vpx/vp9/encoder/vp9_dct.c

1592 lines
53 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include <assert.h>
2010-05-18 11:58:33 -04:00
#include <math.h>
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_dct.h"
static INLINE tran_high_t fdct_round_shift(tran_high_t input) {
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
// TODO(debargha, peter.derivaz): Find new bounds for this assert
// and make the bounds consts.
// assert(INT16_MIN <= rv && rv <= INT16_MAX);
return rv;
}
void vp9_fdct4(const tran_low_t *input, tran_low_t *output) {
tran_high_t step[4];
tran_high_t temp1, temp2;
step[0] = input[0] + input[3];
step[1] = input[1] + input[2];
step[2] = input[1] - input[2];
step[3] = input[0] - input[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
output[0] = (tran_low_t)fdct_round_shift(temp1);
output[2] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
output[1] = (tran_low_t)fdct_round_shift(temp1);
output[3] = (tran_low_t)fdct_round_shift(temp2);
}
void vp9_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 4; ++r)
for (c = 0; c < 4; ++c)
sum += input[r * stride + c];
output[0] = sum << 1;
output[1] = 0;
}
void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[4 * 4];
const int16_t *in_pass0 = input;
const tran_low_t *in = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t input[4]; // canbe16
tran_high_t step[4]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 4; ++i) {
// Load inputs.
if (0 == pass) {
input[0] = in_pass0[0 * stride] * 16;
input[1] = in_pass0[1 * stride] * 16;
input[2] = in_pass0[2 * stride] * 16;
input[3] = in_pass0[3 * stride] * 16;
if (i == 0 && input[0]) {
input[0] += 1;
}
} else {
input[0] = in[0 * 4];
input[1] = in[1 * 4];
input[2] = in[2 * 4];
input[3] = in[3 * 4];
}
// Transform.
step[0] = input[0] + input[3];
step[1] = input[1] + input[2];
step[2] = input[1] - input[2];
step[3] = input[0] - input[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
out[0] = (tran_low_t)fdct_round_shift(temp1);
out[2] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[3] = (tran_low_t)fdct_round_shift(temp2);
// Do next column (which is a transposed row in second/horizontal pass)
in_pass0++;
in++;
out += 4;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
{
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
}
}
2010-05-18 11:58:33 -04:00
}
void vp9_fadst4(const tran_low_t *input, tran_low_t *output) {
tran_high_t x0, x1, x2, x3;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
x0 = input[0];
x1 = input[1];
x2 = input[2];
x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_4_9 * x0;
s2 = sinpi_2_9 * x1;
s3 = sinpi_1_9 * x1;
s4 = sinpi_3_9 * x2;
s5 = sinpi_4_9 * x3;
s6 = sinpi_2_9 * x3;
s7 = x0 + x1 - x3;
x0 = s0 + s2 + s5;
x1 = sinpi_3_9 * s7;
x2 = s1 - s3 + s6;
x3 = s4;
s0 = x0 + x3;
s1 = x1;
s2 = x2 - x3;
s3 = x2 - x0 + x3;
// 1-D transform scaling factor is sqrt(2).
output[0] = (tran_low_t)fdct_round_shift(s0);
output[1] = (tran_low_t)fdct_round_shift(s1);
output[2] = (tran_low_t)fdct_round_shift(s2);
output[3] = (tran_low_t)fdct_round_shift(s3);
}
void vp9_fht4x4_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
vp9_fdct4x4_c(input, output, stride);
} else {
tran_low_t out[4 * 4];
int i, j;
tran_low_t temp_in[4], temp_out[4];
const transform_2d ht = FHT_4[tx_type];
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = input[j * stride + i] * 16;
if (i == 0 && temp_in[0])
temp_in[0] += 1;
ht.cols(temp_in, temp_out);
for (j = 0; j < 4; ++j)
out[j * 4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j + i * 4];
ht.rows(temp_in, temp_out);
for (j = 0; j < 4; ++j)
output[j + i * 4] = (temp_out[j] + 1) >> 2;
}
}
}
void vp9_fdct8(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
// stage 1
s0 = input[0] + input[7];
s1 = input[1] + input[6];
s2 = input[2] + input[5];
s3 = input[3] + input[4];
s4 = input[3] - input[4];
s5 = input[2] - input[5];
s6 = input[1] - input[6];
s7 = input[0] - input[7];
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
output[0] = (tran_low_t)fdct_round_shift(t0);
output[2] = (tran_low_t)fdct_round_shift(t2);
output[4] = (tran_low_t)fdct_round_shift(t1);
output[6] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = (tran_low_t)fdct_round_shift(t0);
t3 = (tran_low_t)fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
output[1] = (tran_low_t)fdct_round_shift(t0);
output[3] = (tran_low_t)fdct_round_shift(t2);
output[5] = (tran_low_t)fdct_round_shift(t1);
output[7] = (tran_low_t)fdct_round_shift(t3);
}
void vp9_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 8; ++r)
for (c = 0; c < 8; ++c)
sum += input[r * stride + c];
output[0] = sum;
output[1] = 0;
}
void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
int i, j;
tran_low_t intermediate[64];
// Transform columns
{
tran_low_t *output = intermediate;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
int i;
for (i = 0; i < 8; i++) {
// stage 1
s0 = (input[0 * stride] + input[7 * stride]) * 4;
s1 = (input[1 * stride] + input[6 * stride]) * 4;
s2 = (input[2 * stride] + input[5 * stride]) * 4;
s3 = (input[3 * stride] + input[4 * stride]) * 4;
s4 = (input[3 * stride] - input[4 * stride]) * 4;
s5 = (input[2 * stride] - input[5 * stride]) * 4;
s6 = (input[1 * stride] - input[6 * stride]) * 4;
s7 = (input[0 * stride] - input[7 * stride]) * 4;
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
input++;
output++;
}
}
// Rows
for (i = 0; i < 8; ++i) {
vp9_fdct8(&intermediate[i * 8], &final_output[i * 8]);
for (j = 0; j < 8; ++j)
final_output[j + i * 8] /= 2;
}
}
void vp9_fdct8x8_quant_c(const int16_t *input, int stride,
tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr,
uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int eob = -1;
int i, j;
tran_low_t intermediate[64];
// Transform columns
{
tran_low_t *output = intermediate;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
int i;
for (i = 0; i < 8; i++) {
// stage 1
s0 = (input[0 * stride] + input[7 * stride]) * 4;
s1 = (input[1 * stride] + input[6 * stride]) * 4;
s2 = (input[2 * stride] + input[5 * stride]) * 4;
s3 = (input[3 * stride] + input[4 * stride]) * 4;
s4 = (input[3 * stride] - input[4 * stride]) * 4;
s5 = (input[2 * stride] - input[5 * stride]) * 4;
s6 = (input[1 * stride] - input[6 * stride]) * 4;
s7 = (input[0 * stride] - input[7 * stride]) * 4;
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
input++;
output++;
}
}
// Rows
for (i = 0; i < 8; ++i) {
vp9_fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]);
for (j = 0; j < 8; ++j)
coeff_ptr[j + i * 8] /= 2;
}
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
vpx_memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
vpx_memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
tmp = (tmp * quant_ptr[rc != 0]) >> 16;
qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
if (tmp)
eob = i;
}
}
*eob_ptr = eob + 1;
}
void vp9_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 16; ++r)
for (c = 0; c < 16; ++c)
sum += input[r * stride + c];
output[0] = sum >> 1;
output[1] = 0;
}
void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[256];
const int16_t *in_pass0 = input;
const tran_low_t *in = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t step1[8]; // canbe16
tran_high_t step2[8]; // canbe16
tran_high_t step3[8]; // canbe16
tran_high_t input[8]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 16; i++) {
if (0 == pass) {
// Calculate input for the first 8 results.
input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
// Calculate input for the next 8 results.
step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
} else {
// Calculate input for the first 8 results.
input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
// Calculate input for the next 8 results.
step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
}
// Work on the first eight values; fdct8(input, even_results);
{
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
// stage 1
s0 = input[0] + input[7];
s1 = input[1] + input[6];
s2 = input[2] + input[5];
s3 = input[3] + input[4];
s4 = input[3] - input[4];
s5 = input[2] - input[5];
s6 = input[1] - input[6];
s7 = input[0] - input[7];
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
out[0] = (tran_low_t)fdct_round_shift(t0);
out[4] = (tran_low_t)fdct_round_shift(t2);
out[8] = (tran_low_t)fdct_round_shift(t1);
out[12] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
out[2] = (tran_low_t)fdct_round_shift(t0);
out[6] = (tran_low_t)fdct_round_shift(t2);
out[10] = (tran_low_t)fdct_round_shift(t1);
out[14] = (tran_low_t)fdct_round_shift(t3);
}
// Work on the next eight values; step1 -> odd_results
{
// step 2
temp1 = (step1[5] - step1[2]) * cospi_16_64;
temp2 = (step1[4] - step1[3]) * cospi_16_64;
step2[2] = fdct_round_shift(temp1);
step2[3] = fdct_round_shift(temp2);
temp1 = (step1[4] + step1[3]) * cospi_16_64;
temp2 = (step1[5] + step1[2]) * cospi_16_64;
step2[4] = fdct_round_shift(temp1);
step2[5] = fdct_round_shift(temp2);
// step 3
step3[0] = step1[0] + step2[3];
step3[1] = step1[1] + step2[2];
step3[2] = step1[1] - step2[2];
step3[3] = step1[0] - step2[3];
step3[4] = step1[7] - step2[4];
step3[5] = step1[6] - step2[5];
step3[6] = step1[6] + step2[5];
step3[7] = step1[7] + step2[4];
// step 4
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
step2[1] = fdct_round_shift(temp1);
step2[2] = fdct_round_shift(temp2);
temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
step2[5] = fdct_round_shift(temp1);
step2[6] = fdct_round_shift(temp2);
// step 5
step1[0] = step3[0] + step2[1];
step1[1] = step3[0] - step2[1];
step1[2] = step3[3] + step2[2];
step1[3] = step3[3] - step2[2];
step1[4] = step3[4] - step2[5];
step1[5] = step3[4] + step2[5];
step1[6] = step3[7] - step2[6];
step1[7] = step3[7] + step2[6];
// step 6
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[9] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
out[5] = (tran_low_t)fdct_round_shift(temp1);
out[13] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
out[3] = (tran_low_t)fdct_round_shift(temp1);
out[11] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
out[7] = (tran_low_t)fdct_round_shift(temp1);
out[15] = (tran_low_t)fdct_round_shift(temp2);
}
// Do next column (which is a transposed row in second/horizontal pass)
in++;
in_pass0++;
out += 16;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
}
void vp9_fadst8(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_high_t x0 = input[7];
tran_high_t x1 = input[0];
tran_high_t x2 = input[5];
tran_high_t x3 = input[2];
tran_high_t x4 = input[3];
tran_high_t x5 = input[4];
tran_high_t x6 = input[1];
tran_high_t x7 = input[6];
// stage 1
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
x0 = fdct_round_shift(s0 + s4);
x1 = fdct_round_shift(s1 + s5);
x2 = fdct_round_shift(s2 + s6);
x3 = fdct_round_shift(s3 + s7);
x4 = fdct_round_shift(s0 - s4);
x5 = fdct_round_shift(s1 - s5);
x6 = fdct_round_shift(s2 - s6);
x7 = fdct_round_shift(s3 - s7);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
s6 = - cospi_24_64 * x6 + cospi_8_64 * x7;
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
x0 = s0 + s2;
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
x4 = fdct_round_shift(s4 + s6);
x5 = fdct_round_shift(s5 + s7);
x6 = fdct_round_shift(s4 - s6);
x7 = fdct_round_shift(s5 - s7);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
x2 = fdct_round_shift(s2);
x3 = fdct_round_shift(s3);
x6 = fdct_round_shift(s6);
x7 = fdct_round_shift(s7);
output[0] = (tran_low_t)x0;
output[1] = (tran_low_t)-x4;
output[2] = (tran_low_t)x6;
output[3] = (tran_low_t)-x2;
output[4] = (tran_low_t)x3;
output[5] = (tran_low_t)-x7;
output[6] = (tran_low_t)x5;
output[7] = (tran_low_t)-x1;
2010-05-18 11:58:33 -04:00
}
void vp9_fht8x8_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
vp9_fdct8x8_c(input, output, stride);
} else {
tran_low_t out[64];
int i, j;
tran_low_t temp_in[8], temp_out[8];
const transform_2d ht = FHT_8[tx_type];
// Columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = input[j * stride + i] * 4;
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j)
out[j * 8 + i] = temp_out[j];
}
// Rows
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j + i * 8];
ht.rows(temp_in, temp_out);
for (j = 0; j < 8; ++j)
output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
pixel. */
void vp9_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) {
int i;
tran_high_t a1, b1, c1, d1, e1;
const int16_t *ip_pass0 = input;
const tran_low_t *ip = NULL;
tran_low_t *op = output;
for (i = 0; i < 4; i++) {
a1 = ip_pass0[0 * stride];
b1 = ip_pass0[1 * stride];
c1 = ip_pass0[2 * stride];
d1 = ip_pass0[3 * stride];
a1 += b1;
d1 = d1 - c1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= c1;
d1 += b1;
op[0] = (tran_low_t)a1;
op[4] = (tran_low_t)c1;
op[8] = (tran_low_t)d1;
op[12] = (tran_low_t)b1;
ip_pass0++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0];
b1 = ip[1];
c1 = ip[2];
d1 = ip[3];
a1 += b1;
d1 -= c1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= c1;
d1 += b1;
op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR);
op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR);
op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR);
op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR);
ip += 4;
op += 4;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
// Rewrote to use same algorithm as others.
void vp9_fdct16(const tran_low_t in[16], tran_low_t out[16]) {
tran_high_t step1[8]; // canbe16
tran_high_t step2[8]; // canbe16
tran_high_t step3[8]; // canbe16
tran_high_t input[8]; // canbe16
tran_high_t temp1, temp2; // needs32
// step 1
input[0] = in[0] + in[15];
input[1] = in[1] + in[14];
input[2] = in[2] + in[13];
input[3] = in[3] + in[12];
input[4] = in[4] + in[11];
input[5] = in[5] + in[10];
input[6] = in[6] + in[ 9];
input[7] = in[7] + in[ 8];
step1[0] = in[7] - in[ 8];
step1[1] = in[6] - in[ 9];
step1[2] = in[5] - in[10];
step1[3] = in[4] - in[11];
step1[4] = in[3] - in[12];
step1[5] = in[2] - in[13];
step1[6] = in[1] - in[14];
step1[7] = in[0] - in[15];
// fdct8(step, step);
{
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
// stage 1
s0 = input[0] + input[7];
s1 = input[1] + input[6];
s2 = input[2] + input[5];
s3 = input[3] + input[4];
s4 = input[3] - input[4];
s5 = input[2] - input[5];
s6 = input[1] - input[6];
s7 = input[0] - input[7];
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
out[0] = (tran_low_t)fdct_round_shift(t0);
out[4] = (tran_low_t)fdct_round_shift(t2);
out[8] = (tran_low_t)fdct_round_shift(t1);
out[12] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
out[2] = (tran_low_t)fdct_round_shift(t0);
out[6] = (tran_low_t)fdct_round_shift(t2);
out[10] = (tran_low_t)fdct_round_shift(t1);
out[14] = (tran_low_t)fdct_round_shift(t3);
}
// step 2
temp1 = (step1[5] - step1[2]) * cospi_16_64;
temp2 = (step1[4] - step1[3]) * cospi_16_64;
step2[2] = fdct_round_shift(temp1);
step2[3] = fdct_round_shift(temp2);
temp1 = (step1[4] + step1[3]) * cospi_16_64;
temp2 = (step1[5] + step1[2]) * cospi_16_64;
step2[4] = fdct_round_shift(temp1);
step2[5] = fdct_round_shift(temp2);
// step 3
step3[0] = step1[0] + step2[3];
step3[1] = step1[1] + step2[2];
step3[2] = step1[1] - step2[2];
step3[3] = step1[0] - step2[3];
step3[4] = step1[7] - step2[4];
step3[5] = step1[6] - step2[5];
step3[6] = step1[6] + step2[5];
step3[7] = step1[7] + step2[4];
// step 4
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
step2[1] = fdct_round_shift(temp1);
step2[2] = fdct_round_shift(temp2);
temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
step2[5] = fdct_round_shift(temp1);
step2[6] = fdct_round_shift(temp2);
// step 5
step1[0] = step3[0] + step2[1];
step1[1] = step3[0] - step2[1];
step1[2] = step3[3] + step2[2];
step1[3] = step3[3] - step2[2];
step1[4] = step3[4] - step2[5];
step1[5] = step3[4] + step2[5];
step1[6] = step3[7] - step2[6];
step1[7] = step3[7] + step2[6];
// step 6
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[9] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
out[5] = (tran_low_t)fdct_round_shift(temp1);
out[13] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
out[3] = (tran_low_t)fdct_round_shift(temp1);
out[11] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
out[7] = (tran_low_t)fdct_round_shift(temp1);
out[15] = (tran_low_t)fdct_round_shift(temp2);
}
void vp9_fadst16(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
tran_high_t s9, s10, s11, s12, s13, s14, s15;
tran_high_t x0 = input[15];
tran_high_t x1 = input[0];
tran_high_t x2 = input[13];
tran_high_t x3 = input[2];
tran_high_t x4 = input[11];
tran_high_t x5 = input[4];
tran_high_t x6 = input[9];
tran_high_t x7 = input[6];
tran_high_t x8 = input[7];
tran_high_t x9 = input[8];
tran_high_t x10 = input[5];
tran_high_t x11 = input[10];
tran_high_t x12 = input[3];
tran_high_t x13 = input[12];
tran_high_t x14 = input[1];
tran_high_t x15 = input[14];
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = fdct_round_shift(s0 + s8);
x1 = fdct_round_shift(s1 + s9);
x2 = fdct_round_shift(s2 + s10);
x3 = fdct_round_shift(s3 + s11);
x4 = fdct_round_shift(s4 + s12);
x5 = fdct_round_shift(s5 + s13);
x6 = fdct_round_shift(s6 + s14);
x7 = fdct_round_shift(s7 + s15);
x8 = fdct_round_shift(s0 - s8);
x9 = fdct_round_shift(s1 - s9);
x10 = fdct_round_shift(s2 - s10);
x11 = fdct_round_shift(s3 - s11);
x12 = fdct_round_shift(s4 - s12);
x13 = fdct_round_shift(s5 - s13);
x14 = fdct_round_shift(s6 - s14);
x15 = fdct_round_shift(s7 - s15);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = s0 - s4;
x5 = s1 - s5;
x6 = s2 - s6;
x7 = s3 - s7;
x8 = fdct_round_shift(s8 + s12);
x9 = fdct_round_shift(s9 + s13);
x10 = fdct_round_shift(s10 + s14);
x11 = fdct_round_shift(s11 + s15);
x12 = fdct_round_shift(s8 - s12);
x13 = fdct_round_shift(s9 - s13);
x14 = fdct_round_shift(s10 - s14);
x15 = fdct_round_shift(s11 - s15);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = s0 + s2;
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
x4 = fdct_round_shift(s4 + s6);
x5 = fdct_round_shift(s5 + s7);
x6 = fdct_round_shift(s4 - s6);
x7 = fdct_round_shift(s5 - s7);
x8 = s8 + s10;
x9 = s9 + s11;
x10 = s8 - s10;
x11 = s9 - s11;
x12 = fdct_round_shift(s12 + s14);
x13 = fdct_round_shift(s13 + s15);
x14 = fdct_round_shift(s12 - s14);
x15 = fdct_round_shift(s13 - s15);
// stage 4
s2 = (- cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (- x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (- x10 + x11);
s14 = (- cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = fdct_round_shift(s2);
x3 = fdct_round_shift(s3);
x6 = fdct_round_shift(s6);
x7 = fdct_round_shift(s7);
x10 = fdct_round_shift(s10);
x11 = fdct_round_shift(s11);
x14 = fdct_round_shift(s14);
x15 = fdct_round_shift(s15);
output[0] = (tran_low_t)x0;
output[1] = (tran_low_t)-x8;
output[2] = (tran_low_t)x12;
output[3] = (tran_low_t)-x4;
output[4] = (tran_low_t)x6;
output[5] = (tran_low_t)x14;
output[6] = (tran_low_t)x10;
output[7] = (tran_low_t)x2;
output[8] = (tran_low_t)x3;
output[9] = (tran_low_t)x11;
output[10] = (tran_low_t)x15;
output[11] = (tran_low_t)x7;
output[12] = (tran_low_t)x5;
output[13] = (tran_low_t)-x13;
output[14] = (tran_low_t)x9;
output[15] = (tran_low_t)-x1;
}
void vp9_fht16x16_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
vp9_fdct16x16_c(input, output, stride);
} else {
tran_low_t out[256];
int i, j;
tran_low_t temp_in[16], temp_out[16];
const transform_2d ht = FHT_16[tx_type];
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = input[j * stride + i] * 4;
ht.cols(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
}
// Rows
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j + i * 16];
ht.rows(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j + i * 16] = temp_out[j];
}
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
static INLINE tran_high_t dct_32_round(tran_high_t input) {
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
// TODO(debargha, peter.derivaz): Find new bounds for this assert,
// and make the bounds consts.
// assert(-131072 <= rv && rv <= 131071);
return rv;
}
static INLINE tran_high_t half_round_shift(tran_high_t input) {
tran_high_t rv = (input + 1 + (input < 0)) >> 2;
return rv;
}
void vp9_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
tran_high_t step[32];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 1
step[0] = input[0] + input[(32 - 1)];
step[1] = input[1] + input[(32 - 2)];
step[2] = input[2] + input[(32 - 3)];
step[3] = input[3] + input[(32 - 4)];
step[4] = input[4] + input[(32 - 5)];
step[5] = input[5] + input[(32 - 6)];
step[6] = input[6] + input[(32 - 7)];
step[7] = input[7] + input[(32 - 8)];
step[8] = input[8] + input[(32 - 9)];
step[9] = input[9] + input[(32 - 10)];
step[10] = input[10] + input[(32 - 11)];
step[11] = input[11] + input[(32 - 12)];
step[12] = input[12] + input[(32 - 13)];
step[13] = input[13] + input[(32 - 14)];
step[14] = input[14] + input[(32 - 15)];
step[15] = input[15] + input[(32 - 16)];
step[16] = -input[16] + input[(32 - 17)];
step[17] = -input[17] + input[(32 - 18)];
step[18] = -input[18] + input[(32 - 19)];
step[19] = -input[19] + input[(32 - 20)];
step[20] = -input[20] + input[(32 - 21)];
step[21] = -input[21] + input[(32 - 22)];
step[22] = -input[22] + input[(32 - 23)];
step[23] = -input[23] + input[(32 - 24)];
step[24] = -input[24] + input[(32 - 25)];
step[25] = -input[25] + input[(32 - 26)];
step[26] = -input[26] + input[(32 - 27)];
step[27] = -input[27] + input[(32 - 28)];
step[28] = -input[28] + input[(32 - 29)];
step[29] = -input[29] + input[(32 - 30)];
step[30] = -input[30] + input[(32 - 31)];
step[31] = -input[31] + input[(32 - 32)];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 2
output[0] = step[0] + step[16 - 1];
output[1] = step[1] + step[16 - 2];
output[2] = step[2] + step[16 - 3];
output[3] = step[3] + step[16 - 4];
output[4] = step[4] + step[16 - 5];
output[5] = step[5] + step[16 - 6];
output[6] = step[6] + step[16 - 7];
output[7] = step[7] + step[16 - 8];
output[8] = -step[8] + step[16 - 9];
output[9] = -step[9] + step[16 - 10];
output[10] = -step[10] + step[16 - 11];
output[11] = -step[11] + step[16 - 12];
output[12] = -step[12] + step[16 - 13];
output[13] = -step[13] + step[16 - 14];
output[14] = -step[14] + step[16 - 15];
output[15] = -step[15] + step[16 - 16];
output[16] = step[16];
output[17] = step[17];
output[18] = step[18];
output[19] = step[19];
output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
output[28] = step[28];
output[29] = step[29];
output[30] = step[30];
output[31] = step[31];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// dump the magnitude by 4, hence the intermediate values are within
// the range of 16 bits.
if (round) {
output[0] = half_round_shift(output[0]);
output[1] = half_round_shift(output[1]);
output[2] = half_round_shift(output[2]);
output[3] = half_round_shift(output[3]);
output[4] = half_round_shift(output[4]);
output[5] = half_round_shift(output[5]);
output[6] = half_round_shift(output[6]);
output[7] = half_round_shift(output[7]);
output[8] = half_round_shift(output[8]);
output[9] = half_round_shift(output[9]);
output[10] = half_round_shift(output[10]);
output[11] = half_round_shift(output[11]);
output[12] = half_round_shift(output[12]);
output[13] = half_round_shift(output[13]);
output[14] = half_round_shift(output[14]);
output[15] = half_round_shift(output[15]);
output[16] = half_round_shift(output[16]);
output[17] = half_round_shift(output[17]);
output[18] = half_round_shift(output[18]);
output[19] = half_round_shift(output[19]);
output[20] = half_round_shift(output[20]);
output[21] = half_round_shift(output[21]);
output[22] = half_round_shift(output[22]);
output[23] = half_round_shift(output[23]);
output[24] = half_round_shift(output[24]);
output[25] = half_round_shift(output[25]);
output[26] = half_round_shift(output[26]);
output[27] = half_round_shift(output[27]);
output[28] = half_round_shift(output[28]);
output[29] = half_round_shift(output[29]);
output[30] = half_round_shift(output[30]);
output[31] = half_round_shift(output[31]);
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 3
step[0] = output[0] + output[(8 - 1)];
step[1] = output[1] + output[(8 - 2)];
step[2] = output[2] + output[(8 - 3)];
step[3] = output[3] + output[(8 - 4)];
step[4] = -output[4] + output[(8 - 5)];
step[5] = -output[5] + output[(8 - 6)];
step[6] = -output[6] + output[(8 - 7)];
step[7] = -output[7] + output[(8 - 8)];
step[8] = output[8];
step[9] = output[9];
step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
step[14] = output[14];
step[15] = output[15];
step[16] = output[16] + output[23];
step[17] = output[17] + output[22];
step[18] = output[18] + output[21];
step[19] = output[19] + output[20];
step[20] = -output[20] + output[19];
step[21] = -output[21] + output[18];
step[22] = -output[22] + output[17];
step[23] = -output[23] + output[16];
step[24] = -output[24] + output[31];
step[25] = -output[25] + output[30];
step[26] = -output[26] + output[29];
step[27] = -output[27] + output[28];
step[28] = output[28] + output[27];
step[29] = output[29] + output[26];
step[30] = output[30] + output[25];
step[31] = output[31] + output[24];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 4
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = -step[2] + step[1];
output[3] = -step[3] + step[0];
output[4] = step[4];
output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
output[7] = step[7];
output[8] = step[8] + step[11];
output[9] = step[9] + step[10];
output[10] = -step[10] + step[9];
output[11] = -step[11] + step[8];
output[12] = -step[12] + step[15];
output[13] = -step[13] + step[14];
output[14] = step[14] + step[13];
output[15] = step[15] + step[12];
output[16] = step[16];
output[17] = step[17];
output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
output[22] = step[22];
output[23] = step[23];
output[24] = step[24];
output[25] = step[25];
output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
output[30] = step[30];
output[31] = step[31];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 5
step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
step[4] = output[4] + output[5];
step[5] = -output[5] + output[4];
step[6] = -output[6] + output[7];
step[7] = output[7] + output[6];
step[8] = output[8];
step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
step[11] = output[11];
step[12] = output[12];
step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
step[15] = output[15];
step[16] = output[16] + output[19];
step[17] = output[17] + output[18];
step[18] = -output[18] + output[17];
step[19] = -output[19] + output[16];
step[20] = -output[20] + output[23];
step[21] = -output[21] + output[22];
step[22] = output[22] + output[21];
step[23] = output[23] + output[20];
step[24] = output[24] + output[27];
step[25] = output[25] + output[26];
step[26] = -output[26] + output[25];
step[27] = -output[27] + output[24];
step[28] = -output[28] + output[31];
step[29] = -output[29] + output[30];
step[30] = output[30] + output[29];
step[31] = output[31] + output[28];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 6
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
output[8] = step[8] + step[9];
output[9] = -step[9] + step[8];
output[10] = -step[10] + step[11];
output[11] = step[11] + step[10];
output[12] = step[12] + step[13];
output[13] = -step[13] + step[12];
output[14] = -step[14] + step[15];
output[15] = step[15] + step[14];
output[16] = step[16];
output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
output[19] = step[19];
output[20] = step[20];
output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
output[23] = step[23];
output[24] = step[24];
output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
output[27] = step[27];
output[28] = step[28];
output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
output[31] = step[31];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Stage 7
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
step[16] = output[16] + output[17];
step[17] = -output[17] + output[16];
step[18] = -output[18] + output[19];
step[19] = output[19] + output[18];
step[20] = output[20] + output[21];
step[21] = -output[21] + output[20];
step[22] = -output[22] + output[23];
step[23] = output[23] + output[22];
step[24] = output[24] + output[25];
step[25] = -output[25] + output[24];
step[26] = -output[26] + output[27];
step[27] = output[27] + output[26];
step[28] = output[28] + output[29];
step[29] = -output[29] + output[28];
step[30] = -output[30] + output[31];
step[31] = output[31] + output[30];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Final stage --- outputs indices are bit-reversed.
output[0] = step[0];
output[16] = step[1];
output[8] = step[2];
output[24] = step[3];
output[4] = step[4];
output[20] = step[5];
output[12] = step[6];
output[28] = step[7];
output[2] = step[8];
output[18] = step[9];
output[10] = step[10];
output[26] = step[11];
output[6] = step[12];
output[22] = step[13];
output[14] = step[14];
output[30] = step[15];
output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
void vp9_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 32; ++r)
for (c = 0; c < 32; ++c)
sum += input[r * stride + c];
output[0] = sum >> 3;
output[1] = 0;
}
void vp9_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
int i, j;
tran_high_t output[32 * 32];
// Columns
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j * stride + i] * 4;
vp9_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
}
// Rows
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
vp9_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
out[j + i * 32] =
(tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
}
}
// Note that although we use dct_32_round in dct32 computation flow,
// this 2d fdct32x32 for rate-distortion optimization loop is operating
// within 16 bits precision.
void vp9_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
int i, j;
tran_high_t output[32 * 32];
// Columns
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j * stride + i] * 4;
vp9_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
// TODO(cd): see quality impact of only doing
// output[j * 32 + i] = (temp_out[j] + 1) >> 2;
// PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
}
// Rows
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
vp9_fdct32(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
out[j + i * 32] = (tran_low_t)temp_out[j];
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fdct4x4_c(input, output, stride);
}
void vp9_highbd_fht4x4_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
vp9_fht4x4_c(input, output, stride, tx_type);
}
void vp9_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
int stride) {
vp9_fdct8x8_1_c(input, final_output, stride);
}
void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
int stride) {
vp9_fdct8x8_c(input, final_output, stride);
}
void vp9_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fdct16x16_1_c(input, output, stride);
}
void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fdct16x16_c(input, output, stride);
}
void vp9_highbd_fht8x8_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
vp9_fht8x8_c(input, output, stride, tx_type);
}
void vp9_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output,
int stride) {
vp9_fwht4x4_c(input, output, stride);
}
void vp9_highbd_fht16x16_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
vp9_fht16x16_c(input, output, stride, tx_type);
}
void vp9_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out,
int stride) {
vp9_fdct32x32_1_c(input, out, stride);
}
void vp9_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
vp9_fdct32x32_c(input, out, stride);
}
void vp9_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
int stride) {
vp9_fdct32x32_rd_c(input, out, stride);
}
#endif // CONFIG_VP9_HIGHBITDEPTH