vpx/vpxenc.c

2128 lines
66 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
/* This is a simple program that encodes YV12 files and generates ivf
* files using the new interface.
*/
#if defined(_WIN32) || !CONFIG_OS_SUPPORT
#define USE_POSIX_MMAP 0
#else
#define USE_POSIX_MMAP 1
#endif
2010-05-18 17:58:33 +02:00
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include "vpx/vpx_encoder.h"
2010-05-18 17:58:33 +02:00
#if USE_POSIX_MMAP
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#endif
#include "vpx_config.h"
#include "vpx_version.h"
#include "vpx/vp8cx.h"
#include "vpx/vp8dx.h"
#include "vpx/vpx_decoder.h"
2010-05-18 17:58:33 +02:00
#include "vpx_ports/mem_ops.h"
#include "vpx_ports/vpx_timer.h"
#include "tools_common.h"
#include "y4minput.h"
#include "libmkv/EbmlWriter.h"
#include "libmkv/EbmlIDs.h"
/* Need special handling of these functions on Windows */
#if defined(_MSC_VER)
/* MSVS doesn't define off_t, and uses _f{seek,tell}i64 */
typedef __int64 off_t;
#define fseeko _fseeki64
#define ftello _ftelli64
#elif defined(_WIN32)
/* MinGW defines off_t, and uses f{seek,tell}o64 */
#define fseeko fseeko64
#define ftello ftello64
#endif
#if defined(_MSC_VER)
#define LITERALU64(n) n
#else
#define LITERALU64(n) n##LLU
#endif
2010-05-18 17:58:33 +02:00
/* We should use 32-bit file operations in WebM file format
* when building ARM executable file (.axf) with RVCT */
#if !CONFIG_OS_SUPPORT
typedef long off_t;
#define fseeko fseek
#define ftello ftell
#endif
2010-05-18 17:58:33 +02:00
static const char *exec_name;
#define VP8_FOURCC (0x78385056)
static const struct {
char const *name;
const vpx_codec_iface_t *(*iface)(void);
unsigned int fourcc;
unsigned int fourcc_mask;
} ifaces[] = {
#if CONFIG_VP8_DECODER
{"vp8", &vpx_codec_vp8_dx, VP8_FOURCC, 0x00FFFFFF},
#endif
};
static const struct codec_item {
char const *name;
const vpx_codec_iface_t *(*iface)(void);
unsigned int fourcc;
unsigned int fourcc_mask;
} codecs[] = {
#if CONFIG_VP8_ENCODER
{"vp8", vpx_codec_vp8x_cx, VP8_FOURCC, 0x00FFFFFF},
#endif
};
2010-05-18 17:58:33 +02:00
static void usage_exit();
void die(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
usage_exit();
2010-05-18 17:58:33 +02:00
}
static void ctx_exit_on_error(vpx_codec_ctx_t *ctx, const char *s) {
if (ctx->err) {
const char *detail = vpx_codec_error_detail(ctx);
2010-05-18 17:58:33 +02:00
fprintf(stderr, "%s: %s\n", s, vpx_codec_error(ctx));
2010-05-18 17:58:33 +02:00
if (detail)
fprintf(stderr, " %s\n", detail);
2010-05-18 17:58:33 +02:00
exit(EXIT_FAILURE);
}
2010-05-18 17:58:33 +02:00
}
/* This structure is used to abstract the different ways of handling
* first pass statistics.
*/
typedef struct {
vpx_fixed_buf_t buf;
int pass;
FILE *file;
char *buf_ptr;
size_t buf_alloc_sz;
2010-05-18 17:58:33 +02:00
} stats_io_t;
int stats_open_file(stats_io_t *stats, const char *fpf, int pass) {
int res;
2010-05-18 17:58:33 +02:00
stats->pass = pass;
2010-05-18 17:58:33 +02:00
if (pass == 0) {
stats->file = fopen(fpf, "wb");
stats->buf.sz = 0;
stats->buf.buf = NULL,
res = (stats->file != NULL);
} else {
2010-05-18 17:58:33 +02:00
#if 0
#elif USE_POSIX_MMAP
struct stat stat_buf;
int fd;
fd = open(fpf, O_RDONLY);
stats->file = fdopen(fd, "rb");
fstat(fd, &stat_buf);
stats->buf.sz = stat_buf.st_size;
stats->buf.buf = mmap(NULL, stats->buf.sz, PROT_READ, MAP_PRIVATE,
fd, 0);
res = (stats->buf.buf != NULL);
2010-05-18 17:58:33 +02:00
#else
size_t nbytes;
2010-05-18 17:58:33 +02:00
stats->file = fopen(fpf, "rb");
2010-05-18 17:58:33 +02:00
if (fseek(stats->file, 0, SEEK_END)) {
fprintf(stderr, "First-pass stats file must be seekable!\n");
exit(EXIT_FAILURE);
}
2010-05-18 17:58:33 +02:00
stats->buf.sz = stats->buf_alloc_sz = ftell(stats->file);
rewind(stats->file);
2010-05-18 17:58:33 +02:00
stats->buf.buf = malloc(stats->buf_alloc_sz);
2010-05-18 17:58:33 +02:00
if (!stats->buf.buf) {
fprintf(stderr, "Failed to allocate first-pass stats buffer (%lu bytes)\n",
(unsigned long)stats->buf_alloc_sz);
exit(EXIT_FAILURE);
}
2010-05-18 17:58:33 +02:00
nbytes = fread(stats->buf.buf, 1, stats->buf.sz, stats->file);
res = (nbytes == stats->buf.sz);
2010-05-18 17:58:33 +02:00
#endif
}
2010-05-18 17:58:33 +02:00
return res;
2010-05-18 17:58:33 +02:00
}
int stats_open_mem(stats_io_t *stats, int pass) {
int res;
stats->pass = pass;
2010-05-18 17:58:33 +02:00
if (!pass) {
stats->buf.sz = 0;
stats->buf_alloc_sz = 64 * 1024;
stats->buf.buf = malloc(stats->buf_alloc_sz);
}
2010-05-18 17:58:33 +02:00
stats->buf_ptr = stats->buf.buf;
res = (stats->buf.buf != NULL);
return res;
2010-05-18 17:58:33 +02:00
}
void stats_close(stats_io_t *stats, int last_pass) {
if (stats->file) {
if (stats->pass == last_pass) {
2010-05-18 17:58:33 +02:00
#if 0
#elif USE_POSIX_MMAP
munmap(stats->buf.buf, stats->buf.sz);
2010-05-18 17:58:33 +02:00
#else
free(stats->buf.buf);
2010-05-18 17:58:33 +02:00
#endif
}
fclose(stats->file);
stats->file = NULL;
} else {
if (stats->pass == last_pass)
free(stats->buf.buf);
}
2010-05-18 17:58:33 +02:00
}
void stats_write(stats_io_t *stats, const void *pkt, size_t len) {
if (stats->file) {
if (fwrite(pkt, 1, len, stats->file));
} else {
if (stats->buf.sz + len > stats->buf_alloc_sz) {
size_t new_sz = stats->buf_alloc_sz + 64 * 1024;
char *new_ptr = realloc(stats->buf.buf, new_sz);
if (new_ptr) {
stats->buf_ptr = new_ptr + (stats->buf_ptr - (char *)stats->buf.buf);
stats->buf.buf = new_ptr;
stats->buf_alloc_sz = new_sz;
} else {
fprintf(stderr,
"\nFailed to realloc firstpass stats buffer.\n");
exit(EXIT_FAILURE);
}
2010-05-18 17:58:33 +02:00
}
memcpy(stats->buf_ptr, pkt, len);
stats->buf.sz += len;
stats->buf_ptr += len;
}
2010-05-18 17:58:33 +02:00
}
vpx_fixed_buf_t stats_get(stats_io_t *stats) {
return stats->buf;
2010-05-18 17:58:33 +02:00
}
/* Stereo 3D packed frame format */
typedef enum stereo_format {
STEREO_FORMAT_MONO = 0,
STEREO_FORMAT_LEFT_RIGHT = 1,
STEREO_FORMAT_BOTTOM_TOP = 2,
STEREO_FORMAT_TOP_BOTTOM = 3,
STEREO_FORMAT_RIGHT_LEFT = 11
} stereo_format_t;
enum video_file_type {
FILE_TYPE_RAW,
FILE_TYPE_IVF,
FILE_TYPE_Y4M
};
struct detect_buffer {
char buf[4];
size_t buf_read;
size_t position;
};
2010-05-18 17:58:33 +02:00
#define IVF_FRAME_HDR_SZ (4+8) /* 4 byte size + 8 byte timestamp */
static int read_frame(FILE *f, vpx_image_t *img, unsigned int file_type,
y4m_input *y4m, struct detect_buffer *detect) {
int plane = 0;
int shortread = 0;
if (file_type == FILE_TYPE_Y4M) {
if (y4m_input_fetch_frame(y4m, f, img) < 1)
return 0;
} else {
if (file_type == FILE_TYPE_IVF) {
char junk[IVF_FRAME_HDR_SZ];
/* Skip the frame header. We know how big the frame should be. See
* write_ivf_frame_header() for documentation on the frame header
* layout.
*/
if (fread(junk, 1, IVF_FRAME_HDR_SZ, f));
2010-05-18 17:58:33 +02:00
}
for (plane = 0; plane < 3; plane++) {
unsigned char *ptr;
int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane) {
case 1:
ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V : VPX_PLANE_U];
break;
case 2:
ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U : VPX_PLANE_V];
break;
default:
ptr = img->planes[plane];
}
for (r = 0; r < h; r++) {
size_t needed = w;
size_t buf_position = 0;
const size_t left = detect->buf_read - detect->position;
if (left > 0) {
const size_t more = (left < needed) ? left : needed;
memcpy(ptr, detect->buf + detect->position, more);
buf_position = more;
needed -= more;
detect->position += more;
2010-05-18 17:58:33 +02:00
}
if (needed > 0) {
shortread |= (fread(ptr + buf_position, 1, needed, f) < needed);
2010-05-18 17:58:33 +02:00
}
ptr += img->stride[plane];
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
return !shortread;
2010-05-18 17:58:33 +02:00
}
unsigned int file_is_y4m(FILE *infile,
y4m_input *y4m,
char detect[4]) {
if (memcmp(detect, "YUV4", 4) == 0) {
return 1;
}
return 0;
}
2010-05-18 17:58:33 +02:00
#define IVF_FILE_HDR_SZ (32)
unsigned int file_is_ivf(FILE *infile,
unsigned int *fourcc,
unsigned int *width,
unsigned int *height,
struct detect_buffer *detect) {
char raw_hdr[IVF_FILE_HDR_SZ];
int is_ivf = 0;
2010-05-18 17:58:33 +02:00
if (memcmp(detect->buf, "DKIF", 4) != 0)
return 0;
/* See write_ivf_file_header() for more documentation on the file header
* layout.
*/
if (fread(raw_hdr + 4, 1, IVF_FILE_HDR_SZ - 4, infile)
== IVF_FILE_HDR_SZ - 4) {
2010-05-18 17:58:33 +02:00
{
is_ivf = 1;
2010-05-18 17:58:33 +02:00
if (mem_get_le16(raw_hdr + 4) != 0)
fprintf(stderr, "Error: Unrecognized IVF version! This file may not"
" decode properly.");
2010-05-18 17:58:33 +02:00
*fourcc = mem_get_le32(raw_hdr + 8);
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
if (is_ivf) {
*width = mem_get_le16(raw_hdr + 12);
*height = mem_get_le16(raw_hdr + 14);
detect->position = 4;
}
2010-05-18 17:58:33 +02:00
return is_ivf;
2010-05-18 17:58:33 +02:00
}
static void write_ivf_file_header(FILE *outfile,
const vpx_codec_enc_cfg_t *cfg,
unsigned int fourcc,
int frame_cnt) {
char header[32];
if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS)
return;
header[0] = 'D';
header[1] = 'K';
header[2] = 'I';
header[3] = 'F';
mem_put_le16(header + 4, 0); /* version */
mem_put_le16(header + 6, 32); /* headersize */
mem_put_le32(header + 8, fourcc); /* headersize */
mem_put_le16(header + 12, cfg->g_w); /* width */
mem_put_le16(header + 14, cfg->g_h); /* height */
mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */
mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */
mem_put_le32(header + 24, frame_cnt); /* length */
mem_put_le32(header + 28, 0); /* unused */
if (fwrite(header, 1, 32, outfile));
2010-05-18 17:58:33 +02:00
}
static void write_ivf_frame_header(FILE *outfile,
const vpx_codec_cx_pkt_t *pkt) {
char header[12];
vpx_codec_pts_t pts;
2010-05-18 17:58:33 +02:00
if (pkt->kind != VPX_CODEC_CX_FRAME_PKT)
return;
2010-05-18 17:58:33 +02:00
pts = pkt->data.frame.pts;
mem_put_le32(header, pkt->data.frame.sz);
mem_put_le32(header + 4, pts & 0xFFFFFFFF);
mem_put_le32(header + 8, pts >> 32);
2010-05-18 17:58:33 +02:00
if (fwrite(header, 1, 12, outfile));
2010-05-18 17:58:33 +02:00
}
typedef off_t EbmlLoc;
struct cue_entry {
unsigned int time;
uint64_t loc;
};
struct EbmlGlobal {
int debug;
FILE *stream;
int64_t last_pts_ms;
vpx_rational_t framerate;
/* These pointers are to the start of an element */
off_t position_reference;
off_t seek_info_pos;
off_t segment_info_pos;
off_t track_pos;
off_t cue_pos;
off_t cluster_pos;
/* This pointer is to a specific element to be serialized */
off_t track_id_pos;
/* These pointers are to the size field of the element */
EbmlLoc startSegment;
EbmlLoc startCluster;
uint32_t cluster_timecode;
int cluster_open;
struct cue_entry *cue_list;
unsigned int cues;
};
void Ebml_Write(EbmlGlobal *glob, const void *buffer_in, unsigned long len) {
if (fwrite(buffer_in, 1, len, glob->stream));
}
#define WRITE_BUFFER(s) \
for(i = len-1; i>=0; i--)\
{ \
x = *(const s *)buffer_in >> (i * CHAR_BIT); \
Ebml_Write(glob, &x, 1); \
}
void Ebml_Serialize(EbmlGlobal *glob, const void *buffer_in, int buffer_size, unsigned long len) {
char x;
int i;
/* buffer_size:
* 1 - int8_t;
* 2 - int16_t;
* 3 - int32_t;
* 4 - int64_t;
*/
switch (buffer_size) {
case 1:
WRITE_BUFFER(int8_t)
break;
case 2:
WRITE_BUFFER(int16_t)
break;
case 4:
WRITE_BUFFER(int32_t)
break;
case 8:
WRITE_BUFFER(int64_t)
break;
default:
break;
}
}
#undef WRITE_BUFFER
/* Need a fixed size serializer for the track ID. libmkv provides a 64 bit
* one, but not a 32 bit one.
*/
static void Ebml_SerializeUnsigned32(EbmlGlobal *glob, unsigned long class_id, uint64_t ui) {
unsigned char sizeSerialized = 4 | 0x80;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1);
Ebml_Serialize(glob, &ui, sizeof(ui), 4);
}
static void
Ebml_StartSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc,
unsigned long class_id) {
// todo this is always taking 8 bytes, this may need later optimization
// this is a key that says length unknown
uint64_t unknownLen = LITERALU64(0x01FFFFFFFFFFFFFF);
Ebml_WriteID(glob, class_id);
*ebmlLoc = ftello(glob->stream);
Ebml_Serialize(glob, &unknownLen, sizeof(unknownLen), 8);
}
static void
Ebml_EndSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc) {
off_t pos;
uint64_t size;
/* Save the current stream pointer */
pos = ftello(glob->stream);
/* Calculate the size of this element */
size = pos - *ebmlLoc - 8;
size |= LITERALU64(0x0100000000000000);
/* Seek back to the beginning of the element and write the new size */
fseeko(glob->stream, *ebmlLoc, SEEK_SET);
Ebml_Serialize(glob, &size, sizeof(size), 8);
/* Reset the stream pointer */
fseeko(glob->stream, pos, SEEK_SET);
2010-05-18 17:58:33 +02:00
}
static void
write_webm_seek_element(EbmlGlobal *ebml, unsigned long id, off_t pos) {
uint64_t offset = pos - ebml->position_reference;
EbmlLoc start;
Ebml_StartSubElement(ebml, &start, Seek);
Ebml_SerializeBinary(ebml, SeekID, id);
Ebml_SerializeUnsigned64(ebml, SeekPosition, offset);
Ebml_EndSubElement(ebml, &start);
}
static void
write_webm_seek_info(EbmlGlobal *ebml) {
off_t pos;
/* Save the current stream pointer */
pos = ftello(ebml->stream);
if (ebml->seek_info_pos)
fseeko(ebml->stream, ebml->seek_info_pos, SEEK_SET);
else
ebml->seek_info_pos = pos;
{
EbmlLoc start;
Ebml_StartSubElement(ebml, &start, SeekHead);
write_webm_seek_element(ebml, Tracks, ebml->track_pos);
write_webm_seek_element(ebml, Cues, ebml->cue_pos);
write_webm_seek_element(ebml, Info, ebml->segment_info_pos);
Ebml_EndSubElement(ebml, &start);
}
{
// segment info
EbmlLoc startInfo;
uint64_t frame_time;
frame_time = (uint64_t)1000 * ebml->framerate.den
/ ebml->framerate.num;
ebml->segment_info_pos = ftello(ebml->stream);
Ebml_StartSubElement(ebml, &startInfo, Info);
Ebml_SerializeUnsigned(ebml, TimecodeScale, 1000000);
Ebml_SerializeFloat(ebml, Segment_Duration,
ebml->last_pts_ms + frame_time);
Ebml_SerializeString(ebml, 0x4D80,
ebml->debug ? "vpxenc" : "vpxenc" VERSION_STRING);
Ebml_SerializeString(ebml, 0x5741,
ebml->debug ? "vpxenc" : "vpxenc" VERSION_STRING);
Ebml_EndSubElement(ebml, &startInfo);
}
}
static void
write_webm_file_header(EbmlGlobal *glob,
const vpx_codec_enc_cfg_t *cfg,
const struct vpx_rational *fps,
stereo_format_t stereo_fmt) {
{
EbmlLoc start;
Ebml_StartSubElement(glob, &start, EBML);
Ebml_SerializeUnsigned(glob, EBMLVersion, 1);
Ebml_SerializeUnsigned(glob, EBMLReadVersion, 1); // EBML Read Version
Ebml_SerializeUnsigned(glob, EBMLMaxIDLength, 4); // EBML Max ID Length
Ebml_SerializeUnsigned(glob, EBMLMaxSizeLength, 8); // EBML Max Size Length
Ebml_SerializeString(glob, DocType, "webm"); // Doc Type
Ebml_SerializeUnsigned(glob, DocTypeVersion, 2); // Doc Type Version
Ebml_SerializeUnsigned(glob, DocTypeReadVersion, 2); // Doc Type Read Version
Ebml_EndSubElement(glob, &start);
}
{
Ebml_StartSubElement(glob, &glob->startSegment, Segment); // segment
glob->position_reference = ftello(glob->stream);
glob->framerate = *fps;
write_webm_seek_info(glob);
{
EbmlLoc trackStart;
glob->track_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &trackStart, Tracks);
{
unsigned int trackNumber = 1;
uint64_t trackID = 0;
EbmlLoc start;
Ebml_StartSubElement(glob, &start, TrackEntry);
Ebml_SerializeUnsigned(glob, TrackNumber, trackNumber);
glob->track_id_pos = ftello(glob->stream);
Ebml_SerializeUnsigned32(glob, TrackUID, trackID);
Ebml_SerializeUnsigned(glob, TrackType, 1); // video is always 1
Ebml_SerializeString(glob, CodecID, "V_VP8");
{
unsigned int pixelWidth = cfg->g_w;
unsigned int pixelHeight = cfg->g_h;
float frameRate = (float)fps->num / (float)fps->den;
EbmlLoc videoStart;
Ebml_StartSubElement(glob, &videoStart, Video);
Ebml_SerializeUnsigned(glob, PixelWidth, pixelWidth);
Ebml_SerializeUnsigned(glob, PixelHeight, pixelHeight);
Ebml_SerializeUnsigned(glob, StereoMode, stereo_fmt);
Ebml_SerializeFloat(glob, FrameRate, frameRate);
Ebml_EndSubElement(glob, &videoStart); // Video
}
Ebml_EndSubElement(glob, &start); // Track Entry
}
Ebml_EndSubElement(glob, &trackStart);
}
// segment element is open
}
}
static void
write_webm_block(EbmlGlobal *glob,
const vpx_codec_enc_cfg_t *cfg,
const vpx_codec_cx_pkt_t *pkt) {
unsigned long block_length;
unsigned char track_number;
unsigned short block_timecode = 0;
unsigned char flags;
int64_t pts_ms;
int start_cluster = 0, is_keyframe;
/* Calculate the PTS of this frame in milliseconds */
pts_ms = pkt->data.frame.pts * 1000
* (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den;
if (pts_ms <= glob->last_pts_ms)
pts_ms = glob->last_pts_ms + 1;
glob->last_pts_ms = pts_ms;
/* Calculate the relative time of this block */
if (pts_ms - glob->cluster_timecode > SHRT_MAX)
start_cluster = 1;
else
block_timecode = pts_ms - glob->cluster_timecode;
is_keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY);
if (start_cluster || is_keyframe) {
if (glob->cluster_open)
Ebml_EndSubElement(glob, &glob->startCluster);
/* Open the new cluster */
block_timecode = 0;
glob->cluster_open = 1;
glob->cluster_timecode = pts_ms;
glob->cluster_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &glob->startCluster, Cluster); // cluster
Ebml_SerializeUnsigned(glob, Timecode, glob->cluster_timecode);
/* Save a cue point if this is a keyframe. */
if (is_keyframe) {
struct cue_entry *cue, *new_cue_list;
new_cue_list = realloc(glob->cue_list,
(glob->cues + 1) * sizeof(struct cue_entry));
if (new_cue_list)
glob->cue_list = new_cue_list;
else {
fprintf(stderr, "\nFailed to realloc cue list.\n");
exit(EXIT_FAILURE);
}
cue = &glob->cue_list[glob->cues];
cue->time = glob->cluster_timecode;
cue->loc = glob->cluster_pos;
glob->cues++;
}
}
/* Write the Simple Block */
Ebml_WriteID(glob, SimpleBlock);
block_length = pkt->data.frame.sz + 4;
block_length |= 0x10000000;
Ebml_Serialize(glob, &block_length, sizeof(block_length), 4);
track_number = 1;
track_number |= 0x80;
Ebml_Write(glob, &track_number, 1);
Ebml_Serialize(glob, &block_timecode, sizeof(block_timecode), 2);
flags = 0;
if (is_keyframe)
flags |= 0x80;
if (pkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE)
flags |= 0x08;
Ebml_Write(glob, &flags, 1);
Ebml_Write(glob, pkt->data.frame.buf, pkt->data.frame.sz);
}
static void
write_webm_file_footer(EbmlGlobal *glob, long hash) {
if (glob->cluster_open)
Ebml_EndSubElement(glob, &glob->startCluster);
{
EbmlLoc start;
int i;
glob->cue_pos = ftello(glob->stream);
Ebml_StartSubElement(glob, &start, Cues);
for (i = 0; i < glob->cues; i++) {
struct cue_entry *cue = &glob->cue_list[i];
EbmlLoc start;
Ebml_StartSubElement(glob, &start, CuePoint);
{
EbmlLoc start;
Ebml_SerializeUnsigned(glob, CueTime, cue->time);
Ebml_StartSubElement(glob, &start, CueTrackPositions);
Ebml_SerializeUnsigned(glob, CueTrack, 1);
Ebml_SerializeUnsigned64(glob, CueClusterPosition,
cue->loc - glob->position_reference);
// Ebml_SerializeUnsigned(glob, CueBlockNumber, cue->blockNumber);
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &start);
}
Ebml_EndSubElement(glob, &glob->startSegment);
/* Patch up the seek info block */
write_webm_seek_info(glob);
/* Patch up the track id */
fseeko(glob->stream, glob->track_id_pos, SEEK_SET);
Ebml_SerializeUnsigned32(glob, TrackUID, glob->debug ? 0xDEADBEEF : hash);
fseeko(glob->stream, 0, SEEK_END);
}
/* Murmur hash derived from public domain reference implementation at
* http:// sites.google.com/site/murmurhash/
*/
static unsigned int murmur(const void *key, int len, unsigned int seed) {
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = seed ^ len;
const unsigned char *data = (const unsigned char *)key;
while (len >= 4) {
unsigned int k;
k = data[0];
k |= data[1] << 8;
k |= data[2] << 16;
k |= data[3] << 24;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
switch (len) {
case 3:
h ^= data[2] << 16;
case 2:
h ^= data[1] << 8;
case 1:
h ^= data[0];
h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#include "math.h"
#define MAX_PSNR 100
static double vp8_mse2psnr(double Samples, double Peak, double Mse) {
double psnr;
if ((double)Mse > 0.0)
psnr = 10.0 * log10(Peak * Peak * Samples / Mse);
else
psnr = MAX_PSNR; // Limit to prevent / 0
if (psnr > MAX_PSNR)
psnr = MAX_PSNR;
return psnr;
}
2010-05-18 17:58:33 +02:00
#include "args.h"
static const arg_def_t debugmode = ARG_DEF("D", "debug", 0,
"Debug mode (makes output deterministic)");
static const arg_def_t outputfile = ARG_DEF("o", "output", 1,
"Output filename");
2010-05-18 17:58:33 +02:00
static const arg_def_t use_yv12 = ARG_DEF(NULL, "yv12", 0,
"Input file is YV12 ");
2010-05-18 17:58:33 +02:00
static const arg_def_t use_i420 = ARG_DEF(NULL, "i420", 0,
"Input file is I420 (default)");
2010-05-18 17:58:33 +02:00
static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1,
"Codec to use");
2010-05-18 17:58:33 +02:00
static const arg_def_t passes = ARG_DEF("p", "passes", 1,
"Number of passes (1/2)");
2010-05-18 17:58:33 +02:00
static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1,
"Pass to execute (1/2)");
2010-05-18 17:58:33 +02:00
static const arg_def_t fpf_name = ARG_DEF(NULL, "fpf", 1,
"First pass statistics file name");
2010-05-18 17:58:33 +02:00
static const arg_def_t limit = ARG_DEF(NULL, "limit", 1,
"Stop encoding after n input frames");
static const arg_def_t skip = ARG_DEF(NULL, "skip", 1,
"Skip the first n input frames");
2010-05-18 17:58:33 +02:00
static const arg_def_t deadline = ARG_DEF("d", "deadline", 1,
"Deadline per frame (usec)");
2010-05-18 17:58:33 +02:00
static const arg_def_t best_dl = ARG_DEF(NULL, "best", 0,
"Use Best Quality Deadline");
2010-05-18 17:58:33 +02:00
static const arg_def_t good_dl = ARG_DEF(NULL, "good", 0,
"Use Good Quality Deadline");
2010-05-18 17:58:33 +02:00
static const arg_def_t rt_dl = ARG_DEF(NULL, "rt", 0,
"Use Realtime Quality Deadline");
2010-05-18 17:58:33 +02:00
static const arg_def_t verbosearg = ARG_DEF("v", "verbose", 0,
"Show encoder parameters");
2010-05-18 17:58:33 +02:00
static const arg_def_t psnrarg = ARG_DEF(NULL, "psnr", 0,
"Show PSNR in status line");
static const arg_def_t recontest = ARG_DEF(NULL, "test-decode", 0,
"Test enocde/decode have machted recon buffer");
static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1,
"Stream frame rate (rate/scale)");
static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0,
"Output IVF (default is WebM)");
static const arg_def_t q_hist_n = ARG_DEF(NULL, "q-hist", 1,
"Show quantizer histogram (n-buckets)");
static const arg_def_t rate_hist_n = ARG_DEF(NULL, "rate-hist", 1,
"Show rate histogram (n-buckets)");
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#if CONFIG_LOSSLESS
static const arg_def_t lossless_enabled = ARG_DEF(NULL, "lossless", 0,
"Enable lossless compression");
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#endif
static const arg_def_t *main_args[] = {
&debugmode,
&outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &skip,
&deadline,
&best_dl, &good_dl, &rt_dl,
&verbosearg, &psnrarg, &recontest, &use_ivf, &q_hist_n, &rate_hist_n,
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#if CONFIG_LOSSLESS
&lossless_enabled,
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#endif
NULL
2010-05-18 17:58:33 +02:00
};
static const arg_def_t usage = ARG_DEF("u", "usage", 1,
"Usage profile number to use");
2010-05-18 17:58:33 +02:00
static const arg_def_t threads = ARG_DEF("t", "threads", 1,
"Max number of threads to use");
2010-05-18 17:58:33 +02:00
static const arg_def_t profile = ARG_DEF(NULL, "profile", 1,
"Bitstream profile number to use");
2010-05-18 17:58:33 +02:00
static const arg_def_t width = ARG_DEF("w", "width", 1,
"Frame width");
2010-05-18 17:58:33 +02:00
static const arg_def_t height = ARG_DEF("h", "height", 1,
"Frame height");
static const struct arg_enum_list stereo_mode_enum[] = {
{"mono", STEREO_FORMAT_MONO},
{"left-right", STEREO_FORMAT_LEFT_RIGHT},
{"bottom-top", STEREO_FORMAT_BOTTOM_TOP},
{"top-bottom", STEREO_FORMAT_TOP_BOTTOM},
{"right-left", STEREO_FORMAT_RIGHT_LEFT},
{NULL, 0}
};
static const arg_def_t stereo_mode = ARG_DEF_ENUM(NULL, "stereo-mode", 1,
"Stereo 3D video format", stereo_mode_enum);
2010-05-18 17:58:33 +02:00
static const arg_def_t timebase = ARG_DEF(NULL, "timebase", 1,
"Output timestamp precision (fractional seconds)");
2010-05-18 17:58:33 +02:00
static const arg_def_t error_resilient = ARG_DEF(NULL, "error-resilient", 1,
"Enable error resiliency features");
2010-05-18 17:58:33 +02:00
static const arg_def_t lag_in_frames = ARG_DEF(NULL, "lag-in-frames", 1,
"Max number of frames to lag");
2010-05-18 17:58:33 +02:00
static const arg_def_t *global_args[] = {
&use_yv12, &use_i420, &usage, &threads, &profile,
&width, &height, &stereo_mode, &timebase, &framerate, &error_resilient,
&lag_in_frames, NULL
2010-05-18 17:58:33 +02:00
};
static const arg_def_t dropframe_thresh = ARG_DEF(NULL, "drop-frame", 1,
"Temporal resampling threshold (buf %)");
2010-05-18 17:58:33 +02:00
static const arg_def_t resize_allowed = ARG_DEF(NULL, "resize-allowed", 1,
"Spatial resampling enabled (bool)");
2010-05-18 17:58:33 +02:00
static const arg_def_t resize_up_thresh = ARG_DEF(NULL, "resize-up", 1,
"Upscale threshold (buf %)");
2010-05-18 17:58:33 +02:00
static const arg_def_t resize_down_thresh = ARG_DEF(NULL, "resize-down", 1,
"Downscale threshold (buf %)");
static const struct arg_enum_list end_usage_enum[] = {
{"vbr", VPX_VBR},
{"cbr", VPX_CBR},
{"cq", VPX_CQ},
{NULL, 0}
};
static const arg_def_t end_usage = ARG_DEF_ENUM(NULL, "end-usage", 1,
"Rate control mode", end_usage_enum);
2010-05-18 17:58:33 +02:00
static const arg_def_t target_bitrate = ARG_DEF(NULL, "target-bitrate", 1,
"Bitrate (kbps)");
2010-05-18 17:58:33 +02:00
static const arg_def_t min_quantizer = ARG_DEF(NULL, "min-q", 1,
"Minimum (best) quantizer");
2010-05-18 17:58:33 +02:00
static const arg_def_t max_quantizer = ARG_DEF(NULL, "max-q", 1,
"Maximum (worst) quantizer");
2010-05-18 17:58:33 +02:00
static const arg_def_t undershoot_pct = ARG_DEF(NULL, "undershoot-pct", 1,
"Datarate undershoot (min) target (%)");
2010-05-18 17:58:33 +02:00
static const arg_def_t overshoot_pct = ARG_DEF(NULL, "overshoot-pct", 1,
"Datarate overshoot (max) target (%)");
2010-05-18 17:58:33 +02:00
static const arg_def_t buf_sz = ARG_DEF(NULL, "buf-sz", 1,
"Client buffer size (ms)");
2010-05-18 17:58:33 +02:00
static const arg_def_t buf_initial_sz = ARG_DEF(NULL, "buf-initial-sz", 1,
"Client initial buffer size (ms)");
2010-05-18 17:58:33 +02:00
static const arg_def_t buf_optimal_sz = ARG_DEF(NULL, "buf-optimal-sz", 1,
"Client optimal buffer size (ms)");
static const arg_def_t *rc_args[] = {
&dropframe_thresh, &resize_allowed, &resize_up_thresh, &resize_down_thresh,
&end_usage, &target_bitrate, &min_quantizer, &max_quantizer,
&undershoot_pct, &overshoot_pct, &buf_sz, &buf_initial_sz, &buf_optimal_sz,
NULL
2010-05-18 17:58:33 +02:00
};
static const arg_def_t bias_pct = ARG_DEF(NULL, "bias-pct", 1,
"CBR/VBR bias (0=CBR, 100=VBR)");
2010-05-18 17:58:33 +02:00
static const arg_def_t minsection_pct = ARG_DEF(NULL, "minsection-pct", 1,
"GOP min bitrate (% of target)");
2010-05-18 17:58:33 +02:00
static const arg_def_t maxsection_pct = ARG_DEF(NULL, "maxsection-pct", 1,
"GOP max bitrate (% of target)");
static const arg_def_t *rc_twopass_args[] = {
&bias_pct, &minsection_pct, &maxsection_pct, NULL
2010-05-18 17:58:33 +02:00
};
static const arg_def_t kf_min_dist = ARG_DEF(NULL, "kf-min-dist", 1,
"Minimum keyframe interval (frames)");
2010-05-18 17:58:33 +02:00
static const arg_def_t kf_max_dist = ARG_DEF(NULL, "kf-max-dist", 1,
"Maximum keyframe interval (frames)");
static const arg_def_t kf_disabled = ARG_DEF(NULL, "disable-kf", 0,
"Disable keyframe placement");
static const arg_def_t *kf_args[] = {
&kf_min_dist, &kf_max_dist, &kf_disabled, NULL
2010-05-18 17:58:33 +02:00
};
#if CONFIG_VP8_ENCODER
static const arg_def_t noise_sens = ARG_DEF(NULL, "noise-sensitivity", 1,
"Noise sensitivity (frames to blur)");
2010-05-18 17:58:33 +02:00
static const arg_def_t sharpness = ARG_DEF(NULL, "sharpness", 1,
"Filter sharpness (0-7)");
2010-05-18 17:58:33 +02:00
static const arg_def_t static_thresh = ARG_DEF(NULL, "static-thresh", 1,
"Motion detection threshold");
2010-05-18 17:58:33 +02:00
#endif
#if CONFIG_VP8_ENCODER
static const arg_def_t cpu_used = ARG_DEF(NULL, "cpu-used", 1,
"CPU Used (-16..16)");
2010-05-18 17:58:33 +02:00
#endif
#if CONFIG_VP8_ENCODER
static const arg_def_t token_parts = ARG_DEF(NULL, "token-parts", 1,
"Number of token partitions to use, log2");
2010-05-18 17:58:33 +02:00
static const arg_def_t auto_altref = ARG_DEF(NULL, "auto-alt-ref", 1,
"Enable automatic alt reference frames");
2010-05-18 17:58:33 +02:00
static const arg_def_t arnr_maxframes = ARG_DEF(NULL, "arnr-maxframes", 1,
"AltRef Max Frames");
2010-05-18 17:58:33 +02:00
static const arg_def_t arnr_strength = ARG_DEF(NULL, "arnr-strength", 1,
"AltRef Strength");
2010-05-18 17:58:33 +02:00
static const arg_def_t arnr_type = ARG_DEF(NULL, "arnr-type", 1,
"AltRef Type");
static const struct arg_enum_list tuning_enum[] = {
{"psnr", VP8_TUNE_PSNR},
{"ssim", VP8_TUNE_SSIM},
{NULL, 0}
};
static const arg_def_t tune_ssim = ARG_DEF_ENUM(NULL, "tune", 1,
"Material to favor", tuning_enum);
static const arg_def_t cq_level = ARG_DEF(NULL, "cq-level", 1,
"Constrained Quality Level");
static const arg_def_t max_intra_rate_pct = ARG_DEF(NULL, "max-intra-rate", 1,
"Max I-frame bitrate (pct)");
2010-05-18 17:58:33 +02:00
static const arg_def_t *vp8_args[] = {
&cpu_used, &auto_altref, &noise_sens, &sharpness, &static_thresh,
&token_parts, &arnr_maxframes, &arnr_strength, &arnr_type,
&tune_ssim, &cq_level, &max_intra_rate_pct, NULL
2010-05-18 17:58:33 +02:00
};
static const int vp8_arg_ctrl_map[] = {
VP8E_SET_CPUUSED, VP8E_SET_ENABLEAUTOALTREF,
VP8E_SET_NOISE_SENSITIVITY, VP8E_SET_SHARPNESS, VP8E_SET_STATIC_THRESHOLD,
VP8E_SET_TOKEN_PARTITIONS,
VP8E_SET_ARNR_MAXFRAMES, VP8E_SET_ARNR_STRENGTH, VP8E_SET_ARNR_TYPE,
VP8E_SET_TUNING, VP8E_SET_CQ_LEVEL, VP8E_SET_MAX_INTRA_BITRATE_PCT, 0
2010-05-18 17:58:33 +02:00
};
#endif
static const arg_def_t *no_args[] = { NULL };
static void usage_exit() {
int i;
fprintf(stderr, "Usage: %s <options> -o dst_filename src_filename \n",
exec_name);
fprintf(stderr, "\nOptions:\n");
arg_show_usage(stdout, main_args);
fprintf(stderr, "\nEncoder Global Options:\n");
arg_show_usage(stdout, global_args);
fprintf(stderr, "\nRate Control Options:\n");
arg_show_usage(stdout, rc_args);
fprintf(stderr, "\nTwopass Rate Control Options:\n");
arg_show_usage(stdout, rc_twopass_args);
fprintf(stderr, "\nKeyframe Placement Options:\n");
arg_show_usage(stdout, kf_args);
2010-05-18 17:58:33 +02:00
#if CONFIG_VP8_ENCODER
fprintf(stderr, "\nVP8 Specific Options:\n");
arg_show_usage(stdout, vp8_args);
2010-05-18 17:58:33 +02:00
#endif
fprintf(stderr, "\nStream timebase (--timebase):\n"
" The desired precision of timestamps in the output, expressed\n"
" in fractional seconds. Default is 1/1000.\n");
fprintf(stderr, "\n"
"Included encoders:\n"
"\n");
for (i = 0; i < sizeof(codecs) / sizeof(codecs[0]); i++)
fprintf(stderr, " %-6s - %s\n",
codecs[i].name,
vpx_codec_iface_name(codecs[i].iface()));
exit(EXIT_FAILURE);
2010-05-18 17:58:33 +02:00
}
#define HIST_BAR_MAX 40
struct hist_bucket {
int low, high, count;
};
static int merge_hist_buckets(struct hist_bucket *bucket,
int *buckets_,
int max_buckets) {
int small_bucket = 0, merge_bucket = INT_MAX, big_bucket = 0;
int buckets = *buckets_;
int i;
/* Find the extrema for this list of buckets */
big_bucket = small_bucket = 0;
for (i = 0; i < buckets; i++) {
if (bucket[i].count < bucket[small_bucket].count)
small_bucket = i;
if (bucket[i].count > bucket[big_bucket].count)
big_bucket = i;
}
/* If we have too many buckets, merge the smallest with an adjacent
* bucket.
*/
while (buckets > max_buckets) {
int last_bucket = buckets - 1;
// merge the small bucket with an adjacent one.
if (small_bucket == 0)
merge_bucket = 1;
else if (small_bucket == last_bucket)
merge_bucket = last_bucket - 1;
else if (bucket[small_bucket - 1].count < bucket[small_bucket + 1].count)
merge_bucket = small_bucket - 1;
else
merge_bucket = small_bucket + 1;
assert(abs(merge_bucket - small_bucket) <= 1);
assert(small_bucket < buckets);
assert(big_bucket < buckets);
assert(merge_bucket < buckets);
if (merge_bucket < small_bucket) {
bucket[merge_bucket].high = bucket[small_bucket].high;
bucket[merge_bucket].count += bucket[small_bucket].count;
} else {
bucket[small_bucket].high = bucket[merge_bucket].high;
bucket[small_bucket].count += bucket[merge_bucket].count;
merge_bucket = small_bucket;
}
assert(bucket[merge_bucket].low != bucket[merge_bucket].high);
buckets--;
/* Remove the merge_bucket from the list, and find the new small
* and big buckets while we're at it
*/
big_bucket = small_bucket = 0;
for (i = 0; i < buckets; i++) {
if (i > merge_bucket)
bucket[i] = bucket[i + 1];
if (bucket[i].count < bucket[small_bucket].count)
small_bucket = i;
if (bucket[i].count > bucket[big_bucket].count)
big_bucket = i;
}
}
*buckets_ = buckets;
return bucket[big_bucket].count;
}
static void show_histogram(const struct hist_bucket *bucket,
int buckets,
int total,
int scale) {
const char *pat1, *pat2;
int i;
switch ((int)(log(bucket[buckets - 1].high) / log(10)) + 1) {
case 1:
case 2:
pat1 = "%4d %2s: ";
pat2 = "%4d-%2d: ";
break;
case 3:
pat1 = "%5d %3s: ";
pat2 = "%5d-%3d: ";
break;
case 4:
pat1 = "%6d %4s: ";
pat2 = "%6d-%4d: ";
break;
case 5:
pat1 = "%7d %5s: ";
pat2 = "%7d-%5d: ";
break;
case 6:
pat1 = "%8d %6s: ";
pat2 = "%8d-%6d: ";
break;
case 7:
pat1 = "%9d %7s: ";
pat2 = "%9d-%7d: ";
break;
default:
pat1 = "%12d %10s: ";
pat2 = "%12d-%10d: ";
break;
}
for (i = 0; i < buckets; i++) {
int len;
int j;
float pct;
pct = 100.0 * (float)bucket[i].count / (float)total;
len = HIST_BAR_MAX * bucket[i].count / scale;
if (len < 1)
len = 1;
assert(len <= HIST_BAR_MAX);
if (bucket[i].low == bucket[i].high)
fprintf(stderr, pat1, bucket[i].low, "");
else
fprintf(stderr, pat2, bucket[i].low, bucket[i].high);
for (j = 0; j < HIST_BAR_MAX; j++)
fprintf(stderr, j < len ? "=" : " ");
fprintf(stderr, "\t%5d (%6.2f%%)\n", bucket[i].count, pct);
}
}
static void show_q_histogram(const int counts[64], int max_buckets) {
struct hist_bucket bucket[64];
int buckets = 0;
int total = 0;
int scale;
int i;
for (i = 0; i < 64; i++) {
if (counts[i]) {
bucket[buckets].low = bucket[buckets].high = i;
bucket[buckets].count = counts[i];
buckets++;
total += counts[i];
}
}
fprintf(stderr, "\nQuantizer Selection:\n");
scale = merge_hist_buckets(bucket, &buckets, max_buckets);
show_histogram(bucket, buckets, total, scale);
}
#define RATE_BINS (100)
struct rate_hist {
int64_t *pts;
int *sz;
int samples;
int frames;
struct hist_bucket bucket[RATE_BINS];
int total;
};
static void init_rate_histogram(struct rate_hist *hist,
const vpx_codec_enc_cfg_t *cfg,
const vpx_rational_t *fps) {
int i;
/* Determine the number of samples in the buffer. Use the file's framerate
* to determine the number of frames in rc_buf_sz milliseconds, with an
* adjustment (5/4) to account for alt-refs
*/
hist->samples = cfg->rc_buf_sz * 5 / 4 * fps->num / fps->den / 1000;
// prevent division by zero
if (hist->samples == 0)
hist->samples = 1;
hist->pts = calloc(hist->samples, sizeof(*hist->pts));
hist->sz = calloc(hist->samples, sizeof(*hist->sz));
for (i = 0; i < RATE_BINS; i++) {
hist->bucket[i].low = INT_MAX;
hist->bucket[i].high = 0;
hist->bucket[i].count = 0;
}
}
static void destroy_rate_histogram(struct rate_hist *hist) {
free(hist->pts);
free(hist->sz);
}
static void update_rate_histogram(struct rate_hist *hist,
const vpx_codec_enc_cfg_t *cfg,
const vpx_codec_cx_pkt_t *pkt) {
int i, idx;
int64_t now, then, sum_sz = 0, avg_bitrate;
now = pkt->data.frame.pts * 1000
* (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den;
idx = hist->frames++ % hist->samples;
hist->pts[idx] = now;
hist->sz[idx] = pkt->data.frame.sz;
if (now < cfg->rc_buf_initial_sz)
return;
then = now;
/* Sum the size over the past rc_buf_sz ms */
for (i = hist->frames; i > 0 && hist->frames - i < hist->samples; i--) {
int i_idx = (i - 1) % hist->samples;
then = hist->pts[i_idx];
if (now - then > cfg->rc_buf_sz)
break;
sum_sz += hist->sz[i_idx];
}
if (now == then)
return;
avg_bitrate = sum_sz * 8 * 1000 / (now - then);
idx = avg_bitrate * (RATE_BINS / 2) / (cfg->rc_target_bitrate * 1000);
if (idx < 0)
idx = 0;
if (idx > RATE_BINS - 1)
idx = RATE_BINS - 1;
if (hist->bucket[idx].low > avg_bitrate)
hist->bucket[idx].low = avg_bitrate;
if (hist->bucket[idx].high < avg_bitrate)
hist->bucket[idx].high = avg_bitrate;
hist->bucket[idx].count++;
hist->total++;
}
static void show_rate_histogram(struct rate_hist *hist,
const vpx_codec_enc_cfg_t *cfg,
int max_buckets) {
int i, scale;
int buckets = 0;
for (i = 0; i < RATE_BINS; i++) {
if (hist->bucket[i].low == INT_MAX)
continue;
hist->bucket[buckets++] = hist->bucket[i];
}
fprintf(stderr, "\nRate (over %dms window):\n", cfg->rc_buf_sz);
scale = merge_hist_buckets(hist->bucket, &buckets, max_buckets);
show_histogram(hist->bucket, buckets, hist->total, scale);
}
static int compare_img(vpx_image_t *img1, vpx_image_t *img2) {
int match = 1;
int i;
match &= (img1->fmt == img2->fmt);
match &= (img1->w == img2->w);
match &= (img1->h == img2->h);
for (i = 0; i < img1->d_h; i++)
match &= (memcmp(img1->planes[VPX_PLANE_Y] + i * img1->stride[VPX_PLANE_Y],
img2->planes[VPX_PLANE_Y] + i * img2->stride[VPX_PLANE_Y],
img1->d_w) == 0);
for (i = 0; i < img1->d_h / 2; i++)
match &= (memcmp(img1->planes[VPX_PLANE_U] + i * img1->stride[VPX_PLANE_U],
img2->planes[VPX_PLANE_U] + i * img2->stride[VPX_PLANE_U],
img1->d_w / 2) == 0);
for (i = 0; i < img1->d_h / 2; i++)
match &= (memcmp(img1->planes[VPX_PLANE_V] + i * img1->stride[VPX_PLANE_U],
img2->planes[VPX_PLANE_V] + i * img2->stride[VPX_PLANE_U],
img1->d_w / 2) == 0);
return match;
}
2010-05-18 17:58:33 +02:00
#define ARG_CTRL_CNT_MAX 10
int main(int argc, const char **argv_) {
vpx_codec_ctx_t encoder;
const char *in_fn = NULL, *out_fn = NULL, *stats_fn = NULL;
int i;
FILE *infile, *outfile;
vpx_codec_enc_cfg_t cfg;
vpx_codec_err_t res;
int pass, one_pass_only = 0;
stats_io_t stats;
vpx_image_t raw;
struct codec_item *codec = codecs;
int frame_avail, got_data;
struct arg arg;
char **argv, **argi, **argj;
int arg_usage = 0, arg_passes = 1, arg_deadline = 0;
int arg_ctrls[ARG_CTRL_CNT_MAX][2], arg_ctrl_cnt = 0;
int arg_limit = 0;
int arg_skip = 0;
static const arg_def_t **ctrl_args = no_args;
static const int *ctrl_args_map = NULL;
int verbose = 0, show_psnr = 0, test_decode = 0;
int arg_use_i420 = 1;
unsigned long cx_time = 0;
unsigned int file_type, fourcc;
y4m_input y4m;
struct vpx_rational arg_framerate = {30, 1};
int arg_have_framerate = 0;
int write_webm = 1;
EbmlGlobal ebml = {0};
uint32_t hash = 0;
uint64_t psnr_sse_total = 0;
uint64_t psnr_samples_total = 0;
double psnr_totals[4] = {0, 0, 0, 0};
int psnr_count = 0;
stereo_format_t stereo_fmt = STEREO_FORMAT_MONO;
int counts[64] = {0};
int show_q_hist_buckets = 0;
int show_rate_hist_buckets = 0;
struct rate_hist rate_hist = {0};
vpx_codec_ctx_t decoder;
vpx_ref_frame_t ref_enc;
vpx_ref_frame_t ref_dec;
vpx_codec_dec_cfg_t dec_cfg = {0};
int enc_dec_match = 1;
int first_bad_frame = -1;
int test_decode_frame = 0;
exec_name = argv_[0];
ebml.last_pts_ms = -1;
if (argc < 3)
usage_exit();
2010-05-18 17:58:33 +02:00
/* First parse the codec and usage values, because we want to apply other
* parameters on top of the default configuration provided by the codec.
*/
argv = argv_dup(argc - 1, argv_ + 1);
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
arg.argv_step = 1;
if (arg_match(&arg, &codecarg, argi)) {
int j, k = -1;
for (j = 0; j < sizeof(codecs) / sizeof(codecs[0]); j++)
if (!strcmp(codecs[j].name, arg.val))
k = j;
if (k >= 0)
codec = codecs + k;
else
die("Error: Unrecognized argument (%s) to --codec\n",
arg.val);
} else if (arg_match(&arg, &passes, argi)) {
arg_passes = arg_parse_uint(&arg);
if (arg_passes < 1 || arg_passes > 2)
die("Error: Invalid number of passes (%d)\n", arg_passes);
} else if (arg_match(&arg, &pass_arg, argi)) {
one_pass_only = arg_parse_uint(&arg);
if (one_pass_only < 1 || one_pass_only > 2)
die("Error: Invalid pass selected (%d)\n", one_pass_only);
} else if (arg_match(&arg, &fpf_name, argi))
stats_fn = arg.val;
else if (arg_match(&arg, &usage, argi))
arg_usage = arg_parse_uint(&arg);
else if (arg_match(&arg, &deadline, argi))
arg_deadline = arg_parse_uint(&arg);
else if (arg_match(&arg, &best_dl, argi))
arg_deadline = VPX_DL_BEST_QUALITY;
else if (arg_match(&arg, &good_dl, argi))
arg_deadline = VPX_DL_GOOD_QUALITY;
else if (arg_match(&arg, &rt_dl, argi))
arg_deadline = VPX_DL_REALTIME;
else if (arg_match(&arg, &use_yv12, argi)) {
arg_use_i420 = 0;
} else if (arg_match(&arg, &use_i420, argi)) {
arg_use_i420 = 1;
} else if (arg_match(&arg, &verbosearg, argi))
verbose = 1;
else if (arg_match(&arg, &limit, argi))
arg_limit = arg_parse_uint(&arg);
else if (arg_match(&arg, &skip, argi))
arg_skip = arg_parse_uint(&arg);
else if (arg_match(&arg, &psnrarg, argi))
show_psnr = 1;
else if (arg_match(&arg, &recontest, argi))
test_decode = 1;
else if (arg_match(&arg, &framerate, argi)) {
arg_framerate = arg_parse_rational(&arg);
arg_have_framerate = 1;
} else if (arg_match(&arg, &use_ivf, argi))
write_webm = 0;
else if (arg_match(&arg, &outputfile, argi))
out_fn = arg.val;
else if (arg_match(&arg, &debugmode, argi))
ebml.debug = 1;
else if (arg_match(&arg, &q_hist_n, argi))
show_q_hist_buckets = arg_parse_uint(&arg);
else if (arg_match(&arg, &rate_hist_n, argi))
show_rate_hist_buckets = arg_parse_uint(&arg);
else
argj++;
}
/* Ensure that --passes and --pass are consistent. If --pass is set and --passes=2,
* ensure --fpf was set.
*/
if (one_pass_only) {
/* DWIM: Assume the user meant passes=2 if pass=2 is specified */
if (one_pass_only > arg_passes) {
fprintf(stderr, "Warning: Assuming --pass=%d implies --passes=%d\n",
one_pass_only, one_pass_only);
arg_passes = one_pass_only;
2010-05-18 17:58:33 +02:00
}
if (arg_passes == 2 && !stats_fn)
die("Must specify --fpf when --pass=%d and --passes=2\n", one_pass_only);
}
2010-05-18 17:58:33 +02:00
/* Populate encoder configuration */
res = vpx_codec_enc_config_default(codec->iface(), &cfg, arg_usage);
2010-05-18 17:58:33 +02:00
if (res) {
fprintf(stderr, "Failed to get config: %s\n",
vpx_codec_err_to_string(res));
return EXIT_FAILURE;
}
2010-05-18 17:58:33 +02:00
/* Change the default timebase to a high enough value so that the encoder
* will always create strictly increasing timestamps.
*/
cfg.g_timebase.den = 1000;
2010-05-18 17:58:33 +02:00
/* Never use the library's default resolution, require it be parsed
* from the file or set on the command line.
*/
cfg.g_w = 0;
cfg.g_h = 0;
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#if CONFIG_LOSSLESS
cfg.lossless = 0;
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#endif
/* Now parse the remainder of the parameters. */
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
arg.argv_step = 1;
if (0);
else if (arg_match(&arg, &threads, argi))
cfg.g_threads = arg_parse_uint(&arg);
else if (arg_match(&arg, &profile, argi))
cfg.g_profile = arg_parse_uint(&arg);
else if (arg_match(&arg, &width, argi))
cfg.g_w = arg_parse_uint(&arg);
else if (arg_match(&arg, &height, argi))
cfg.g_h = arg_parse_uint(&arg);
else if (arg_match(&arg, &stereo_mode, argi))
stereo_fmt = arg_parse_enum_or_int(&arg);
else if (arg_match(&arg, &timebase, argi))
cfg.g_timebase = arg_parse_rational(&arg);
else if (arg_match(&arg, &error_resilient, argi))
cfg.g_error_resilient = arg_parse_uint(&arg);
else if (arg_match(&arg, &lag_in_frames, argi))
cfg.g_lag_in_frames = arg_parse_uint(&arg);
else if (arg_match(&arg, &dropframe_thresh, argi))
cfg.rc_dropframe_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_allowed, argi))
cfg.rc_resize_allowed = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_up_thresh, argi))
cfg.rc_resize_up_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_down_thresh, argi))
cfg.rc_resize_down_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &resize_down_thresh, argi))
cfg.rc_resize_down_thresh = arg_parse_uint(&arg);
else if (arg_match(&arg, &end_usage, argi))
cfg.rc_end_usage = arg_parse_enum_or_int(&arg);
else if (arg_match(&arg, &target_bitrate, argi))
cfg.rc_target_bitrate = arg_parse_uint(&arg);
else if (arg_match(&arg, &min_quantizer, argi))
cfg.rc_min_quantizer = arg_parse_uint(&arg);
else if (arg_match(&arg, &max_quantizer, argi))
cfg.rc_max_quantizer = arg_parse_uint(&arg);
else if (arg_match(&arg, &undershoot_pct, argi))
cfg.rc_undershoot_pct = arg_parse_uint(&arg);
else if (arg_match(&arg, &overshoot_pct, argi))
cfg.rc_overshoot_pct = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_sz, argi))
cfg.rc_buf_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_initial_sz, argi))
cfg.rc_buf_initial_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &buf_optimal_sz, argi))
cfg.rc_buf_optimal_sz = arg_parse_uint(&arg);
else if (arg_match(&arg, &bias_pct, argi)) {
cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg);
if (arg_passes < 2)
fprintf(stderr,
"Warning: option %s ignored in one-pass mode.\n",
arg.name);
} else if (arg_match(&arg, &minsection_pct, argi)) {
cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg);
2010-05-18 17:58:33 +02:00
if (arg_passes < 2)
fprintf(stderr,
"Warning: option %s ignored in one-pass mode.\n",
arg.name);
} else if (arg_match(&arg, &maxsection_pct, argi)) {
cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg);
2010-05-18 17:58:33 +02:00
if (arg_passes < 2)
fprintf(stderr,
"Warning: option %s ignored in one-pass mode.\n",
arg.name);
} else if (arg_match(&arg, &kf_min_dist, argi))
cfg.kf_min_dist = arg_parse_uint(&arg);
else if (arg_match(&arg, &kf_max_dist, argi))
cfg.kf_max_dist = arg_parse_uint(&arg);
else if (arg_match(&arg, &kf_disabled, argi))
cfg.kf_mode = VPX_KF_DISABLED;
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#if CONFIG_LOSSLESS
else if (arg_match(&arg, &lossless_enabled, argi))
cfg.lossless = 1;
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#endif
else
argj++;
}
2010-05-18 17:58:33 +02:00
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#if CONFIG_LOSSLESS
if (cfg.lossless) {
cfg.rc_min_quantizer = 0;
cfg.rc_max_quantizer = 0;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#endif
/* Handle codec specific options */
2010-05-18 17:58:33 +02:00
#if CONFIG_VP8_ENCODER
if (codec->fourcc == VP8_FOURCC) {
ctrl_args = vp8_args;
ctrl_args_map = vp8_arg_ctrl_map;
}
2010-05-18 17:58:33 +02:00
#endif
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
int match = 0;
2010-05-18 17:58:33 +02:00
arg.argv_step = 1;
2010-05-18 17:58:33 +02:00
for (i = 0; ctrl_args[i]; i++) {
if (arg_match(&arg, ctrl_args[i], argi)) {
match = 1;
2010-05-18 17:58:33 +02:00
if (arg_ctrl_cnt < ARG_CTRL_CNT_MAX) {
arg_ctrls[arg_ctrl_cnt][0] = ctrl_args_map[i];
arg_ctrls[arg_ctrl_cnt][1] = arg_parse_enum_or_int(&arg);
arg_ctrl_cnt++;
}
}
2010-05-18 17:58:33 +02:00
}
if (!match)
argj++;
}
2010-05-18 17:58:33 +02:00
/* Check for unrecognized options */
for (argi = argv; *argi; argi++)
if (argi[0][0] == '-' && argi[0][1])
die("Error: Unrecognized option %s\n", *argi);
2010-05-18 17:58:33 +02:00
/* Handle non-option arguments */
in_fn = argv[0];
2010-05-18 17:58:33 +02:00
if (!in_fn)
usage_exit();
if (!out_fn)
die("Error: Output file is required (specify with -o)\n");
2010-05-18 17:58:33 +02:00
memset(&stats, 0, sizeof(stats));
2010-05-18 17:58:33 +02:00
for (pass = one_pass_only ? one_pass_only - 1 : 0; pass < arg_passes; pass++) {
int frames_in = 0, frames_out = 0;
unsigned long nbytes = 0;
int skip_frames = 0;
struct detect_buffer detect;
2010-05-18 17:58:33 +02:00
/* Parse certain options from the input file, if possible */
infile = strcmp(in_fn, "-") ? fopen(in_fn, "rb")
: set_binary_mode(stdin);
2010-05-18 17:58:33 +02:00
if (!infile) {
fprintf(stderr, "Failed to open input file\n");
return EXIT_FAILURE;
}
/* For RAW input sources, these bytes will applied on the first frame
* in read_frame().
*/
detect.buf_read = fread(detect.buf, 1, 4, infile);
detect.position = 0;
if (detect.buf_read == 4 && file_is_y4m(infile, &y4m, detect.buf)) {
if (y4m_input_open(&y4m, infile, detect.buf, 4) >= 0) {
file_type = FILE_TYPE_Y4M;
cfg.g_w = y4m.pic_w;
cfg.g_h = y4m.pic_h;
/* Use the frame rate from the file only if none was specified
* on the command-line.
*/
if (!arg_have_framerate) {
arg_framerate.num = y4m.fps_n;
arg_framerate.den = y4m.fps_d;
}
arg_use_i420 = 0;
} else {
fprintf(stderr, "Unsupported Y4M stream.\n");
return EXIT_FAILURE;
}
} else if (detect.buf_read == 4 &&
file_is_ivf(infile, &fourcc, &cfg.g_w, &cfg.g_h, &detect)) {
file_type = FILE_TYPE_IVF;
switch (fourcc) {
case 0x32315659:
arg_use_i420 = 0;
break;
case 0x30323449:
arg_use_i420 = 1;
break;
default:
fprintf(stderr, "Unsupported fourcc (%08x) in IVF\n", fourcc);
return EXIT_FAILURE;
}
} else {
file_type = FILE_TYPE_RAW;
}
if (!cfg.g_w || !cfg.g_h) {
fprintf(stderr, "Specify stream dimensions with --width (-w) "
" and --height (-h).\n");
return EXIT_FAILURE;
}
#define SHOW(field) fprintf(stderr, " %-28s = %d\n", #field, cfg.field)
if (verbose && pass == 0) {
fprintf(stderr, "Codec: %s\n", vpx_codec_iface_name(codec->iface()));
fprintf(stderr, "Source file: %s Format: %s\n", in_fn,
arg_use_i420 ? "I420" : "YV12");
fprintf(stderr, "Destination file: %s\n", out_fn);
fprintf(stderr, "Encoder parameters:\n");
SHOW(g_usage);
SHOW(g_threads);
SHOW(g_profile);
SHOW(g_w);
SHOW(g_h);
SHOW(g_timebase.num);
SHOW(g_timebase.den);
SHOW(g_error_resilient);
SHOW(g_pass);
SHOW(g_lag_in_frames);
SHOW(rc_dropframe_thresh);
SHOW(rc_resize_allowed);
SHOW(rc_resize_up_thresh);
SHOW(rc_resize_down_thresh);
SHOW(rc_end_usage);
SHOW(rc_target_bitrate);
SHOW(rc_min_quantizer);
SHOW(rc_max_quantizer);
SHOW(rc_undershoot_pct);
SHOW(rc_overshoot_pct);
SHOW(rc_buf_sz);
SHOW(rc_buf_initial_sz);
SHOW(rc_buf_optimal_sz);
SHOW(rc_2pass_vbr_bias_pct);
SHOW(rc_2pass_vbr_minsection_pct);
SHOW(rc_2pass_vbr_maxsection_pct);
SHOW(kf_mode);
SHOW(kf_min_dist);
SHOW(kf_max_dist);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#if CONFIG_LOSSLESS
SHOW(lossless);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
#endif
}
if (pass == (one_pass_only ? one_pass_only - 1 : 0)) {
if (file_type == FILE_TYPE_Y4M)
/*The Y4M reader does its own allocation.
Just initialize this here to avoid problems if we never read any
frames.*/
memset(&raw, 0, sizeof(raw));
else
vpx_img_alloc(&raw, arg_use_i420 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_YV12,
cfg.g_w, cfg.g_h, 1);
init_rate_histogram(&rate_hist, &cfg, &arg_framerate);
}
if (test_decode) {
int width = cfg.g_w;
int height = cfg.g_h;
width = (width + 15)& ~15;
height = (height + 15) & ~15;
vpx_img_alloc(&ref_enc.img, VPX_IMG_FMT_I420,
width, height, 1);
vpx_img_alloc(&ref_dec.img, VPX_IMG_FMT_I420,
width, height, 1);
}
2010-05-18 17:58:33 +02:00
outfile = strcmp(out_fn, "-") ? fopen(out_fn, "wb")
: set_binary_mode(stdout);
2010-05-18 17:58:33 +02:00
if (!outfile) {
fprintf(stderr, "Failed to open output file\n");
return EXIT_FAILURE;
}
if (write_webm && fseek(outfile, 0, SEEK_CUR)) {
fprintf(stderr, "WebM output to pipes not supported.\n");
return EXIT_FAILURE;
}
2010-05-18 17:58:33 +02:00
if (stats_fn) {
if (!stats_open_file(&stats, stats_fn, pass)) {
fprintf(stderr, "Failed to open statistics store\n");
return EXIT_FAILURE;
}
} else {
if (!stats_open_mem(&stats, pass)) {
fprintf(stderr, "Failed to open statistics store\n");
return EXIT_FAILURE;
}
}
cfg.g_pass = arg_passes == 2
? pass ? VPX_RC_LAST_PASS : VPX_RC_FIRST_PASS
: VPX_RC_ONE_PASS;
2010-05-18 17:58:33 +02:00
#if VPX_ENCODER_ABI_VERSION > (1 + VPX_CODEC_ABI_VERSION)
if (pass) {
cfg.rc_twopass_stats_in = stats_get(&stats);
}
2010-05-18 17:58:33 +02:00
#endif
if (write_webm) {
ebml.stream = outfile;
write_webm_file_header(&ebml, &cfg, &arg_framerate, stereo_fmt);
} else
write_ivf_file_header(outfile, &cfg, codec->fourcc, 0);
2010-05-18 17:58:33 +02:00
/* Construct Encoder Context */
vpx_codec_enc_init(&encoder, codec->iface(), &cfg,
show_psnr ? VPX_CODEC_USE_PSNR : 0);
ctx_exit_on_error(&encoder, "Failed to initialize encoder");
2010-05-18 17:58:33 +02:00
if (test_decode &&
vpx_codec_dec_init(&decoder, ifaces[0].iface(), &dec_cfg, 0)) {
fprintf(stderr,
"Failed to initialize decoder: %s\n",
vpx_codec_error(&decoder));
return EXIT_FAILURE;
}
/* Note that we bypass the vpx_codec_control wrapper macro because
* we're being clever to store the control IDs in an array. Real
* applications will want to make use of the enumerations directly
*/
for (i = 0; i < arg_ctrl_cnt; i++) {
if (vpx_codec_control_(&encoder, arg_ctrls[i][0], arg_ctrls[i][1]))
fprintf(stderr, "Error: Tried to set control %d = %d\n",
arg_ctrls[i][0], arg_ctrls[i][1]);
ctx_exit_on_error(&encoder, "Failed to control codec");
}
2010-05-18 17:58:33 +02:00
frame_avail = 1;
got_data = 0;
skip_frames = arg_skip;
while (skip_frames) {
frame_avail = read_frame(infile, &raw, file_type, &y4m, &detect);
if (!frame_avail)
break;
skip_frames--;
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7ldB \033[K", pass + 1,
arg_passes, skip_frames, frames_out, nbytes);
}
2010-05-18 17:58:33 +02:00
while (frame_avail || got_data) {
vpx_codec_iter_t iter = NULL;
vpx_codec_iter_t dec_iter = NULL;
const vpx_codec_cx_pkt_t *pkt;
struct vpx_usec_timer timer;
int64_t frame_start, next_frame_start;
if (!arg_limit || frames_in < arg_limit) {
frame_avail = read_frame(infile, &raw, file_type, &y4m,
&detect);
if (frame_avail)
frames_in++;
} else
frame_avail = 0;
vpx_usec_timer_start(&timer);
frame_start = (cfg.g_timebase.den * (int64_t)(frames_in - 1)
* arg_framerate.den) / cfg.g_timebase.num / arg_framerate.num;
next_frame_start = (cfg.g_timebase.den * (int64_t)(frames_in)
* arg_framerate.den)
/ cfg.g_timebase.num / arg_framerate.num;
vpx_codec_encode(&encoder, frame_avail ? &raw : NULL, frame_start,
next_frame_start - frame_start,
0, arg_deadline);
vpx_usec_timer_mark(&timer);
cx_time += vpx_usec_timer_elapsed(&timer);
ctx_exit_on_error(&encoder, "Failed to encode frame");
if (cfg.g_pass != VPX_RC_FIRST_PASS) {
int q;
vpx_codec_control(&encoder, VP8E_GET_LAST_QUANTIZER_64, &q);
ctx_exit_on_error(&encoder, "Failed to read quantizer");
counts[q]++;
}
got_data = 0;
test_decode_frame = 0;
while ((pkt = vpx_codec_get_cx_data(&encoder, &iter))) {
got_data = 1;
switch (pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT:
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7ldB \033[K", pass + 1,
arg_passes, frames_in, frames_out, nbytes);
frames_out++;
fprintf(stderr, " %6luF",
(unsigned long)pkt->data.frame.sz);
if (test_decode) {
if (!vpx_codec_decode(&decoder,
pkt->data.frame.buf,
pkt->data.frame.sz,
NULL, 0)) {
vpx_codec_get_frame(&decoder, &dec_iter);
test_decode_frame = 1;
} else {
const char *detail = vpx_codec_error_detail(&decoder);
fprintf(stderr, "Failed to decode frame: %s\n",
vpx_codec_error(&decoder));
if (detail)
fprintf(stderr,
" Additional information: %s\n",
detail);
}
}
update_rate_histogram(&rate_hist, &cfg, pkt);
if (write_webm) {
/* Update the hash */
if (!ebml.debug)
hash = murmur(pkt->data.frame.buf,
pkt->data.frame.sz, hash);
write_webm_block(&ebml, &cfg, pkt);
} else {
write_ivf_frame_header(outfile, pkt);
if (fwrite(pkt->data.frame.buf, 1,
pkt->data.frame.sz, outfile));
2010-05-18 17:58:33 +02:00
}
nbytes += pkt->data.raw.sz;
break;
case VPX_CODEC_STATS_PKT:
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7ldB \033[K", pass + 1,
arg_passes, frames_in, frames_out, nbytes);
frames_out++;
fprintf(stderr, " %6luS",
(unsigned long)pkt->data.twopass_stats.sz);
stats_write(&stats,
pkt->data.twopass_stats.buf,
pkt->data.twopass_stats.sz);
nbytes += pkt->data.raw.sz;
break;
case VPX_CODEC_PSNR_PKT:
if (show_psnr) {
int i;
psnr_sse_total += pkt->data.psnr.sse[0];
psnr_samples_total += pkt->data.psnr.samples[0];
for (i = 0; i < 4; i++) {
fprintf(stderr, "%.3lf ", pkt->data.psnr.psnr[i]);
psnr_totals[i] += pkt->data.psnr.psnr[i];
}
psnr_count++;
}
2010-05-18 17:58:33 +02:00
break;
default:
break;
2010-05-18 17:58:33 +02:00
}
}
if (test_decode && test_decode_frame) {
ref_enc.frame_type = VP8_LAST_FRAME;
ref_dec.frame_type = VP8_LAST_FRAME;
vpx_codec_control(&encoder,
VP8_COPY_REFERENCE,
&ref_enc);
vpx_codec_control(&decoder,
VP8_COPY_REFERENCE,
&ref_dec);
enc_dec_match &= compare_img(&ref_enc.img,
&ref_dec.img);
if (!enc_dec_match && first_bad_frame < 0) {
first_bad_frame = frames_out - 1;
}
}
fflush(stdout);
}
2010-05-18 17:58:33 +02:00
fprintf(stderr,
"\rPass %d/%d frame %4d/%-4d %7ldB %7ldb/f %7"PRId64"b/s"
" %7lu %s (%.2f fps)\033[K", pass + 1,
arg_passes, frames_in, frames_out, nbytes, nbytes * 8 / frames_in,
nbytes * 8 * (int64_t)arg_framerate.num / arg_framerate.den / frames_in,
cx_time > 9999999 ? cx_time / 1000 : cx_time,
cx_time > 9999999 ? "ms" : "us",
(float)frames_in * 1000000.0 / (float)cx_time);
if ((show_psnr) && (psnr_count > 0)) {
int i;
double ovpsnr = vp8_mse2psnr(psnr_samples_total, 255.0,
psnr_sse_total);
fprintf(stderr, "\nPSNR (Overall/Avg/Y/U/V)");
fprintf(stderr, " %.3lf", ovpsnr);
for (i = 0; i < 4; i++) {
fprintf(stderr, " %.3lf", psnr_totals[i] / psnr_count);
}
}
vpx_codec_destroy(&encoder);
2010-05-18 17:58:33 +02:00
if (test_decode)
vpx_codec_destroy(&decoder);
2010-05-18 17:58:33 +02:00
fclose(infile);
if (file_type == FILE_TYPE_Y4M)
y4m_input_close(&y4m);
if (write_webm) {
write_webm_file_footer(&ebml, hash);
free(ebml.cue_list);
ebml.cue_list = NULL;
} else {
if (!fseek(outfile, 0, SEEK_SET))
write_ivf_file_header(outfile, &cfg, codec->fourcc, frames_out);
}
fclose(outfile);
stats_close(&stats, arg_passes - 1);
fprintf(stderr, "\n");
if (one_pass_only)
break;
}
if (test_decode) {
fprintf(stderr, "\n");
if (enc_dec_match)
fprintf(stderr, "No mismatch detected in recon buffers\n");
else
fprintf(stderr, "First mismatch occurred in frame %d\n",
first_bad_frame);
}
if (show_q_hist_buckets)
show_q_histogram(counts, show_q_hist_buckets);
if (show_rate_hist_buckets)
show_rate_histogram(&rate_hist, &cfg, show_rate_hist_buckets);
destroy_rate_histogram(&rate_hist);
vpx_img_free(&raw);
if (test_decode) {
vpx_img_free(&ref_enc.img);
vpx_img_free(&ref_dec.img);
}
free(argv);
return EXIT_SUCCESS;
2010-05-18 17:58:33 +02:00
}