi16(u1, k__cospi_p16_p16);
// shift and rounding
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
u0 = _mm_packs_epi32(v0, v1);
u1 = _mm_packs_epi32(v2, v3);
// stage 3
s0 = _mm_add_epi16(s4, u0);
s1 = _mm_sub_epi16(s4, u0);
s2 = _mm_sub_epi16(s7, u1);
s3 = _mm_add_epi16(s7, u1);
// stage 4
u0 = _mm_unpacklo_epi16(s0, s3);
u1 = _mm_unpackhi_epi16(s0, s3);
u2 = _mm_unpacklo_epi16(s1, s2);
u3 = _mm_unpackhi_epi16(s1, s2);
v0 = _mm_madd_epi16(u0, k__cospi_p28_p04);
v1 = _mm_madd_epi16(u1, k__cospi_p28_p04);
v2 = _mm_madd_epi16(u2, k__cospi_p12_p20);
v3 = _mm_madd_epi16(u3, k__cospi_p12_p20);
v4 = _mm_madd_epi16(u2, k__cospi_m20_p12);
v5 = _mm_madd_epi16(u3, k__cospi_m20_p12);
v6 = _mm_madd_epi16(u0, k__cospi_m04_p28);
v7 = _mm_madd_epi16(u1, k__cospi_m04_p28);
// shift and rounding
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
in[1] = _mm_packs_epi32(v0, v1);
in[3] = _mm_packs_epi32(v4, v5);
in[5] = _mm_packs_epi32(v2, v3);
in[7] = _mm_packs_epi32(v6, v7);
// transpose
array_transpose_8x8(in);
}
void fadst8_1d_sse2(__m128i in[8]) {
// Constants
const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64);
const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64);
const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64);
const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64);
const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64);
const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__const_0 = _mm_set1_epi16(0);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15;
__m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15;
__m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
__m128i in0, in1, in2, in3, in4, in5, in6, in7;
// properly aligned for butterfly input
in0 = in[7];
in1 = in[0];
in2 = in[5];
in3 = in[2];
in4 = in[3];
in5 = in[4];
in6 = in[1];
in7 = in[6];
// column transformation
// stage 1
// interleave and multiply/add into 32-bit integer
s0 = _mm_unpacklo_epi16(in0, in1);
s1 = _mm_unpackhi_epi16(in0, in1);
s2 = _mm_unpacklo_epi16(in2, in3);
s3 = _mm_unpackhi_epi16(in2, in3);
s4 = _mm_unpacklo_epi16(in4, in5);
s5 = _mm_unpackhi_epi16(in4, in5);
s6 = _mm_unpacklo_epi16(in6, in7);
s7 = _mm_unpackhi_epi16(in6, in7);
u0 = _mm_madd_epi16(s0, k__cospi_p02_p30);
u1 = _mm_madd_epi16(s1, k__cospi_p02_p30);
u2 = _mm_madd_epi16(s0, k__cospi_p30_m02);
u3 = _mm_madd_epi16(s1, k__cospi_p30_m02);
u4 = _mm_madd_epi16(s2, k__cospi_p10_p22);
u5 = _mm_madd_epi16(s3, k__cospi_p10_p22);
u6 = _mm_madd_epi16(s2, k__cospi_p22_m10);
u7 = _mm_madd_epi16(s3, k__cospi_p22_m10);
u8 = _mm_madd_epi16(s4, k__cospi_p18_p14);
u9 = _mm_madd_epi16(s5, k__cospi_p18_p14);
u10 = _mm_madd_epi16(s4, k__cospi_p14_m18);
u11 = _mm_madd_epi16(s5, k__cospi_p14_m18);
u12 = _mm_madd_epi16(s6, k__cospi_p26_p06);
u13 = _mm_madd_epi16(s7, k__cospi_p26_p06);
u14 = _mm_madd_epi16(s6, k__cospi_p06_m26);
u15 = _mm_madd_epi16(s7, k__cospi_p06_m26);
// addition
w0 = _mm_add_epi32(u0, u8);
w1 = _mm_add_epi32(u1, u9);
w2 = _mm_add_epi32(u2, u10);
w3 = _mm_add_epi32(u3, u11);
w4 = _mm_add_epi32(u4, u12);
w5 = _mm_add_epi32(u5, u13);
w6 = _mm_add_epi32(u6, u14);
w7 = _mm_add_epi32(u7, u15);
w8 = _mm_sub_epi32(u0, u8);
w9 = _mm_sub_epi32(u1, u9);
w10 = _mm_sub_epi32(u2, u10);
w11 = _mm_sub_epi32(u3, u11);
w12 = _mm_sub_epi32(u4, u12);
w13 = _mm_sub_epi32(u5, u13);
w14 = _mm_sub_epi32(u6, u14);
w15 = _mm_sub_epi32(u7, u15);
// shift and rounding
v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING);
v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING);
v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING);
v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING);
v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING);
v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING);
v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING);
v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
u8 = _mm_srai_epi32(v8, DCT_CONST_BITS);
u9 = _mm_srai_epi32(v9, DCT_CONST_BITS);
u10 = _mm_srai_epi32(v10, DCT_CONST_BITS);
u11 = _mm_srai_epi32(v11, DCT_CONST_BITS);
u12 = _mm_srai_epi32(v12, DCT_CONST_BITS);
u13 = _mm_srai_epi32(v13, DCT_CONST_BITS);
u14 = _mm_srai_epi32(v14, DCT_CONST_BITS);
u15 = _mm_srai_epi32(v15, DCT_CONST_BITS);
// back to 16-bit and pack 8 integers into __m128i
in[0] = _mm_packs_epi32(u0, u1);
in[1] = _mm_packs_epi32(u2, u3);
in[2] = _mm_packs_epi32(u4, u5);
in[3] = _mm_packs_epi32(u6, u7);
in[4] = _mm_packs_epi32(u8, u9);
in[5] = _mm_packs_epi32(u10, u11);
in[6] = _mm_packs_epi32(u12, u13);
in[7] = _mm_packs_epi32(u14, u15);
// stage 2
s0 = _mm_add_epi16(in[0], in[2]);
s1 = _mm_add_epi16(in[1], in[3]);
s2 = _mm_sub_epi16(in[0], in[2]);
s3 = _mm_sub_epi16(in[1], in[3]);
u0 = _mm_unpacklo_epi16(in[4], in[5]);
u1 = _mm_unpackhi_epi16(in[4], in[5]);
u2 = _mm_unpacklo_epi16(in[6], in[7]);
u3 = _mm_unpackhi_epi16(in[6], in[7]);
v0 = _mm_madd_epi16(u0, k__cospi_p08_p24);
v1 = _mm_madd_epi16(u1, k__cospi_p08_p24);
v2 = _mm_madd_epi16(u0, k__cospi_p24_m08);
v3 = _mm_madd_epi16(u1, k__cospi_p24_m08);
v4 = _mm_madd_epi16(u2, k__cospi_m24_p08);
v5 = _mm_madd_epi16(u3, k__cospi_m24_p08);
v6 = _mm_madd_epi16(u2, k__cospi_p08_p24);
v7 = _mm_madd_epi16(u3, k__cospi_p08_p24);
w0 = _mm_add_epi32(v0, v4);
w1 = _mm_add_epi32(v1, v5);
w2 = _mm_add_epi32(v2, v6);
w3 = _mm_add_epi32(v3, v7);
w4 = _mm_sub_epi32(v0, v4);
w5 = _mm_sub_epi32(v1, v5);
w6 = _mm_sub_epi32(v2, v6);
w7 = _mm_sub_epi32(v3, v7);
v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// back to 16-bit intergers
s4 = _mm_packs_epi32(u0, u1);
s5 = _mm_packs_epi32(u2, u3);
s6 = _mm_packs_epi32(u4, u5);
s7 = _mm_packs_epi32(u6, u7);
// stage 3
u0 = _mm_unpacklo_epi16(s2, s3);
u1 = _mm_unpackhi_epi16(s2, s3);
u2 = _mm_unpacklo_epi16(s6, s7);
u3 = _mm_unpackhi_epi16(s6, s7);
v0 = _mm_madd_epi16(u0, k__cospi_p16_p16);
v1 = _mm_madd_epi16(u1, k__cospi_p16_p16);
v2 = _mm_madd_epi16(u0, k__cospi_p16_m16);
v3 = _mm_madd_epi16(u1, k__cospi_p16_m16);
v4 = _mm_madd_epi16(u2, k__cospi_p16_p16);
v5 = _mm_madd_epi16(u3, k__cospi_p16_p16);
v6 = _mm_madd_epi16(u2, k__cospi_p16_m16);
v7 = _mm_madd_epi16(u3, k__cospi_p16_m16);
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
s2 = _mm_packs_epi32(v0, v1);
s3 = _mm_packs_epi32(v2, v3);
s6 = _mm_packs_epi32(v4, v5);
s7 = _mm_packs_epi32(v6, v7);
// FIXME(jingning): do subtract using bit inversion?
in[0] = s0;
in[1] = _mm_sub_epi16(k__const_0, s4);
in[2] = s6;
in[3] = _mm_sub_epi16(k__const_0, s2);
in[4] = s3;
in[5] = _mm_sub_epi16(k__const_0, s7);
in[6] = s5;
in[7] = _mm_sub_epi16(k__const_0, s1);
// transpose
array_transpose_8x8(in);
}
void vp9_short_fht8x8_sse2(int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in[8];
load_buffer_8x8(input, in, stride);
switch (tx_type) {
case 0: // DCT_DCT
fdct8_1d_sse2(in);
fadst8_1d_sse2(in);
break;
case 1: // ADST_DCT
fadst8_1d_sse2(in);
fdct8_1d_sse2(in);
break;
case 2: // DCT_ADST
fdct8_1d_sse2(in);
fadst8_1d_sse2(in);
break;
case 3: // ADST_ADST
fadst8_1d_sse2(in);
fadst8_1d_sse2(in);
break;
default:
assert(0);
break;
}
write_buffer_8x8(output, in);
}
void vp9_short_fdct16x16_sse2(int16_t *input, int16_t *output, int pitch) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose