Add support for reading YUV4MPEG2 files to ivfenc.

A large collection of example files may be found at
 http://media.xiph.org/video/derf/
This also fixes a bug in ivfenc for uncompressed IVF input, which previously
 appeared not to skip past the file header the second time it opened the file.
I don't actually have an IVF file with which to test this fix, however.

Change-Id: Id69a1e11a3fa16c4a4fa8944e880bcea090cd52b
This commit is contained in:
Timothy B. Terriberry 2010-05-26 18:27:51 -04:00
parent cbf12db901
commit 44d8949553
5 changed files with 1054 additions and 41 deletions

View File

@ -2,3 +2,6 @@
# Name or Organization <email address>
Google Inc.
The Mozilla Foundation
Timothy B. Terriberry <tterriberry@mozilla.com>
The Xiph.Org Foundation

View File

@ -19,8 +19,9 @@ ivfdec.SRCS += args.c args.h vpx_ports/config.h
ivfdec.GUID = BA5FE66F-38DD-E034-F542-B1578C5FB950
ivfdec.DESCRIPTION = Full featured decoder
UTILS-$(CONFIG_ENCODERS) += ivfenc.c
ivfenc.SRCS += args.c args.h vpx_ports/config.h
ivfenc.SRCS += vpx_ports/mem_ops.h vpx_ports/mem_ops_aligned.h
ivfenc.SRCS += args.c args.h y4minput.c y4minput.h
ivfenc.SRCS += vpx_ports/config.h vpx_ports/mem_ops.h
ivfenc.SRCS += vpx_ports/mem_ops_aligned.h
ivfenc.GUID = 548DEC74-7A15-4B2B-AFC3-AA102E7C25C1
ivfenc.DESCRIPTION = Full featured encoder

148
ivfenc.c
View File

@ -32,6 +32,7 @@
#include "vpx/vp8cx.h"
#include "vpx_ports/mem_ops.h"
#include "vpx_ports/vpx_timer.h"
#include "y4minput.h"
static const char *exec_name;
@ -217,49 +218,65 @@ vpx_fixed_buf_t stats_get(stats_io_t *stats)
return stats->buf;
}
enum video_file_type
{
FILE_TYPE_RAW,
FILE_TYPE_IVF,
FILE_TYPE_Y4M
};
#define IVF_FRAME_HDR_SZ (4+8) /* 4 byte size + 8 byte timestamp */
static int read_frame(FILE *f, vpx_image_t *img, unsigned int is_ivf)
static int read_frame(FILE *f, vpx_image_t *img, unsigned int file_type,
y4m_input *y4m)
{
int plane = 0;
if (is_ivf)
if (file_type == FILE_TYPE_Y4M)
{
char junk[IVF_FRAME_HDR_SZ];
/* Skip the frame header. We know how big the frame should be. See
* write_ivf_frame_header() for documentation on the frame header
* layout.
*/
fread(junk, 1, IVF_FRAME_HDR_SZ, f);
if (y4m_input_fetch_frame(y4m, f, img) < 0)
return 0;
}
for (plane = 0; plane < 3; plane++)
else
{
unsigned char *ptr;
int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane)
if (file_type == FILE_TYPE_IVF)
{
case 1:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12? VPX_PLANE_V : VPX_PLANE_U];
break;
case 2:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12?VPX_PLANE_U : VPX_PLANE_V];
break;
default:
ptr = img->planes[plane];
char junk[IVF_FRAME_HDR_SZ];
/* Skip the frame header. We know how big the frame should be. See
* write_ivf_frame_header() for documentation on the frame header
* layout.
*/
fread(junk, 1, IVF_FRAME_HDR_SZ, f);
}
for (r = 0; r < h; r++)
for (plane = 0; plane < 3; plane++)
{
fread(ptr, 1, w, f);
ptr += img->stride[plane];
unsigned char *ptr;
int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane)
{
case 1:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12? VPX_PLANE_V : VPX_PLANE_U];
break;
case 2:
ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12?VPX_PLANE_U : VPX_PLANE_V];
break;
default:
ptr = img->planes[plane];
}
for (r = 0; r < h; r++)
{
fread(ptr, 1, w, f);
ptr += img->stride[plane];
}
}
}
@ -267,6 +284,20 @@ static int read_frame(FILE *f, vpx_image_t *img, unsigned int is_ivf)
}
unsigned int file_is_y4m(FILE *infile,
y4m_input *y4m)
{
char raw_hdr[4];
if (fread(raw_hdr, 1, 4, infile) == 4 &&
memcmp(raw_hdr, "YUV4", 4) == 0 &&
y4m_input_open(y4m, infile, raw_hdr, 4) >= 0)
{
return 1;
}
rewind(infile);
return 0;
}
#define IVF_FILE_HDR_SZ (32)
unsigned int file_is_ivf(FILE *infile,
unsigned int *fourcc,
@ -568,8 +599,10 @@ int main(int argc, const char **argv_)
static const int *ctrl_args_map = NULL;
int verbose = 0, show_psnr = 0;
int arg_use_i420 = 1;
int arg_have_timebase = 0;
unsigned long cx_time = 0;
unsigned int is_ivf, fourcc;
unsigned int file_type, fourcc;
y4m_input y4m;
exec_name = argv_[0];
@ -686,7 +719,10 @@ int main(int argc, const char **argv_)
else if (arg_match(&arg, &height, argi))
cfg.g_h = arg_parse_uint(&arg);
else if (arg_match(&arg, &timebase, argi))
{
cfg.g_timebase = arg_parse_rational(&arg);
arg_have_timebase = 1;
}
else if (arg_match(&arg, &error_resilient, argi))
cfg.g_error_resilient = arg_parse_uint(&arg);
else if (arg_match(&arg, &lag_in_frames, argi))
@ -808,10 +844,24 @@ int main(int argc, const char **argv_)
return EXIT_FAILURE;
}
is_ivf = file_is_ivf(infile, &fourcc, &cfg.g_w, &cfg.g_h);
if (is_ivf)
if (file_is_y4m(infile, &y4m))
{
file_type = FILE_TYPE_Y4M;
cfg.g_w = y4m.pic_w;
cfg.g_h = y4m.pic_h;
/* Use the frame rate from the file only if none was specified on the
* command-line.
*/
if (!arg_have_timebase)
{
cfg.g_timebase.num = y4m.fps_d;
cfg.g_timebase.den = y4m.fps_n;
}
arg_use_i420 = 0;
}
else if (file_is_ivf(infile, &fourcc, &cfg.g_w, &cfg.g_h))
{
file_type = FILE_TYPE_IVF;
switch (fourcc)
{
case 0x32315659:
@ -825,6 +875,8 @@ int main(int argc, const char **argv_)
return EXIT_FAILURE;
}
}
else
file_type = FILE_TYPE_RAW;
fclose(infile);
@ -869,8 +921,14 @@ int main(int argc, const char **argv_)
SHOW(kf_max_dist);
}
vpx_img_alloc(&raw, arg_use_i420 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_YV12,
cfg.g_w, cfg.g_h, 1);
if (file_type == FILE_TYPE_Y4M)
/*The Y4M reader does its own allocation.
Just initialize this here to avoid problems if we never read any
frames.*/
memset(&raw, 0, sizeof(raw));
else
vpx_img_alloc(&raw, arg_use_i420 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_YV12,
cfg.g_w, cfg.g_h, 1);
// This was added so that ivfenc will create monotically increasing
// timestamps. Since we create new timestamps for alt-reference frames
@ -894,6 +952,18 @@ int main(int argc, const char **argv_)
return EXIT_FAILURE;
}
/*Skip the file header.*/
if (file_type == FILE_TYPE_IVF)
{
char raw_hdr[IVF_FILE_HDR_SZ];
(void)fread(raw_hdr, 1, IVF_FILE_HDR_SZ, infile);
}
else if(file_type == FILE_TYPE_Y4M)
{
char buffer[80];
(void)fgets(buffer, sizeof(buffer)/sizeof(*buffer) - 1, infile);
}
outfile = fopen(out_fn, "wb");
if (!outfile)
@ -966,7 +1036,7 @@ int main(int argc, const char **argv_)
if (!arg_limit || frames_in < arg_limit)
{
frame_avail = read_frame(infile, &raw, is_ivf);
frame_avail = read_frame(infile, &raw, file_type, &y4m);
if (frame_avail)
frames_in++;

880
y4minput.c Normal file
View File

@ -0,0 +1,880 @@
/*
* Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license and patent
* grant that can be found in the LICENSE file in the root of the source
* tree. All contributing project authors may be found in the AUTHORS
* file in the root of the source tree.
*
* Based on code from the OggTheora software codec source code,
* Copyright (C) 2002-2010 The Xiph.Org Foundation and contributors.
*/
#include <stdlib.h>
#include <string.h>
#include "y4minput.h"
static int y4m_parse_tags(y4m_input *_y4m,char *_tags){
int got_w;
int got_h;
int got_fps;
int got_interlace;
int got_par;
int got_chroma;
char *p;
char *q;
got_w=got_h=got_fps=got_interlace=got_par=got_chroma=0;
for(p=_tags;;p=q){
/*Skip any leading spaces.*/
while(*p==' ')p++;
/*If that's all we have, stop.*/
if(p[0]=='\0')break;
/*Find the end of this tag.*/
for(q=p+1;*q!='\0'&&*q!=' ';q++);
/*Process the tag.*/
switch(p[0]){
case 'W':{
if(sscanf(p+1,"%d",&_y4m->pic_w)!=1)return -1;
got_w=1;
}break;
case 'H':{
if(sscanf(p+1,"%d",&_y4m->pic_h)!=1)return -1;
got_h=1;
}break;
case 'F':{
if(sscanf(p+1,"%d:%d",&_y4m->fps_n,&_y4m->fps_d)!=2){
return -1;
}
got_fps=1;
}break;
case 'I':{
_y4m->interlace=p[1];
got_interlace=1;
}break;
case 'A':{
if(sscanf(p+1,"%d:%d",&_y4m->par_n,&_y4m->par_d)!=2){
return -1;
}
got_par=1;
}break;
case 'C':{
if(q-p>16)return -1;
memcpy(_y4m->chroma_type,p+1,q-p-1);
_y4m->chroma_type[q-p-1]='\0';
got_chroma=1;
}break;
/*Ignore unknown tags.*/
}
}
if(!got_w||!got_h||!got_fps)return -1;
if(!got_interlace)_y4m->interlace='?';
if(!got_par)_y4m->par_n=_y4m->par_d=0;
/*Chroma-type is not specified in older files, e.g., those generated by
mplayer.*/
if(!got_chroma)strcpy(_y4m->chroma_type,"420");
return 0;
}
/*All anti-aliasing filters in the following conversion functions are based on
one of two window functions:
The 6-tap Lanczos window (for down-sampling and shifts):
sinc(\pi*t)*sinc(\pi*t/3), |t|<3 (sinc(t)==sin(t)/t)
0, |t|>=3
The 4-tap Mitchell window (for up-sampling):
7|t|^3-12|t|^2+16/3, |t|<1
-(7/3)|x|^3+12|x|^2-20|x|+32/3, |t|<2
0, |t|>=2
The number of taps is intentionally kept small to reduce computational
overhead and limit ringing.
The taps from these filters are scaled so that their sum is 1, and the result
is scaled by 128 and rounded to integers to create a filter whose
intermediate values fit inside 16 bits.
Coefficients are rounded in such a way as to ensure their sum is still 128,
which is usually equivalent to normal rounding.
Conversions which require both horizontal and vertical filtering could
have these steps pipelined, for less memory consumption and better cache
performance, but we do them separately for simplicity.*/
#define OC_MINI(_a,_b) ((_a)>(_b)?(_b):(_a))
#define OC_MAXI(_a,_b) ((_a)<(_b)?(_b):(_a))
#define OC_CLAMPI(_a,_b,_c) (OC_MAXI(_a,OC_MINI(_b,_c)))
/*420jpeg chroma samples are sited like:
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
420mpeg2 chroma samples are sited like:
Y-------Y-------Y-------Y-------
| | | |
BR | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
Y-------Y-------Y-------Y-------
| | | |
BR | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
We use a resampling filter to shift the site locations one quarter pixel (at
the chroma plane's resolution) to the right.
The 4:2:2 modes look exactly the same, except there are twice as many chroma
lines, and they are vertically co-sited with the luma samples in both the
mpeg2 and jpeg cases (thus requiring no vertical resampling).*/
static void y4m_42xmpeg2_42xjpeg_helper(unsigned char *_dst,
const unsigned char *_src,int _c_w,int _c_h){
int pli;
int y;
int x;
for(y=0;y<_c_h;y++){
/*Filter: [4 -17 114 35 -9 1]/128, derived from a 6-tap Lanczos
window.*/
for(x=0;x<OC_MINI(_c_w,2);x++){
_dst[x]=(unsigned char)OC_CLAMPI(0,(4*_src[0]-17*_src[OC_MAXI(x-1,0)]+
114*_src[x]+35*_src[OC_MINI(x+1,_c_w-1)]-9*_src[OC_MINI(x+2,_c_w-1)]+
_src[OC_MINI(x+3,_c_w-1)]+64)>>7,255);
}
for(;x<_c_w-3;x++){
_dst[x]=(unsigned char)OC_CLAMPI(0,(4*_src[x-2]-17*_src[x-1]+
114*_src[x]+35*_src[x+1]-9*_src[x+2]+_src[x+3]+64)>>7,255);
}
for(;x<_c_w;x++){
_dst[x]=(unsigned char)OC_CLAMPI(0,(4*_src[x-2]-17*_src[x-1]+
114*_src[x]+35*_src[OC_MINI(x+1,_c_w-1)]-9*_src[OC_MINI(x+2,_c_w-1)]+
_src[_c_w-1]+64)>>7,255);
}
_dst+=_c_w;
_src+=_c_w;
}
}
/*Handles both 422 and 420mpeg2 to 422jpeg and 420jpeg, respectively.*/
static void y4m_convert_42xmpeg2_42xjpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
int c_w;
int c_h;
int c_sz;
int pli;
int y;
int x;
/*Skip past the luma data.*/
_dst+=_y4m->pic_w*_y4m->pic_h;
/*Compute the size of each chroma plane.*/
c_w=(_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h;
c_h=(_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v;
c_sz=c_w*c_h;
for(pli=1;pli<3;pli++){
y4m_42xmpeg2_42xjpeg_helper(_dst,_aux,c_w,c_h);
_dst+=c_sz;
_aux+=c_sz;
}
}
/*This format is only used for interlaced content, but is included for
completeness.
420jpeg chroma samples are sited like:
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
420paldv chroma samples are sited like:
YR------Y-------YR------Y-------
| | | |
| | | |
| | | |
YB------Y-------YB------Y-------
| | | |
| | | |
| | | |
YR------Y-------YR------Y-------
| | | |
| | | |
| | | |
YB------Y-------YB------Y-------
| | | |
| | | |
| | | |
We use a resampling filter to shift the site locations one quarter pixel (at
the chroma plane's resolution) to the right.
Then we use another filter to move the C_r location down one quarter pixel,
and the C_b location up one quarter pixel.*/
static void y4m_convert_42xpaldv_42xjpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
unsigned char *tmp;
int c_w;
int c_h;
int c_sz;
int pli;
int y;
int x;
/*Skip past the luma data.*/
_dst+=_y4m->pic_w*_y4m->pic_h;
/*Compute the size of each chroma plane.*/
c_w=(_y4m->pic_w+1)/2;
c_h=(_y4m->pic_h+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h;
c_sz=c_w*c_h;
tmp=_aux+2*c_sz;
for(pli=1;pli<3;pli++){
/*First do the horizontal re-sampling.
This is the same as the mpeg2 case, except that after the horizontal
case, we need to apply a second vertical filter.*/
y4m_42xmpeg2_42xjpeg_helper(tmp,_aux,c_w,c_h);
_aux+=c_sz;
switch(pli){
case 1:{
/*Slide C_b up a quarter-pel.
This is the same filter used above, but in the other order.*/
for(x=0;x<c_w;x++){
for(y=0;y<OC_MINI(c_h,3);y++){
_dst[y*c_w]=(unsigned char)OC_CLAMPI(0,(tmp[0]
-9*tmp[OC_MAXI(y-2,0)*c_w]+35*tmp[OC_MAXI(y-1,0)*c_w]
+114*tmp[y*c_w]-17*tmp[OC_MINI(y+1,c_h-1)*c_w]
+4*tmp[OC_MINI(y+2,c_h-1)*c_w]+64)>>7,255);
}
for(;y<c_h-2;y++){
_dst[y*c_w]=(unsigned char)OC_CLAMPI(0,(tmp[(y-3)*c_w]
-9*tmp[(y-2)*c_w]+35*tmp[(y-1)*c_w]+114*tmp[y*c_w]
-17*tmp[(y+1)*c_w]+4*tmp[(y+2)*c_w]+64)>>7,255);
}
for(;y<c_h;y++){
_dst[y*c_w]=(unsigned char)OC_CLAMPI(0,(tmp[(y-3)*c_w]
-9*tmp[(y-2)*c_w]+35*tmp[(y-1)*c_w]+114*tmp[y*c_w]
-17*tmp[OC_MINI(y+1,c_h-1)*c_w]+4*tmp[(c_h-1)*c_w]+64)>>7,255);
}
_dst++;
tmp++;
}
_dst+=c_sz-c_w;
tmp-=c_w;
}break;
case 2:{
/*Slide C_r down a quarter-pel.
This is the same as the horizontal filter.*/
for(x=0;x<c_w;x++){
for(y=0;y<OC_MINI(c_h,2);y++){
_dst[y*c_w]=(unsigned char)OC_CLAMPI(0,(4*tmp[0]
-17*tmp[OC_MAXI(y-1,0)*c_w]+114*tmp[y*c_w]
+35*tmp[OC_MINI(y+1,c_h-1)*c_w]-9*tmp[OC_MINI(y+2,c_h-1)*c_w]
+tmp[OC_MINI(y+3,c_h-1)*c_w]+64)>>7,255);
}
for(;y<c_h-3;y++){
_dst[y*c_w]=(unsigned char)OC_CLAMPI(0,(4*tmp[(y-2)*c_w]
-17*tmp[(y-1)*c_w]+114*tmp[y*c_w]+35*tmp[(y+1)*c_w]
-9*tmp[(y+2)*c_w]+tmp[(y+3)*c_w]+64)>>7,255);
}
for(;y<c_h;y++){
_dst[y*c_w]=(unsigned char)OC_CLAMPI(0,(4*tmp[(y-2)*c_w]
-17*tmp[(y-1)*c_w]+114*tmp[y*c_w]+35*tmp[OC_MINI(y+1,c_h-1)*c_w]
-9*tmp[OC_MINI(y+2,c_h-1)*c_w]+tmp[(c_h-1)*c_w]+64)>>7,255);
}
_dst++;
tmp++;
}
}break;
}
/*For actual interlaced material, this would have to be done separately on
each field, and the shift amounts would be different.
C_r moves down 1/8, C_b up 3/8 in the top field, and C_r moves down 3/8,
C_b up 1/8 in the bottom field.
The corresponding filters would be:
Down 1/8 (reverse order for up): [3 -11 125 15 -4 0]/128
Down 3/8 (reverse order for up): [4 -19 98 56 -13 2]/128*/
}
}
/*Perform vertical filtering to reduce a single plane from 4:2:2 to 4:2:0.
This is used as a helper by several converation routines.*/
static void y4m_422jpeg_420jpeg_helper(unsigned char *_dst,
const unsigned char *_src,int _c_w,int _c_h){
int y;
int x;
/*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/
for(x=0;x<_c_w;x++){
for(y=0;y<OC_MINI(_c_h,2);y+=2){
_dst[(y>>1)*_c_w]=OC_CLAMPI(0,(64*_src[0]
+78*_src[OC_MINI(1,_c_h-1)*_c_w]
-17*_src[OC_MINI(2,_c_h-1)*_c_w]
+3*_src[OC_MINI(3,_c_h-1)*_c_w]+64)>>7,255);
}
for(;y<_c_h-3;y+=2){
_dst[(y>>1)*_c_w]=OC_CLAMPI(0,(3*(_src[(y-2)*_c_w]+_src[(y+3)*_c_w])
-17*(_src[(y-1)*_c_w]+_src[(y+2)*_c_w])
+78*(_src[y*_c_w]+_src[(y+1)*_c_w])+64)>>7,255);
}
for(;y<_c_h;y+=2){
_dst[(y>>1)*_c_w]=OC_CLAMPI(0,(3*(_src[(y-2)*_c_w]
+_src[(_c_h-1)*_c_w])-17*(_src[(y-1)*_c_w]
+_src[OC_MINI(y+2,_c_h-1)*_c_w])
+78*(_src[y*_c_w]+_src[OC_MINI(y+1,_c_h-1)*_c_w])+64)>>7,255);
}
_src++;
_dst++;
}
}
/*420jpeg chroma samples are sited like:
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
422jpeg chroma samples are sited like:
Y---BR--Y-------Y---BR--Y-------
| | | |
| | | |
| | | |
Y---BR--Y-------Y---BR--Y-------
| | | |
| | | |
| | | |
Y---BR--Y-------Y---BR--Y-------
| | | |
| | | |
| | | |
Y---BR--Y-------Y---BR--Y-------
| | | |
| | | |
| | | |
We use a resampling filter to decimate the chroma planes by two in the
vertical direction.*/
static void y4m_convert_422jpeg_420jpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
int c_w;
int c_h;
int c_sz;
int dst_c_w;
int dst_c_h;
int dst_c_sz;
int tmp_sz;
int pic_sz;
int pli;
/*Skip past the luma data.*/
_dst+=_y4m->pic_w*_y4m->pic_h;
/*Compute the size of each chroma plane.*/
c_w=(_y4m->pic_w+_y4m->src_c_dec_h-1)/_y4m->src_c_dec_h;
c_h=_y4m->pic_h;
dst_c_w=(_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h;
dst_c_h=(_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v;
c_sz=c_w*c_h;
dst_c_sz=dst_c_w*dst_c_h;
for(pli=1;pli<3;pli++){
y4m_422jpeg_420jpeg_helper(_dst,_aux,c_w,c_h);
_aux+=c_sz;
_dst+=dst_c_sz;
}
}
/*420jpeg chroma samples are sited like:
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
422 chroma samples are sited like:
YBR-----Y-------YBR-----Y-------
| | | |
| | | |
| | | |
YBR-----Y-------YBR-----Y-------
| | | |
| | | |
| | | |
YBR-----Y-------YBR-----Y-------
| | | |
| | | |
| | | |
YBR-----Y-------YBR-----Y-------
| | | |
| | | |
| | | |
We use a resampling filter to shift the original site locations one quarter
pixel (at the original chroma resolution) to the right.
Then we use a second resampling filter to decimate the chroma planes by two
in the vertical direction.*/
static void y4m_convert_422_420jpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
unsigned char *tmp;
int c_w;
int c_h;
int c_sz;
int dst_c_w;
int dst_c_h;
int dst_c_sz;
int pli;
int y;
int x;
/*Skip past the luma data.*/
_dst+=_y4m->pic_w*_y4m->pic_h;
/*Compute the size of each chroma plane.*/
c_w=(_y4m->pic_w+_y4m->src_c_dec_h-1)/_y4m->src_c_dec_h;
c_h=_y4m->pic_h;
dst_c_h=(_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v;
c_sz=c_w*c_h;
dst_c_sz=c_w*dst_c_h;
tmp=_aux+2*c_sz;
for(pli=1;pli<3;pli++){
/*In reality, the horizontal and vertical steps could be pipelined, for
less memory consumption and better cache performance, but we do them
separately for simplicity.*/
/*First do horizontal filtering (convert to 422jpeg)*/
y4m_42xmpeg2_42xjpeg_helper(tmp,_aux,c_w,c_h);
/*Now do the vertical filtering.*/
y4m_422jpeg_420jpeg_helper(_dst,tmp,c_w,c_h);
_aux+=c_sz;
_dst+=dst_c_sz;
}
}
/*420jpeg chroma samples are sited like:
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| BR | | BR |
| | | |
Y-------Y-------Y-------Y-------
| | | |
| | | |
| | | |
411 chroma samples are sited like:
YBR-----Y-------Y-------Y-------
| | | |
| | | |
| | | |
YBR-----Y-------Y-------Y-------
| | | |
| | | |
| | | |
YBR-----Y-------Y-------Y-------
| | | |
| | | |
| | | |
YBR-----Y-------Y-------Y-------
| | | |
| | | |
| | | |
We use a filter to resample at site locations one eighth pixel (at the source
chroma plane's horizontal resolution) and five eighths of a pixel to the
right.
Then we use another filter to decimate the planes by 2 in the vertical
direction.*/
static void y4m_convert_411_420jpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
unsigned char *tmp;
int c_w;
int c_h;
int c_sz;
int dst_c_w;
int dst_c_h;
int dst_c_sz;
int tmp_sz;
int pli;
int y;
int x;
/*Skip past the luma data.*/
_dst+=_y4m->pic_w*_y4m->pic_h;
/*Compute the size of each chroma plane.*/
c_w=(_y4m->pic_w+_y4m->src_c_dec_h-1)/_y4m->src_c_dec_h;
c_h=_y4m->pic_h;
dst_c_w=(_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h;
dst_c_h=(_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v;
c_sz=c_w*c_h;
dst_c_sz=dst_c_w*dst_c_h;
tmp_sz=dst_c_w*c_h;
tmp=_aux+2*c_sz;
for(pli=1;pli<3;pli++){
/*In reality, the horizontal and vertical steps could be pipelined, for
less memory consumption and better cache performance, but we do them
separately for simplicity.*/
/*First do horizontal filtering (convert to 422jpeg)*/
for(y=0;y<c_h;y++){
/*Filters: [1 110 18 -1]/128 and [-3 50 86 -5]/128, both derived from a
4-tap Mitchell window.*/
for(x=0;x<OC_MINI(c_w,1);x++){
tmp[x<<1]=(unsigned char)OC_CLAMPI(0,(111*_aux[0]
+18*_aux[OC_MINI(1,c_w-1)]-_aux[OC_MINI(2,c_w-1)]+64)>>7,255);
tmp[x<<1|1]=(unsigned char)OC_CLAMPI(0,(47*_aux[0]
+86*_aux[OC_MINI(1,c_w-1)]-5*_aux[OC_MINI(2,c_w-1)]+64)>>7,255);
}
for(;x<c_w-2;x++){
tmp[x<<1]=(unsigned char)OC_CLAMPI(0,(_aux[x-1]+110*_aux[x]
+18*_aux[x+1]-_aux[x+2]+64)>>7,255);
tmp[x<<1|1]=(unsigned char)OC_CLAMPI(0,(-3*_aux[x-1]+50*_aux[x]
+86*_aux[x+1]-5*_aux[x+2]+64)>>7,255);
}
for(;x<c_w;x++){
tmp[x<<1]=(unsigned char)OC_CLAMPI(0,(_aux[x-1]+110*_aux[x]
+18*_aux[OC_MINI(x+1,c_w-1)]-_aux[c_w-1]+64)>>7,255);
if((x<<1|1)<dst_c_w){
tmp[x<<1|1]=(unsigned char)OC_CLAMPI(0,(-3*_aux[x-1]+50*_aux[x]
+86*_aux[OC_MINI(x+1,c_w-1)]-5*_aux[c_w-1]+64)>>7,255);
}
}
tmp+=dst_c_w;
_aux+=c_w;
}
tmp-=tmp_sz;
/*Now do the vertical filtering.*/
y4m_422jpeg_420jpeg_helper(_dst,tmp,dst_c_w,c_h);
_dst+=dst_c_sz;
}
}
/*Convert 444 to 420jpeg.*/
static void y4m_convert_444_420jpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
unsigned char *tmp;
int c_w;
int c_h;
int c_sz;
int dst_c_w;
int dst_c_h;
int dst_c_sz;
int tmp_sz;
int pli;
int y;
int x;
/*Skip past the luma data.*/
_dst+=_y4m->pic_w*_y4m->pic_h;
/*Compute the size of each chroma plane.*/
c_w=(_y4m->pic_w+_y4m->src_c_dec_h-1)/_y4m->src_c_dec_h;
c_h=_y4m->pic_h;
dst_c_w=(_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h;
dst_c_h=(_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v;
c_sz=c_w*c_h;
dst_c_sz=dst_c_w*dst_c_h;
tmp_sz=dst_c_w*c_h;
tmp=_aux+2*c_sz;
for(pli=1;pli<3;pli++){
/*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/
for(y=0;y<c_h;y++){
for(x=0;x<OC_MINI(c_w,2);x+=2){
tmp[x>>1]=OC_CLAMPI(0,(64*_aux[0]+78*_aux[OC_MINI(1,c_w-1)]
-17*_aux[OC_MINI(2,c_w-1)]
+3*_aux[OC_MINI(3,c_w-1)]+64)>>7,255);
}
for(;x<c_w-3;x+=2){
tmp[x>>1]=OC_CLAMPI(0,(3*(_aux[x-2]+_aux[x+3])
-17*(_aux[x-1]+_aux[x+2])+78*(_aux[x]+_aux[x+1])+64)>>7,255);
}
for(;x<c_w;x+=2){
tmp[x>>1]=OC_CLAMPI(0,(3*(_aux[x-2]+_aux[c_w-1])-
17*(_aux[x-1]+_aux[OC_MINI(x+2,c_w-1)])+
78*(_aux[x]+_aux[OC_MINI(x+1,c_w-1)])+64)>>7,255);
}
tmp+=dst_c_w;
_aux+=c_w;
}
tmp-=tmp_sz;
/*Now do the vertical filtering.*/
y4m_422jpeg_420jpeg_helper(_dst,tmp,dst_c_w,c_h);
_dst+=dst_c_sz;
}
}
/*The image is padded with empty chroma components at 4:2:0.*/
static void y4m_convert_mono_420jpeg(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
int c_sz;
_dst+=_y4m->pic_w*_y4m->pic_h;
c_sz=((_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h)*
((_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v);
memset(_dst,128,c_sz*2);
}
/*No conversion function needed.*/
static void y4m_convert_null(y4m_input *_y4m,unsigned char *_dst,
unsigned char *_aux){
}
int y4m_input_open(y4m_input *_y4m,FILE *_fin,char *_skip,int _nskip){
char buffer[80];
int ret;
int i;
/*Read until newline, or 80 cols, whichever happens first.*/
for(i=0;i<79;i++){
if(_nskip>0){
buffer[i]=*_skip++;
_nskip--;
}
else{
ret=fread(buffer+i,1,1,_fin);
if(ret<1)return -1;
}
if(buffer[i]=='\n')break;
}
/*We skipped too much header data.*/
if(_nskip>0)return -1;
if(i==79){
fprintf(stderr,"Error parsing header; not a YUV2MPEG2 file?\n");
return -1;
}
buffer[i]='\0';
if(memcmp(buffer,"YUV4MPEG",8)){
fprintf(stderr,"Incomplete magic for YUV4MPEG file.\n");
return -1;
}
if(buffer[8]!='2'){
fprintf(stderr,"Incorrect YUV input file version; YUV4MPEG2 required.\n");
}
ret=y4m_parse_tags(_y4m,buffer+5);
if(ret<0){
fprintf(stderr,"Error parsing YUV4MPEG2 header.\n");
return ret;
}
if(_y4m->interlace=='?'){
fprintf(stderr,"Warning: Input video interlacing format unknown; "
"assuming progressive scan.\n");
}
else if(_y4m->interlace!='p'){
fprintf(stderr,"Input video is interlaced; "
"Only progressive scan handled.\n");
return -1;
}
if(strcmp(_y4m->chroma_type,"420")==0||
strcmp(_y4m->chroma_type,"420jpeg")==0){
_y4m->src_c_dec_h=_y4m->dst_c_dec_h=_y4m->src_c_dec_v=_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h
+2*((_y4m->pic_w+1)/2)*((_y4m->pic_h+1)/2);
/*Natively supported: no conversion required.*/
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz=0;
_y4m->convert=y4m_convert_null;
}
else if(strcmp(_y4m->chroma_type,"420mpeg2")==0){
_y4m->src_c_dec_h=_y4m->dst_c_dec_h=_y4m->src_c_dec_v=_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.*/
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz=
2*((_y4m->pic_w+1)/2)*((_y4m->pic_h+1)/2);
_y4m->convert=y4m_convert_42xmpeg2_42xjpeg;
}
else if(strcmp(_y4m->chroma_type,"420paldv")==0){
_y4m->src_c_dec_h=_y4m->dst_c_dec_h=_y4m->src_c_dec_v=_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.
We need to make two filter passes, so we need some extra space in the
aux buffer.*/
_y4m->aux_buf_sz=3*((_y4m->pic_w+1)/2)*((_y4m->pic_h+1)/2);
_y4m->aux_buf_read_sz=2*((_y4m->pic_w+1)/2)*((_y4m->pic_h+1)/2);
_y4m->convert=y4m_convert_42xpaldv_42xjpeg;
}
else if(strcmp(_y4m->chroma_type,"422jpeg")==0){
_y4m->src_c_dec_h=_y4m->dst_c_dec_h=2;
_y4m->src_c_dec_v=1;
_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.*/
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz=2*((_y4m->pic_w+1)/2)*_y4m->pic_h;
_y4m->convert=y4m_convert_422jpeg_420jpeg;
}
else if(strcmp(_y4m->chroma_type,"422")==0){
_y4m->src_c_dec_h=_y4m->dst_c_dec_h=2;
_y4m->src_c_dec_v=1;
_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.
We need to make two filter passes, so we need some extra space in the
aux buffer.*/
_y4m->aux_buf_read_sz=2*((_y4m->pic_w+1)/2)*_y4m->pic_h;
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz+((_y4m->pic_w+1)/2)*_y4m->pic_h;
_y4m->convert=y4m_convert_422_420jpeg;
}
else if(strcmp(_y4m->chroma_type,"411")==0){
_y4m->src_c_dec_h=4;
_y4m->dst_c_dec_h=2;
_y4m->src_c_dec_v=1;
_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.
We need to make two filter passes, so we need some extra space in the
aux buffer.*/
_y4m->aux_buf_read_sz=2*((_y4m->pic_w+3)/4)*_y4m->pic_h;
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz+((_y4m->pic_w+1)/2)*_y4m->pic_h;
_y4m->convert=y4m_convert_411_420jpeg;
}
else if(strcmp(_y4m->chroma_type,"444")==0){
_y4m->src_c_dec_h=1;
_y4m->dst_c_dec_h=2;
_y4m->src_c_dec_v=1;
_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.
We need to make two filter passes, so we need some extra space in the
aux buffer.*/
_y4m->aux_buf_read_sz=2*_y4m->pic_w*_y4m->pic_h;
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz+((_y4m->pic_w+1)/2)*_y4m->pic_h;
_y4m->convert=y4m_convert_444_420jpeg;
}
else if(strcmp(_y4m->chroma_type,"444alpha")==0){
_y4m->src_c_dec_h=1;
_y4m->dst_c_dec_h=2;
_y4m->src_c_dec_v=1;
_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*Chroma filter required: read into the aux buf first.
We need to make two filter passes, so we need some extra space in the
aux buffer.
The extra plane also gets read into the aux buf.
It will be discarded.*/
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz=3*_y4m->pic_w*_y4m->pic_h;
_y4m->convert=y4m_convert_444_420jpeg;
}
else if(strcmp(_y4m->chroma_type,"mono")==0){
_y4m->src_c_dec_h=_y4m->src_c_dec_v=0;
_y4m->dst_c_dec_h=_y4m->dst_c_dec_v=2;
_y4m->dst_buf_read_sz=_y4m->pic_w*_y4m->pic_h;
/*No extra space required, but we need to clear the chroma planes.*/
_y4m->aux_buf_sz=_y4m->aux_buf_read_sz=0;
_y4m->convert=y4m_convert_mono_420jpeg;
}
else{
fprintf(stderr,"Unknown chroma sampling type: %s\n",_y4m->chroma_type);
return -1;
}
/*The size of the final frame buffers is always computed from the
destination chroma decimation type.*/
_y4m->dst_buf_sz=_y4m->pic_w*_y4m->pic_h
+2*((_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h)*
((_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v);
_y4m->dst_buf=(unsigned char *)malloc(_y4m->dst_buf_sz);
_y4m->aux_buf=(unsigned char *)malloc(_y4m->aux_buf_sz);
return 0;
}
void y4m_input_close(y4m_input *_y4m){
free(_y4m->dst_buf);
free(_y4m->aux_buf);
}
int y4m_input_fetch_frame(y4m_input *_y4m,FILE *_fin,vpx_image_t *_img){
char frame[6];
int pic_sz;
int frame_c_w;
int frame_c_h;
int c_w;
int c_h;
int c_sz;
int ret;
/*Read and skip the frame header.*/
ret=fread(frame,1,6,_fin);
if(ret<6)return 0;
if(memcmp(frame,"FRAME",5)){
fprintf(stderr,"Loss of framing in Y4M input data\n");
return -1;
}
if(frame[5]!='\n'){
char c;
int j;
for(j=0;j<79&&fread(&c,1,1,_fin)&&c!='\n';j++);
if(j==79){
fprintf(stderr,"Error parsing Y4M frame header\n");
return -1;
}
}
/*Read the frame data that needs no conversion.*/
if(fread(_y4m->dst_buf,1,_y4m->dst_buf_read_sz,_fin)!=_y4m->dst_buf_read_sz){
fprintf(stderr,"Error reading Y4M frame data.\n");
return -1;
}
/*Read the frame data that does need conversion.*/
if(fread(_y4m->aux_buf,1,_y4m->aux_buf_read_sz,_fin)!=_y4m->aux_buf_read_sz){
fprintf(stderr,"Error reading Y4M frame data.\n");
return -1;
}
/*Now convert the just read frame.*/
(*_y4m->convert)(_y4m,_y4m->dst_buf,_y4m->aux_buf);
/*Fill in the frame buffer pointers.
We don't use vpx_img_wrap() because it forces padding for odd picture
sizes, which would require a separate fread call for every row.*/
memset(_img,0,sizeof(*_img));
/*Y4M has the planes in Y'CbCr order, which libvpx calls Y, U, and V.*/
_img->fmt=IMG_FMT_I420;
_img->w=_img->d_w=_y4m->pic_w;
_img->h=_img->d_h=_y4m->pic_h;
/*This is hard-coded to 4:2:0 for now, as that's all VP8 supports.*/
_img->x_chroma_shift=1;
_img->y_chroma_shift=1;
_img->bps=12;
/*Set up the buffer pointers.*/
pic_sz=_y4m->pic_w*_y4m->pic_h;
c_w=(_y4m->pic_w+_y4m->dst_c_dec_h-1)/_y4m->dst_c_dec_h;
c_h=(_y4m->pic_h+_y4m->dst_c_dec_v-1)/_y4m->dst_c_dec_v;
c_sz=c_w*c_h;
_img->stride[PLANE_Y]=_y4m->pic_w;
_img->stride[PLANE_U]=_img->stride[PLANE_V]=c_w;
_img->planes[PLANE_Y]=_y4m->dst_buf;
_img->planes[PLANE_U]=_y4m->dst_buf+pic_sz;
_img->planes[PLANE_V]=_y4m->dst_buf+pic_sz+c_sz;
return 0;
}

59
y4minput.h Normal file
View File

@ -0,0 +1,59 @@
/*
* Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license and patent
* grant that can be found in the LICENSE file in the root of the source
* tree. All contributing project authors may be found in the AUTHORS
* file in the root of the source tree.
*
* Based on code from the OggTheora software codec source code,
* Copyright (C) 2002-2010 The Xiph.Org Foundation and contributors.
*/
#if !defined(_y4minput_H)
# define _y4minput_H (1)
# include <stdio.h>
# include "vpx/vpx_image.h"
typedef struct y4m_input y4m_input;
/*The function used to perform chroma conversion.*/
typedef void (*y4m_convert_func)(y4m_input *_y4m,
unsigned char *_dst,unsigned char *_src);
struct y4m_input{
int pic_w;
int pic_h;
int fps_n;
int fps_d;
int par_n;
int par_d;
char interlace;
int src_c_dec_h;
int src_c_dec_v;
int dst_c_dec_h;
int dst_c_dec_v;
char chroma_type[16];
/*The size of each converted frame buffer.*/
size_t dst_buf_sz;
/*The amount to read directly into the converted frame buffer.*/
size_t dst_buf_read_sz;
/*The size of the auxilliary buffer.*/
size_t aux_buf_sz;
/*The amount to read into the auxilliary buffer.*/
size_t aux_buf_read_sz;
y4m_convert_func convert;
unsigned char *dst_buf;
unsigned char *aux_buf;
};
int y4m_input_open(y4m_input *_y4m,FILE *_fin,char *_skip,int _nskip);
void y4m_input_close(y4m_input *_y4m);
int y4m_input_fetch_frame(y4m_input *_y4m,FILE *_fin,vpx_image_t *img);
#endif