vpx/vp9/encoder/vp9_svc_layercontext.c

843 lines
32 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_extend.h"
#include "vpx_dsp/vpx_dsp_common.h"
#define SMALL_FRAME_WIDTH 32
#define SMALL_FRAME_HEIGHT 16
void vp9_init_layer_context(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
int mi_rows = cpi->common.mi_rows;
int mi_cols = cpi->common.mi_cols;
int sl, tl, i;
int alt_ref_idx = svc->number_spatial_layers;
svc->spatial_layer_id = 0;
svc->temporal_layer_id = 0;
svc->first_spatial_layer_to_encode = 0;
svc->rc_drop_superframe = 0;
svc->force_zero_mode_spatial_ref = 0;
svc->use_base_mv = 0;
svc->current_superframe = 0;
for (i = 0; i < REF_FRAMES; ++i)
svc->ref_frame_index[i] = -1;
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
cpi->svc.ext_frame_flags[sl] = 0;
cpi->svc.ext_lst_fb_idx[sl] = 0;
cpi->svc.ext_gld_fb_idx[sl] = 1;
cpi->svc.ext_alt_fb_idx[sl] = 2;
}
// For 1 pass cbr: allocate scaled_frame that may be used as an intermediate
// buffer for a 2 stage down-sampling: two stages of 1:2 down-sampling for a
// target of 1/4x1/4.
if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR) {
if (vpx_realloc_frame_buffer(&cpi->svc.scaled_temp,
cpi->common.width >> 1,
cpi->common.height >> 1,
cpi->common.subsampling_x,
cpi->common.subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cpi->common.use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS,
cpi->common.byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled_frame for svc ");
}
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) {
if (vpx_realloc_frame_buffer(&cpi->svc.empty_frame.img,
SMALL_FRAME_WIDTH, SMALL_FRAME_HEIGHT,
cpi->common.subsampling_x,
cpi->common.subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cpi->common.use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS,
cpi->common.byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate empty frame for multiple frame "
"contexts");
memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80,
cpi->svc.empty_frame.img.buffer_alloc_sz);
}
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
int i;
lc->current_video_frame_in_layer = 0;
lc->layer_size = 0;
lc->frames_from_key_frame = 0;
lc->last_frame_type = FRAME_TYPES;
lrc->ni_av_qi = oxcf->worst_allowed_q;
lrc->total_actual_bits = 0;
lrc->total_target_vs_actual = 0;
lrc->ni_tot_qi = 0;
lrc->tot_q = 0.0;
lrc->avg_q = 0.0;
lrc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
lrc->rate_correction_factors[i] = 1.0;
}
if (cpi->oxcf.rc_mode == VPX_CBR) {
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
} else {
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q;
lrc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
oxcf->best_allowed_q) / 2;
lrc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
oxcf->best_allowed_q) / 2;
if (oxcf->ss_enable_auto_arf[sl])
lc->alt_ref_idx = alt_ref_idx++;
else
lc->alt_ref_idx = INVALID_IDX;
lc->gold_ref_idx = INVALID_IDX;
}
lrc->buffer_level = oxcf->starting_buffer_level_ms *
lc->target_bandwidth / 1000;
lrc->bits_off_target = lrc->buffer_level;
// Initialize the cyclic refresh parameters. If spatial layers are used
// (i.e., ss_number_layers > 1), these need to be updated per spatial
// layer.
// Cyclic refresh is only applied on base temporal layer.
if (oxcf->ss_number_layers > 1 &&
tl == 0) {
size_t last_coded_q_map_size;
size_t consec_zero_mv_size;
VP9_COMMON *const cm = &cpi->common;
lc->sb_index = 0;
CHECK_MEM_ERROR(cm, lc->map,
vpx_malloc(mi_rows * mi_cols * sizeof(*lc->map)));
memset(lc->map, 0, mi_rows * mi_cols);
last_coded_q_map_size = mi_rows * mi_cols *
sizeof(*lc->last_coded_q_map);
CHECK_MEM_ERROR(cm, lc->last_coded_q_map,
vpx_malloc(last_coded_q_map_size));
assert(MAXQ <= 255);
memset(lc->last_coded_q_map, MAXQ, last_coded_q_map_size);
consec_zero_mv_size = mi_rows * mi_cols * sizeof(*lc->consec_zero_mv);
CHECK_MEM_ERROR(cm, lc->consec_zero_mv,
vpx_malloc(consec_zero_mv_size));
memset(lc->consec_zero_mv, 0, consec_zero_mv_size);
}
}
}
// Still have extra buffer for base layer golden frame
if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR)
&& alt_ref_idx < REF_FRAMES)
svc->layer_context[0].gold_ref_idx = alt_ref_idx;
}
// Update the layer context from a change_config() call.
void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
const int target_bandwidth) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const RATE_CONTROL *const rc = &cpi->rc;
int sl, tl, layer = 0, spatial_layer_target;
float bitrate_alloc = 1.0;
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
svc->layer_context[layer].target_bandwidth =
oxcf->layer_target_bitrate[layer];
}
layer = LAYER_IDS_TO_IDX(sl, ((oxcf->ts_number_layers - 1) < 0 ?
0 : (oxcf->ts_number_layers - 1)), oxcf->ts_number_layers);
spatial_layer_target =
svc->layer_context[layer].target_bandwidth =
oxcf->layer_target_bitrate[layer];
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
LAYER_CONTEXT *const lc =
&svc->layer_context[sl * oxcf->ts_number_layers + tl];
RATE_CONTROL *const lrc = &lc->rc;
lc->spatial_layer_target_bandwidth = spatial_layer_target;
bitrate_alloc = (float)lc->target_bandwidth / spatial_layer_target;
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
} else {
int layer_end;
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
layer_end = svc->number_temporal_layers;
} else {
layer_end = svc->number_spatial_layers;
}
for (layer = 0; layer < layer_end; ++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
// Update buffer-related quantities.
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target = VPXMIN(lrc->bits_off_target,
lrc->maximum_buffer_size);
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
// Update framerate-related quantities.
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer];
} else {
lc->framerate = cpi->framerate;
}
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
// Update qp-related quantities.
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
}
static LAYER_CONTEXT *get_layer_context(VP9_COMP *const cpi) {
if (is_one_pass_cbr_svc(cpi))
return &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id];
else
return (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ?
&cpi->svc.layer_context[cpi->svc.temporal_layer_id] :
&cpi->svc.layer_context[cpi->svc.spatial_layer_id];
}
void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
// Index into spatial+temporal arrays.
const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers +
svc->temporal_layer_id;
const int tl = svc->temporal_layer_id;
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
// Update the average layer frame size (non-cumulative per-frame-bw).
if (tl == 0) {
lc->avg_frame_size = lrc->avg_frame_bandwidth;
} else {
const double prev_layer_framerate =
cpi->framerate / oxcf->ts_rate_decimator[tl - 1];
const int prev_layer_target_bandwidth =
oxcf->layer_target_bitrate[st_idx - 1];
lc->avg_frame_size =
(int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
(lc->framerate - prev_layer_framerate));
}
}
void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
lc->framerate = framerate;
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmin_section / 100);
lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmax_section) / 100);
vp9_rc_set_gf_interval_range(cpi, lrc);
}
void vp9_restore_layer_context(VP9_COMP *const cpi) {
LAYER_CONTEXT *const lc = get_layer_context(cpi);
const int old_frame_since_key = cpi->rc.frames_since_key;
const int old_frame_to_key = cpi->rc.frames_to_key;
cpi->rc = lc->rc;
cpi->twopass = lc->twopass;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->alt_ref_source = lc->alt_ref_source;
// Reset the frames_since_key and frames_to_key counters to their values
// before the layer restore. Keep these defined for the stream (not layer).
if (cpi->svc.number_temporal_layers > 1 ||
(cpi->svc.number_spatial_layers > 1 && !is_two_pass_svc(cpi))) {
cpi->rc.frames_since_key = old_frame_since_key;
cpi->rc.frames_to_key = old_frame_to_key;
}
// For spatial-svc, allow cyclic-refresh to be applied on the spatial layers,
// for the base temporal layer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->svc.number_spatial_layers > 1 &&
cpi->svc.temporal_layer_id == 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
signed char *temp = cr->map;
uint8_t *temp2 = cr->last_coded_q_map;
uint8_t *temp3 = cpi->consec_zero_mv;
cr->map = lc->map;
lc->map = temp;
cr->last_coded_q_map = lc->last_coded_q_map;
lc->last_coded_q_map = temp2;
cpi->consec_zero_mv = lc->consec_zero_mv;
lc->consec_zero_mv = temp3;
cr->sb_index = lc->sb_index;
}
}
void vp9_save_layer_context(VP9_COMP *const cpi) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
lc->rc = cpi->rc;
lc->twopass = cpi->twopass;
lc->target_bandwidth = (int)oxcf->target_bandwidth;
lc->alt_ref_source = cpi->alt_ref_source;
// For spatial-svc, allow cyclic-refresh to be applied on the spatial layers,
// for the base temporal layer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->svc.number_spatial_layers > 1 &&
cpi->svc.temporal_layer_id == 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
signed char *temp = lc->map;
uint8_t *temp2 = lc->last_coded_q_map;
uint8_t *temp3 = lc->consec_zero_mv;
lc->map = cr->map;
cr->map = temp;
lc->last_coded_q_map = cr->last_coded_q_map;
cr->last_coded_q_map = temp2;
lc->consec_zero_mv = cpi->consec_zero_mv;
cpi->consec_zero_mv = temp3;
lc->sb_index = cr->sb_index;
}
}
void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) {
SVC *const svc = &cpi->svc;
int i;
for (i = 0; i < svc->number_spatial_layers; ++i) {
TWO_PASS *const twopass = &svc->layer_context[i].twopass;
svc->spatial_layer_id = i;
vp9_init_second_pass(cpi);
twopass->total_stats.spatial_layer_id = i;
twopass->total_left_stats.spatial_layer_id = i;
}
svc->spatial_layer_id = 0;
}
void vp9_inc_frame_in_layer(VP9_COMP *const cpi) {
LAYER_CONTEXT *const lc =
&cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers];
++lc->current_video_frame_in_layer;
++lc->frames_from_key_frame;
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)
++cpi->svc.current_superframe;
}
int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) {
return is_two_pass_svc(cpi) &&
cpi->svc.spatial_layer_id > 0 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id].is_key_frame;
}
static void get_layer_resolution(const int width_org, const int height_org,
const int num, const int den,
int *width_out, int *height_out) {
int w, h;
if (width_out == NULL || height_out == NULL || den == 0)
return;
w = width_org * num / den;
h = height_org * num / den;
// make height and width even to make chrome player happy
w += w % 2;
h += h % 2;
*width_out = w;
*height_out = h;
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering
// scheme.
static void set_flags_and_fb_idx_for_temporal_mode3(VP9_COMP *const cpi) {
int frame_num_within_temporal_struct = 0;
int spatial_id, temporal_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
frame_num_within_temporal_struct =
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].current_video_frame_in_layer % 4;
temporal_id = cpi->svc.temporal_layer_id =
(frame_num_within_temporal_struct & 1) ? 2 :
(frame_num_within_temporal_struct >> 1);
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
if (!temporal_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
// base layer is a key frame.
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 1;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else if (temporal_id == 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else {
if (frame_num_within_temporal_struct == 1) {
// the first tl2 picture
if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer
cpi->ext_refresh_frame_flags_pending = 1;
if (!spatial_id)
cpi->ref_frame_flags = VP9_LAST_FLAG;
else
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
} else if (!spatial_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (spatial_id < cpi->svc.number_spatial_layers - 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else {
// The second tl2 picture
if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer
cpi->ext_refresh_frame_flags_pending = 1;
if (!spatial_id)
cpi->ref_frame_flags = VP9_LAST_FLAG;
else
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
} else if (!spatial_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_alt_ref_frame = 1;
} else { // top layer
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
cpi->ext_refresh_alt_ref_frame = 1;
}
}
}
if (temporal_id == 0) {
cpi->lst_fb_idx = spatial_id;
if (spatial_id) {
if (cpi->svc.layer_context[temporal_id].is_key_frame) {
cpi->lst_fb_idx = spatial_id - 1;
cpi->gld_fb_idx = spatial_id;
} else {
cpi->gld_fb_idx = spatial_id - 1;
}
} else {
cpi->gld_fb_idx = 0;
}
cpi->alt_fb_idx = 0;
} else if (temporal_id == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
} else if (frame_num_within_temporal_struct == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
} else {
cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
}
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering
// scheme.
static void set_flags_and_fb_idx_for_temporal_mode2(VP9_COMP *const cpi) {
int spatial_id, temporal_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
temporal_id = cpi->svc.temporal_layer_id =
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].current_video_frame_in_layer & 1;
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
if (!temporal_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
// base layer is a key frame.
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 1;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else if (temporal_id == 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
}
if (temporal_id == 0) {
cpi->lst_fb_idx = spatial_id;
if (spatial_id) {
if (cpi->svc.layer_context[temporal_id].is_key_frame) {
cpi->lst_fb_idx = spatial_id - 1;
cpi->gld_fb_idx = spatial_id;
} else {
cpi->gld_fb_idx = spatial_id - 1;
}
} else {
cpi->gld_fb_idx = 0;
}
cpi->alt_fb_idx = 0;
} else if (temporal_id == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
}
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 0 - that has no temporal layering.
static void set_flags_and_fb_idx_for_temporal_mode_noLayering(
VP9_COMP *const cpi) {
int spatial_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
cpi->ext_refresh_last_frame =
cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0;
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[0].is_key_frame) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 1;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
cpi->lst_fb_idx = spatial_id;
if (spatial_id) {
if (cpi->svc.layer_context[0].is_key_frame) {
cpi->lst_fb_idx = spatial_id - 1;
cpi->gld_fb_idx = spatial_id;
} else {
cpi->gld_fb_idx = spatial_id - 1;
}
} else {
cpi->gld_fb_idx = 0;
}
}
int vp9_one_pass_cbr_svc_start_layer(VP9_COMP *const cpi) {
int width = 0, height = 0;
LAYER_CONTEXT *lc = NULL;
if (cpi->svc.number_spatial_layers > 1)
cpi->svc.use_base_mv = 1;
cpi->svc.force_zero_mode_spatial_ref = 1;
if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) {
set_flags_and_fb_idx_for_temporal_mode3(cpi);
} else if (cpi->svc.temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi);
} else if (cpi->svc.temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_0101) {
set_flags_and_fb_idx_for_temporal_mode2(cpi);
} else if (cpi->svc.temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
// In the BYPASS/flexible mode, the encoder is relying on the application
// to specify, for each spatial layer, the flags and buffer indices for the
// layering.
// Note that the check (cpi->ext_refresh_frame_flags_pending == 0) is
// needed to support the case where the frame flags may be passed in via
// vpx_codec_encode(), which can be used for the temporal-only svc case.
// TODO(marpan): Consider adding an enc_config parameter to better handle
// this case.
if (cpi->ext_refresh_frame_flags_pending == 0) {
int sl;
cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
sl = cpi->svc.spatial_layer_id;
vp9_apply_encoding_flags(cpi, cpi->svc.ext_frame_flags[sl]);
cpi->lst_fb_idx = cpi->svc.ext_lst_fb_idx[sl];
cpi->gld_fb_idx = cpi->svc.ext_gld_fb_idx[sl];
cpi->alt_fb_idx = cpi->svc.ext_alt_fb_idx[sl];
}
}
if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode)
cpi->svc.rc_drop_superframe = 0;
lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id];
// Setting the worst/best_quality via the encoder control: SET_SVC_PARAMETERS,
// only for non-BYPASS mode for now.
if (cpi->svc.temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
RATE_CONTROL *const lrc = &lc->rc;
lrc->worst_quality = vp9_quantizer_to_qindex(lc->max_q);
lrc->best_quality = vp9_quantizer_to_qindex(lc->min_q);
}
get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
lc->scaling_factor_num, lc->scaling_factor_den,
&width, &height);
if (vp9_set_size_literal(cpi, width, height) != 0)
return VPX_CODEC_INVALID_PARAM;
return 0;
}
#if CONFIG_SPATIAL_SVC
#define SMALL_FRAME_FB_IDX 7
int vp9_svc_start_frame(VP9_COMP *const cpi) {
int width = 0, height = 0;
LAYER_CONTEXT *lc;
struct lookahead_entry *buf;
int count = 1 << (cpi->svc.number_temporal_layers - 1);
cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
cpi->svc.temporal_layer_id = 0;
while ((lc->current_video_frame_in_layer % count) != 0) {
++cpi->svc.temporal_layer_id;
count >>= 1;
}
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
if (cpi->svc.spatial_layer_id == 0)
cpi->gld_fb_idx = (lc->gold_ref_idx >= 0) ?
lc->gold_ref_idx : cpi->lst_fb_idx;
else
cpi->gld_fb_idx = cpi->svc.spatial_layer_id - 1;
if (lc->current_video_frame_in_layer == 0) {
if (cpi->svc.spatial_layer_id >= 2) {
cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2;
} else {
cpi->alt_fb_idx = cpi->lst_fb_idx;
cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_ALT_FLAG);
}
} else {
if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]) {
cpi->alt_fb_idx = lc->alt_ref_idx;
if (!lc->has_alt_frame)
cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
} else {
// Find a proper alt_fb_idx for layers that don't have alt ref frame
if (cpi->svc.spatial_layer_id == 0) {
cpi->alt_fb_idx = cpi->lst_fb_idx;
} else {
LAYER_CONTEXT *lc_lower =
&cpi->svc.layer_context[cpi->svc.spatial_layer_id - 1];
if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id - 1] &&
lc_lower->alt_ref_source != NULL)
cpi->alt_fb_idx = lc_lower->alt_ref_idx;
else if (cpi->svc.spatial_layer_id >= 2)
cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2;
else
cpi->alt_fb_idx = cpi->lst_fb_idx;
}
}
}
get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
lc->scaling_factor_num, lc->scaling_factor_den,
&width, &height);
// Workaround for multiple frame contexts. In some frames we can't use prev_mi
// since its previous frame could be changed during decoding time. The idea is
// we put a empty invisible frame in front of them, then we will not use
// prev_mi when encoding these frames.
buf = vp9_lookahead_peek(cpi->lookahead, 0);
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2 &&
cpi->svc.encode_empty_frame_state == NEED_TO_ENCODE &&
lc->rc.frames_to_key != 0 &&
!(buf != NULL && (buf->flags & VPX_EFLAG_FORCE_KF))) {
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1) ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->svc.spatial_layer_id == 0)) {
struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead, 0);
if (buf != NULL) {
cpi->svc.empty_frame.ts_start = buf->ts_start;
cpi->svc.empty_frame.ts_end = buf->ts_end;
cpi->svc.encode_empty_frame_state = ENCODING;
cpi->common.show_frame = 0;
cpi->ref_frame_flags = 0;
cpi->common.frame_type = INTER_FRAME;
cpi->lst_fb_idx =
cpi->gld_fb_idx = cpi->alt_fb_idx = SMALL_FRAME_FB_IDX;
if (cpi->svc.encode_intra_empty_frame != 0)
cpi->common.intra_only = 1;
width = SMALL_FRAME_WIDTH;
height = SMALL_FRAME_HEIGHT;
}
}
}
cpi->oxcf.worst_allowed_q = vp9_quantizer_to_qindex(lc->max_q);
cpi->oxcf.best_allowed_q = vp9_quantizer_to_qindex(lc->min_q);
vp9_change_config(cpi, &cpi->oxcf);
if (vp9_set_size_literal(cpi, width, height) != 0)
return VPX_CODEC_INVALID_PARAM;
vp9_set_high_precision_mv(cpi, 1);
cpi->alt_ref_source = get_layer_context(cpi)->alt_ref_source;
return 0;
}
#undef SMALL_FRAME_FB_IDX
#endif // CONFIG_SPATIAL_SVC
struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain) {
struct lookahead_entry *buf = NULL;
if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
buf = vp9_lookahead_peek(ctx, 0);
if (buf != NULL) {
// Only remove the buffer when pop the highest layer.
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
vp9_lookahead_pop(ctx, drain);
}
}
}
return buf;
}
void vp9_free_svc_cyclic_refresh(VP9_COMP *const cpi) {
int sl, tl;
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
if (lc->map)
vpx_free(lc->map);
if (lc->last_coded_q_map)
vpx_free(lc->last_coded_q_map);
if (lc->consec_zero_mv)
vpx_free(lc->consec_zero_mv);
}
}
}
// Reset on key frame: reset counters, references and buffer updates.
void vp9_svc_reset_key_frame(VP9_COMP *const cpi) {
int sl, tl;
SVC *const svc = &cpi->svc;
LAYER_CONTEXT *lc = NULL;
for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl];
lc->current_video_frame_in_layer = 0;
lc->frames_from_key_frame = 0;
}
}
if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) {
set_flags_and_fb_idx_for_temporal_mode3(cpi);
} else if (svc->temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi);
} else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) {
set_flags_and_fb_idx_for_temporal_mode2(cpi);
}
vp9_update_temporal_layer_framerate(cpi);
vp9_restore_layer_context(cpi);
}