vpx_dsp_common: add VPX prefix to MIN/MAX
prevents redeclaration warnings; vp8 has its own define which will be resolved in a future commit Change-Id: Ic941fef3dd4262fcdce48b73075fe6b375f11c9c
This commit is contained in:
parent
205532f3a7
commit
5e16d397bd
@ -238,7 +238,7 @@ static INLINE TX_SIZE get_uv_tx_size_impl(TX_SIZE y_tx_size, BLOCK_SIZE bsize,
|
||||
return TX_4X4;
|
||||
} else {
|
||||
const BLOCK_SIZE plane_bsize = ss_size_lookup[bsize][xss][yss];
|
||||
return MIN(y_tx_size, max_txsize_lookup[plane_bsize]);
|
||||
return VPXMIN(y_tx_size, max_txsize_lookup[plane_bsize]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -35,7 +35,7 @@ static const uint8_t num_8x8_blocks_wide_lookup[BLOCK_SIZES] =
|
||||
static const uint8_t num_8x8_blocks_high_lookup[BLOCK_SIZES] =
|
||||
{1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8};
|
||||
|
||||
// MIN(3, MIN(b_width_log2(bsize), b_height_log2(bsize)))
|
||||
// VPXMIN(3, VPXMIN(b_width_log2(bsize), b_height_log2(bsize)))
|
||||
static const uint8_t size_group_lookup[BLOCK_SIZES] =
|
||||
{0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3};
|
||||
|
||||
|
@ -1588,7 +1588,7 @@ void vp10_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
|
||||
if (partial_frame && cm->mi_rows > 8) {
|
||||
start_mi_row = cm->mi_rows >> 1;
|
||||
start_mi_row &= 0xfffffff8;
|
||||
mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
|
||||
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
|
||||
}
|
||||
end_mi_row = start_mi_row + mi_rows_to_filter;
|
||||
vp10_loop_filter_frame_init(cm, frame_filter_level);
|
||||
|
@ -625,7 +625,7 @@ static void swap_mi_and_prev_mi(VP10_COMMON *cm) {
|
||||
|
||||
int vp10_post_proc_frame(struct VP10Common *cm,
|
||||
YV12_BUFFER_CONFIG *dest, vp10_ppflags_t *ppflags) {
|
||||
const int q = MIN(105, cm->lf.filter_level * 2);
|
||||
const int q = VPXMIN(105, cm->lf.filter_level * 2);
|
||||
const int flags = ppflags->post_proc_flag;
|
||||
YV12_BUFFER_CONFIG *const ppbuf = &cm->post_proc_buffer;
|
||||
struct postproc_state *const ppstate = &cm->postproc_state;
|
||||
|
@ -24,14 +24,14 @@ static INLINE int get_segment_id(const VP10_COMMON *cm,
|
||||
const int mi_offset = mi_row * cm->mi_cols + mi_col;
|
||||
const int bw = num_8x8_blocks_wide_lookup[bsize];
|
||||
const int bh = num_8x8_blocks_high_lookup[bsize];
|
||||
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
int x, y, segment_id = MAX_SEGMENTS;
|
||||
|
||||
for (y = 0; y < ymis; ++y)
|
||||
for (x = 0; x < xmis; ++x)
|
||||
segment_id = MIN(segment_id,
|
||||
segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
segment_id =
|
||||
VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
|
||||
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
|
||||
return segment_id;
|
||||
|
@ -165,7 +165,7 @@ static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame,
|
||||
// Decoder may allocate more threads than number of tiles based on user's
|
||||
// input.
|
||||
const int tile_cols = 1 << cm->log2_tile_cols;
|
||||
const int num_workers = MIN(nworkers, tile_cols);
|
||||
const int num_workers = VPXMIN(nworkers, tile_cols);
|
||||
int i;
|
||||
|
||||
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
|
||||
@ -229,7 +229,7 @@ void vp10_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
|
||||
if (partial_frame && cm->mi_rows > 8) {
|
||||
start_mi_row = cm->mi_rows >> 1;
|
||||
start_mi_row &= 0xfffffff8;
|
||||
mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
|
||||
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
|
||||
}
|
||||
end_mi_row = start_mi_row + mi_rows_to_filter;
|
||||
vp10_loop_filter_frame_init(cm, frame_filter_level);
|
||||
|
@ -18,7 +18,7 @@
|
||||
static int get_tile_offset(int idx, int mis, int log2) {
|
||||
const int sb_cols = mi_cols_aligned_to_sb(mis) >> MI_BLOCK_SIZE_LOG2;
|
||||
const int offset = ((idx * sb_cols) >> log2) << MI_BLOCK_SIZE_LOG2;
|
||||
return MIN(offset, mis);
|
||||
return VPXMIN(offset, mis);
|
||||
}
|
||||
|
||||
void vp10_tile_set_row(TileInfo *tile, const VP10_COMMON *cm, int row) {
|
||||
|
@ -624,7 +624,7 @@ static void dec_build_inter_predictors(VP10Decoder *const pbi, MACROBLOCKD *xd,
|
||||
// pixels of each superblock row can be changed by next superblock row.
|
||||
if (pbi->frame_parallel_decode)
|
||||
vp10_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf,
|
||||
MAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
|
||||
// Skip border extension if block is inside the frame.
|
||||
if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
|
||||
@ -652,7 +652,7 @@ static void dec_build_inter_predictors(VP10Decoder *const pbi, MACROBLOCKD *xd,
|
||||
if (pbi->frame_parallel_decode) {
|
||||
const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS;
|
||||
vp10_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf,
|
||||
MAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
}
|
||||
}
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
@ -723,8 +723,8 @@ static void dec_build_inter_predictors_sb(VP10Decoder *const pbi,
|
||||
static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi,
|
||||
int n4_wl, int n4_hl) {
|
||||
// get minimum log2 num4x4s dimension
|
||||
const int x = MIN(n4_wl, n4_hl);
|
||||
return MIN(mbmi->tx_size, x);
|
||||
const int x = VPXMIN(n4_wl, n4_hl);
|
||||
return VPXMIN(mbmi->tx_size, x);
|
||||
}
|
||||
|
||||
static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
|
||||
@ -785,8 +785,8 @@ static void decode_block(VP10Decoder *const pbi, MACROBLOCKD *const xd,
|
||||
const int less8x8 = bsize < BLOCK_8X8;
|
||||
const int bw = 1 << (bwl - 1);
|
||||
const int bh = 1 << (bhl - 1);
|
||||
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
|
||||
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
||||
|
||||
MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col,
|
||||
bw, bh, x_mis, y_mis, bwl, bhl);
|
||||
@ -1570,7 +1570,7 @@ static const uint8_t *decode_tiles_mt(VP10Decoder *pbi,
|
||||
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
||||
const int tile_cols = 1 << cm->log2_tile_cols;
|
||||
const int tile_rows = 1 << cm->log2_tile_rows;
|
||||
const int num_workers = MIN(pbi->max_threads & ~1, tile_cols);
|
||||
const int num_workers = VPXMIN(pbi->max_threads & ~1, tile_cols);
|
||||
TileBuffer tile_buffers[1][1 << 6];
|
||||
int n;
|
||||
int final_worker = -1;
|
||||
@ -1637,7 +1637,7 @@ static const uint8_t *decode_tiles_mt(VP10Decoder *pbi,
|
||||
int group_start = 0;
|
||||
while (group_start < tile_cols) {
|
||||
const TileBuffer largest = tile_buffers[0][group_start];
|
||||
const int group_end = MIN(group_start + num_workers, tile_cols) - 1;
|
||||
const int group_end = VPXMIN(group_start + num_workers, tile_cols) - 1;
|
||||
memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1,
|
||||
(group_end - group_start) * sizeof(tile_buffers[0][0]));
|
||||
tile_buffers[0][group_end] = largest;
|
||||
@ -2069,7 +2069,7 @@ static struct vpx_read_bit_buffer *init_read_bit_buffer(
|
||||
rb->error_handler = error_handler;
|
||||
rb->error_handler_data = &pbi->common;
|
||||
if (pbi->decrypt_cb) {
|
||||
const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data);
|
||||
const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
|
||||
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
|
||||
rb->bit_buffer = clear_data;
|
||||
rb->bit_buffer_end = clear_data + n;
|
||||
|
@ -87,7 +87,7 @@ static TX_SIZE read_tx_size(VP10_COMMON *cm, MACROBLOCKD *xd,
|
||||
if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8)
|
||||
return read_selected_tx_size(cm, xd, max_tx_size, r);
|
||||
else
|
||||
return MIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
return VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
}
|
||||
|
||||
static int dec_get_segment_id(const VP10_COMMON *cm, const uint8_t *segment_ids,
|
||||
@ -96,8 +96,8 @@ static int dec_get_segment_id(const VP10_COMMON *cm, const uint8_t *segment_ids,
|
||||
|
||||
for (y = 0; y < y_mis; y++)
|
||||
for (x = 0; x < x_mis; x++)
|
||||
segment_id = MIN(segment_id,
|
||||
segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
segment_id =
|
||||
VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
|
||||
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
|
||||
return segment_id;
|
||||
@ -156,8 +156,8 @@ static int read_inter_segment_id(VP10_COMMON *const cm, MACROBLOCKD *const xd,
|
||||
const int bh = xd->plane[0].n4_h >> 1;
|
||||
|
||||
// TODO(slavarnway): move x_mis, y_mis into xd ?????
|
||||
const int x_mis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int x_mis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
|
||||
if (!seg->enabled)
|
||||
return 0; // Default for disabled segmentation
|
||||
@ -212,8 +212,8 @@ static void read_intra_frame_mode_info(VP10_COMMON *const cm,
|
||||
const int bh = xd->plane[0].n4_h >> 1;
|
||||
|
||||
// TODO(slavarnway): move x_mis, y_mis into xd ?????
|
||||
const int x_mis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int x_mis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
|
||||
mbmi->segment_id = read_intra_segment_id(cm, mi_offset, x_mis, y_mis, r);
|
||||
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
|
||||
|
@ -117,8 +117,8 @@ void vp10_caq_select_segment(VP10_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs,
|
||||
const int mi_offset = mi_row * cm->mi_cols + mi_col;
|
||||
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
|
||||
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
|
||||
const int xmis = MIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]);
|
||||
const int ymis = MIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]);
|
||||
const int xmis = VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]);
|
||||
const int ymis = VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]);
|
||||
int x, y;
|
||||
int i;
|
||||
unsigned char segment;
|
||||
@ -136,7 +136,7 @@ void vp10_caq_select_segment(VP10_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs,
|
||||
|
||||
vpx_clear_system_state();
|
||||
low_var_thresh = (cpi->oxcf.pass == 2)
|
||||
? MAX(cpi->twopass.mb_av_energy, MIN_DEFAULT_LV_THRESH)
|
||||
? VPXMAX(cpi->twopass.mb_av_energy, MIN_DEFAULT_LV_THRESH)
|
||||
: DEFAULT_LV_THRESH;
|
||||
|
||||
vp10_setup_src_planes(mb, cpi->Source, mi_row, mi_col);
|
||||
|
@ -220,8 +220,8 @@ void vp10_cyclic_refresh_update_segment(VP10_COMP *const cpi,
|
||||
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
|
||||
const int bw = num_8x8_blocks_wide_lookup[bsize];
|
||||
const int bh = num_8x8_blocks_high_lookup[bsize];
|
||||
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
const int block_index = mi_row * cm->mi_cols + mi_col;
|
||||
const int refresh_this_block = candidate_refresh_aq(cr, mbmi, rate, dist,
|
||||
bsize);
|
||||
@ -413,10 +413,10 @@ static void cyclic_refresh_update_map(VP10_COMP *const cpi) {
|
||||
assert(mi_col >= 0 && mi_col < cm->mi_cols);
|
||||
bl_index = mi_row * cm->mi_cols + mi_col;
|
||||
// Loop through all 8x8 blocks in superblock and update map.
|
||||
xmis = MIN(cm->mi_cols - mi_col,
|
||||
num_8x8_blocks_wide_lookup[BLOCK_64X64]);
|
||||
ymis = MIN(cm->mi_rows - mi_row,
|
||||
num_8x8_blocks_high_lookup[BLOCK_64X64]);
|
||||
xmis =
|
||||
VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]);
|
||||
ymis =
|
||||
VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]);
|
||||
for (y = 0; y < ymis; y++) {
|
||||
for (x = 0; x < xmis; x++) {
|
||||
const int bl_index2 = bl_index + y * cm->mi_cols + x;
|
||||
@ -545,8 +545,9 @@ void vp10_cyclic_refresh_setup(VP10_COMP *const cpi) {
|
||||
|
||||
// Set a more aggressive (higher) q delta for segment BOOST2.
|
||||
qindex_delta = compute_deltaq(
|
||||
cpi, cm->base_qindex, MIN(CR_MAX_RATE_TARGET_RATIO,
|
||||
0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
|
||||
cpi, cm->base_qindex,
|
||||
VPXMIN(CR_MAX_RATE_TARGET_RATIO,
|
||||
0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
|
||||
cr->qindex_delta[2] = qindex_delta;
|
||||
vp10_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
|
||||
|
||||
|
@ -815,7 +815,7 @@ static void encode_segmentation(VP10_COMMON *cm, MACROBLOCKD *xd,
|
||||
static void encode_txfm_probs(VP10_COMMON *cm, vpx_writer *w,
|
||||
FRAME_COUNTS *counts) {
|
||||
// Mode
|
||||
vpx_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
|
||||
vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
|
||||
if (cm->tx_mode >= ALLOW_32X32)
|
||||
vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
|
||||
|
||||
|
@ -124,10 +124,10 @@ int vp10_denoiser_filter_c(const uint8_t *sig, int sig_stride,
|
||||
adj = adj_val[2];
|
||||
}
|
||||
if (diff > 0) {
|
||||
avg[c] = MIN(UINT8_MAX, sig[c] + adj);
|
||||
avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj);
|
||||
total_adj += adj;
|
||||
} else {
|
||||
avg[c] = MAX(0, sig[c] - adj);
|
||||
avg[c] = VPXMAX(0, sig[c] - adj);
|
||||
total_adj -= adj;
|
||||
}
|
||||
}
|
||||
@ -164,13 +164,13 @@ int vp10_denoiser_filter_c(const uint8_t *sig, int sig_stride,
|
||||
// Diff positive means we made positive adjustment above
|
||||
// (in first try/attempt), so now make negative adjustment to bring
|
||||
// denoised signal down.
|
||||
avg[c] = MAX(0, avg[c] - adj);
|
||||
avg[c] = VPXMAX(0, avg[c] - adj);
|
||||
total_adj -= adj;
|
||||
} else {
|
||||
// Diff negative means we made negative adjustment above
|
||||
// (in first try/attempt), so now make positive adjustment to bring
|
||||
// denoised signal up.
|
||||
avg[c] = MIN(UINT8_MAX, avg[c] + adj);
|
||||
avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj);
|
||||
total_adj += adj;
|
||||
}
|
||||
}
|
||||
|
@ -978,8 +978,8 @@ static void update_state(VP10_COMP *cpi, ThreadData *td,
|
||||
const struct segmentation *const seg = &cm->seg;
|
||||
const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
|
||||
const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
|
||||
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
|
||||
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
||||
MV_REF *const frame_mvs =
|
||||
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
||||
int w, h;
|
||||
@ -1131,8 +1131,8 @@ static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
|
||||
|
||||
mbmi->sb_type = bsize;
|
||||
mbmi->mode = ZEROMV;
|
||||
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
mbmi->tx_size = VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
mbmi->skip = 1;
|
||||
mbmi->uv_mode = DC_PRED;
|
||||
mbmi->ref_frame[0] = LAST_FRAME;
|
||||
@ -1495,7 +1495,7 @@ static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
|
||||
int rows_left, int cols_left,
|
||||
int *bh, int *bw) {
|
||||
if (rows_left <= 0 || cols_left <= 0) {
|
||||
return MIN(bsize, BLOCK_8X8);
|
||||
return VPXMIN(bsize, BLOCK_8X8);
|
||||
} else {
|
||||
for (; bsize > 0; bsize -= 3) {
|
||||
*bh = num_8x8_blocks_high_lookup[bsize];
|
||||
@ -1869,8 +1869,8 @@ static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
|
||||
MODE_INFO *mi = mi_8x8[index+j];
|
||||
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
|
||||
bs_hist[sb_type]++;
|
||||
*min_block_size = MIN(*min_block_size, sb_type);
|
||||
*max_block_size = MAX(*max_block_size, sb_type);
|
||||
*min_block_size = VPXMIN(*min_block_size, sb_type);
|
||||
*max_block_size = VPXMAX(*max_block_size, sb_type);
|
||||
}
|
||||
index += xd->mi_stride;
|
||||
}
|
||||
@ -1947,8 +1947,8 @@ static void rd_auto_partition_range(VP10_COMP *cpi, const TileInfo *const tile,
|
||||
if (vp10_active_edge_sb(cpi, mi_row, mi_col)) {
|
||||
min_size = BLOCK_4X4;
|
||||
} else {
|
||||
min_size = MIN(cpi->sf.rd_auto_partition_min_limit,
|
||||
MIN(min_size, max_size));
|
||||
min_size =
|
||||
VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
|
||||
}
|
||||
|
||||
// When use_square_partition_only is true, make sure at least one square
|
||||
@ -1984,8 +1984,8 @@ static void set_partition_range(VP10_COMMON *cm, MACROBLOCKD *xd,
|
||||
for (idx = 0; idx < mi_width; ++idx) {
|
||||
mi = prev_mi[idy * cm->mi_stride + idx];
|
||||
bs = mi ? mi->mbmi.sb_type : bsize;
|
||||
min_size = MIN(min_size, bs);
|
||||
max_size = MAX(max_size, bs);
|
||||
min_size = VPXMIN(min_size, bs);
|
||||
max_size = VPXMAX(max_size, bs);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1994,8 +1994,8 @@ static void set_partition_range(VP10_COMMON *cm, MACROBLOCKD *xd,
|
||||
for (idy = 0; idy < mi_height; ++idy) {
|
||||
mi = xd->mi[idy * cm->mi_stride - 1];
|
||||
bs = mi ? mi->mbmi.sb_type : bsize;
|
||||
min_size = MIN(min_size, bs);
|
||||
max_size = MAX(max_size, bs);
|
||||
min_size = VPXMIN(min_size, bs);
|
||||
max_size = VPXMAX(max_size, bs);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2003,8 +2003,8 @@ static void set_partition_range(VP10_COMMON *cm, MACROBLOCKD *xd,
|
||||
for (idx = 0; idx < mi_width; ++idx) {
|
||||
mi = xd->mi[idx - cm->mi_stride];
|
||||
bs = mi ? mi->mbmi.sb_type : bsize;
|
||||
min_size = MIN(min_size, bs);
|
||||
max_size = MAX(max_size, bs);
|
||||
min_size = VPXMIN(min_size, bs);
|
||||
max_size = VPXMAX(max_size, bs);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2169,9 +2169,9 @@ static void rd_pick_partition(VP10_COMP *cpi, ThreadData *td,
|
||||
int mb_row = mi_row >> 1;
|
||||
int mb_col = mi_col >> 1;
|
||||
int mb_row_end =
|
||||
MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
int mb_col_end =
|
||||
MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
int r, c;
|
||||
|
||||
// compute a complexity measure, basically measure inconsistency of motion
|
||||
@ -2260,9 +2260,9 @@ static void rd_pick_partition(VP10_COMP *cpi, ThreadData *td,
|
||||
int mb_row = mi_row >> 1;
|
||||
int mb_col = mi_col >> 1;
|
||||
int mb_row_end =
|
||||
MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
int mb_col_end =
|
||||
MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
int r, c;
|
||||
|
||||
int skip = 1;
|
||||
@ -2887,7 +2887,7 @@ static void encode_frame_internal(VP10_COMP *cpi) {
|
||||
#endif
|
||||
|
||||
// If allowed, encoding tiles in parallel with one thread handling one tile.
|
||||
if (MIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
|
||||
if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
|
||||
vp10_encode_tiles_mt(cpi);
|
||||
else
|
||||
encode_tiles(cpi);
|
||||
@ -3102,10 +3102,10 @@ static void encode_superblock(VP10_COMP *cpi, ThreadData *td,
|
||||
int plane;
|
||||
mbmi->skip = 1;
|
||||
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
|
||||
vp10_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
|
||||
vp10_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane);
|
||||
if (output_enabled)
|
||||
sum_intra_stats(td->counts, mi);
|
||||
vp10_tokenize_sb(cpi, td, t, !output_enabled, MAX(bsize, BLOCK_8X8));
|
||||
vp10_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
|
||||
} else {
|
||||
int ref;
|
||||
const int is_compound = has_second_ref(mbmi);
|
||||
@ -3118,12 +3118,14 @@ static void encode_superblock(VP10_COMP *cpi, ThreadData *td,
|
||||
&xd->block_refs[ref]->sf);
|
||||
}
|
||||
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
|
||||
vp10_build_inter_predictors_sby(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
|
||||
vp10_build_inter_predictors_sby(xd, mi_row, mi_col,
|
||||
VPXMAX(bsize, BLOCK_8X8));
|
||||
|
||||
vp10_build_inter_predictors_sbuv(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
|
||||
vp10_build_inter_predictors_sbuv(xd, mi_row, mi_col,
|
||||
VPXMAX(bsize, BLOCK_8X8));
|
||||
|
||||
vp10_encode_sb(x, MAX(bsize, BLOCK_8X8));
|
||||
vp10_tokenize_sb(cpi, td, t, !output_enabled, MAX(bsize, BLOCK_8X8));
|
||||
vp10_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
|
||||
vp10_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
|
||||
}
|
||||
|
||||
if (output_enabled) {
|
||||
@ -3137,8 +3139,8 @@ static void encode_superblock(VP10_COMP *cpi, ThreadData *td,
|
||||
TX_SIZE tx_size;
|
||||
// The new intra coding scheme requires no change of transform size
|
||||
if (is_inter_block(&mi->mbmi)) {
|
||||
tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
|
||||
max_txsize_lookup[bsize]);
|
||||
tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
|
||||
max_txsize_lookup[bsize]);
|
||||
} else {
|
||||
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
|
||||
}
|
||||
|
@ -216,8 +216,8 @@ void vp10_encode_mv(VP10_COMP* cpi, vpx_writer* w,
|
||||
// If auto_mv_step_size is enabled then keep track of the largest
|
||||
// motion vector component used.
|
||||
if (cpi->sf.mv.auto_mv_step_size) {
|
||||
unsigned int maxv = MAX(abs(mv->row), abs(mv->col)) >> 3;
|
||||
cpi->max_mv_magnitude = MAX(maxv, cpi->max_mv_magnitude);
|
||||
unsigned int maxv = VPXMAX(abs(mv->row), abs(mv->col)) >> 3;
|
||||
cpi->max_mv_magnitude = VPXMAX(maxv, cpi->max_mv_magnitude);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1492,8 +1492,8 @@ void vp10_change_config(struct VP10_COMP *cpi, const VP10EncoderConfig *oxcf) {
|
||||
|
||||
// Under a configuration change, where maximum_buffer_size may change,
|
||||
// keep buffer level clipped to the maximum allowed buffer size.
|
||||
rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->buffer_level = MIN(rc->buffer_level, rc->maximum_buffer_size);
|
||||
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size);
|
||||
|
||||
// Set up frame rate and related parameters rate control values.
|
||||
vp10_new_framerate(cpi, cpi->framerate);
|
||||
@ -2615,7 +2615,7 @@ static int scale_down(VP10_COMP *cpi, int q) {
|
||||
if (rc->frame_size_selector == UNSCALED &&
|
||||
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
|
||||
const int max_size_thresh = (int)(rate_thresh_mult[SCALE_STEP1]
|
||||
* MAX(rc->this_frame_target, rc->avg_frame_bandwidth));
|
||||
* VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
|
||||
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
|
||||
}
|
||||
return scale;
|
||||
@ -2998,7 +2998,7 @@ static void output_frame_level_debug_stats(VP10_COMP *cpi) {
|
||||
|
||||
static void set_mv_search_params(VP10_COMP *cpi) {
|
||||
const VP10_COMMON *const cm = &cpi->common;
|
||||
const unsigned int max_mv_def = MIN(cm->width, cm->height);
|
||||
const unsigned int max_mv_def = VPXMIN(cm->width, cm->height);
|
||||
|
||||
// Default based on max resolution.
|
||||
cpi->mv_step_param = vp10_init_search_range(max_mv_def);
|
||||
@ -3013,8 +3013,8 @@ static void set_mv_search_params(VP10_COMP *cpi) {
|
||||
// Allow mv_steps to correspond to twice the max mv magnitude found
|
||||
// in the previous frame, capped by the default max_mv_magnitude based
|
||||
// on resolution.
|
||||
cpi->mv_step_param =
|
||||
vp10_init_search_range(MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
|
||||
cpi->mv_step_param = vp10_init_search_range(
|
||||
VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
|
||||
}
|
||||
cpi->max_mv_magnitude = 0;
|
||||
}
|
||||
@ -3386,7 +3386,7 @@ static void encode_with_recode_loop(VP10_COMP *cpi,
|
||||
|
||||
// Adjust Q
|
||||
q = (int)((q * high_err_target) / kf_err);
|
||||
q = MIN(q, (q_high + q_low) >> 1);
|
||||
q = VPXMIN(q, (q_high + q_low) >> 1);
|
||||
} else if (kf_err < low_err_target &&
|
||||
rc->projected_frame_size >= frame_under_shoot_limit) {
|
||||
// The key frame is much better than the previous frame
|
||||
@ -3395,7 +3395,7 @@ static void encode_with_recode_loop(VP10_COMP *cpi,
|
||||
|
||||
// Adjust Q
|
||||
q = (int)((q * low_err_target) / kf_err);
|
||||
q = MIN(q, (q_high + q_low + 1) >> 1);
|
||||
q = VPXMIN(q, (q_high + q_low + 1) >> 1);
|
||||
}
|
||||
|
||||
// Clamp Q to upper and lower limits:
|
||||
@ -3404,7 +3404,7 @@ static void encode_with_recode_loop(VP10_COMP *cpi,
|
||||
loop = q != last_q;
|
||||
} else if (recode_loop_test(
|
||||
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
|
||||
q, MAX(q_high, top_index), bottom_index)) {
|
||||
q, VPXMAX(q_high, top_index), bottom_index)) {
|
||||
// Is the projected frame size out of range and are we allowed
|
||||
// to attempt to recode.
|
||||
int last_q = q;
|
||||
@ -3446,12 +3446,12 @@ static void encode_with_recode_loop(VP10_COMP *cpi,
|
||||
vp10_rc_update_rate_correction_factors(cpi);
|
||||
|
||||
q = vp10_rc_regulate_q(cpi, rc->this_frame_target,
|
||||
bottom_index, MAX(q_high, top_index));
|
||||
bottom_index, VPXMAX(q_high, top_index));
|
||||
|
||||
while (q < q_low && retries < 10) {
|
||||
vp10_rc_update_rate_correction_factors(cpi);
|
||||
q = vp10_rc_regulate_q(cpi, rc->this_frame_target,
|
||||
bottom_index, MAX(q_high, top_index));
|
||||
bottom_index, VPXMAX(q_high, top_index));
|
||||
retries++;
|
||||
}
|
||||
}
|
||||
@ -4030,8 +4030,8 @@ static void adjust_frame_rate(VP10_COMP *cpi,
|
||||
// Average this frame's rate into the last second's average
|
||||
// frame rate. If we haven't seen 1 second yet, then average
|
||||
// over the whole interval seen.
|
||||
const double interval = MIN((double)(source->ts_end
|
||||
- cpi->first_time_stamp_ever), 10000000.0);
|
||||
const double interval = VPXMIN(
|
||||
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
|
||||
double avg_duration = 10000000.0 / cpi->framerate;
|
||||
avg_duration *= (interval - avg_duration + this_duration);
|
||||
avg_duration /= interval;
|
||||
@ -4095,7 +4095,7 @@ static void adjust_image_stat(double y, double u, double v, double all,
|
||||
s->stat[U] += u;
|
||||
s->stat[V] += v;
|
||||
s->stat[ALL] += all;
|
||||
s->worst = MIN(s->worst, all);
|
||||
s->worst = VPXMIN(s->worst, all);
|
||||
}
|
||||
#endif // CONFIG_INTERNAL_STATS
|
||||
|
||||
@ -4425,7 +4425,7 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
|
||||
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
|
||||
cpi->worst_ssim= MIN(cpi->worst_ssim, frame_ssim2);
|
||||
cpi->worst_ssim= VPXMIN(cpi->worst_ssim, frame_ssim2);
|
||||
cpi->summed_quality += frame_ssim2 * weight;
|
||||
cpi->summed_weights += weight;
|
||||
|
||||
@ -4462,7 +4462,8 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
|
||||
cpi->Source->y_buffer, cpi->Source->y_stride,
|
||||
cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
|
||||
cpi->Source->y_width, cpi->Source->y_height);
|
||||
cpi->worst_blockiness = MAX(cpi->worst_blockiness, frame_blockiness);
|
||||
cpi->worst_blockiness =
|
||||
VPXMAX(cpi->worst_blockiness, frame_blockiness);
|
||||
cpi->total_blockiness += frame_blockiness;
|
||||
}
|
||||
}
|
||||
@ -4482,8 +4483,8 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
|
||||
double consistency = vpx_sse_to_psnr(samples, peak,
|
||||
(double)cpi->total_inconsistency);
|
||||
if (consistency > 0.0)
|
||||
cpi->worst_consistency = MIN(cpi->worst_consistency,
|
||||
consistency);
|
||||
cpi->worst_consistency =
|
||||
VPXMIN(cpi->worst_consistency, consistency);
|
||||
cpi->total_inconsistency += this_inconsistency;
|
||||
}
|
||||
}
|
||||
|
@ -67,7 +67,7 @@ void vp10_encode_tiles_mt(VP10_COMP *cpi) {
|
||||
VP10_COMMON *const cm = &cpi->common;
|
||||
const int tile_cols = 1 << cm->log2_tile_cols;
|
||||
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
|
||||
const int num_workers = MIN(cpi->oxcf.max_threads, tile_cols);
|
||||
const int num_workers = VPXMIN(cpi->oxcf.max_threads, tile_cols);
|
||||
int i;
|
||||
|
||||
vp10_init_tile_data(cpi);
|
||||
@ -80,7 +80,7 @@ void vp10_encode_tiles_mt(VP10_COMP *cpi) {
|
||||
// resolution.
|
||||
if (cpi->use_svc) {
|
||||
int max_tile_cols = get_max_tile_cols(cpi);
|
||||
allocated_workers = MIN(cpi->oxcf.max_threads, max_tile_cols);
|
||||
allocated_workers = VPXMIN(cpi->oxcf.max_threads, max_tile_cols);
|
||||
}
|
||||
|
||||
CHECK_MEM_ERROR(cm, cpi->workers,
|
||||
|
@ -111,10 +111,12 @@ void vp10_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
|
||||
// Motion estimation may use src block variance with the block size up
|
||||
// to 64x64, so the right and bottom need to be extended to 64 multiple
|
||||
// or up to 16, whichever is greater.
|
||||
const int er_y = MAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6))
|
||||
- src->y_crop_width;
|
||||
const int eb_y = MAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6))
|
||||
- src->y_crop_height;
|
||||
const int er_y =
|
||||
VPXMAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6)) -
|
||||
src->y_crop_width;
|
||||
const int eb_y =
|
||||
VPXMAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6)) -
|
||||
src->y_crop_height;
|
||||
const int uv_width_subsampling = (src->uv_width != src->y_width);
|
||||
const int uv_height_subsampling = (src->uv_height != src->y_height);
|
||||
const int et_uv = et_y >> uv_height_subsampling;
|
||||
|
@ -383,7 +383,7 @@ static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
|
||||
// for first pass test.
|
||||
static int get_search_range(const VP10_COMP *cpi) {
|
||||
int sr = 0;
|
||||
const int dim = MIN(cpi->initial_width, cpi->initial_height);
|
||||
const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
|
||||
|
||||
while ((dim << sr) < MAX_FULL_PEL_VAL)
|
||||
++sr;
|
||||
@ -1026,7 +1026,7 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
|
||||
// Exclude any image dead zone
|
||||
if (image_data_start_row > 0) {
|
||||
intra_skip_count =
|
||||
MAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
|
||||
VPXMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
|
||||
}
|
||||
|
||||
{
|
||||
@ -1163,7 +1163,7 @@ static double calc_correction_factor(double err_per_mb,
|
||||
|
||||
// Adjustment based on actual quantizer to power term.
|
||||
const double power_term =
|
||||
MIN(vp10_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
|
||||
VPXMIN(vp10_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
|
||||
|
||||
// Calculate correction factor.
|
||||
if (power_term < 1.0)
|
||||
@ -1192,7 +1192,7 @@ static int get_twopass_worst_quality(const VP10_COMP *cpi,
|
||||
} else {
|
||||
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
||||
? cpi->initial_mbs : cpi->common.MBs;
|
||||
const int active_mbs = MAX(1, num_mbs - (int)(num_mbs * inactive_zone));
|
||||
const int active_mbs = VPXMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
|
||||
const double av_err_per_mb = section_err / active_mbs;
|
||||
const double speed_term = 1.0 + 0.04 * oxcf->speed;
|
||||
const double ediv_size_correction = (double)num_mbs / EDIV_SIZE_FACTOR;
|
||||
@ -1225,7 +1225,7 @@ static int get_twopass_worst_quality(const VP10_COMP *cpi,
|
||||
|
||||
// Restriction on active max q for constrained quality mode.
|
||||
if (cpi->oxcf.rc_mode == VPX_CQ)
|
||||
q = MAX(q, oxcf->cq_level);
|
||||
q = VPXMAX(q, oxcf->cq_level);
|
||||
return q;
|
||||
}
|
||||
}
|
||||
@ -1235,7 +1235,7 @@ static void setup_rf_level_maxq(VP10_COMP *cpi) {
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
|
||||
int qdelta = vp10_frame_type_qdelta(cpi, i, rc->worst_quality);
|
||||
rc->rf_level_maxq[i] = MAX(rc->worst_quality + qdelta, rc->best_quality);
|
||||
rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1366,12 +1366,12 @@ static double get_sr_decay_rate(const VP10_COMP *cpi,
|
||||
|
||||
|
||||
if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
|
||||
sr_diff = MIN(sr_diff, SR_DIFF_MAX);
|
||||
sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
|
||||
sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
|
||||
(MOTION_AMP_PART * motion_amplitude_factor) -
|
||||
(INTRA_PART * modified_pcnt_intra);
|
||||
}
|
||||
return MAX(sr_decay, MIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
|
||||
return VPXMAX(sr_decay, VPXMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
|
||||
}
|
||||
|
||||
// This function gives an estimate of how badly we believe the prediction
|
||||
@ -1381,7 +1381,7 @@ static double get_zero_motion_factor(const VP10_COMP *cpi,
|
||||
const double zero_motion_pct = frame->pcnt_inter -
|
||||
frame->pcnt_motion;
|
||||
double sr_decay = get_sr_decay_rate(cpi, frame);
|
||||
return MIN(sr_decay, zero_motion_pct);
|
||||
return VPXMIN(sr_decay, zero_motion_pct);
|
||||
}
|
||||
|
||||
#define ZM_POWER_FACTOR 0.75
|
||||
@ -1393,8 +1393,8 @@ static double get_prediction_decay_rate(const VP10_COMP *cpi,
|
||||
(0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
|
||||
ZM_POWER_FACTOR));
|
||||
|
||||
return MAX(zero_motion_factor,
|
||||
(sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
|
||||
return VPXMAX(zero_motion_factor,
|
||||
(sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
|
||||
}
|
||||
|
||||
// Function to test for a condition where a complex transition is followed
|
||||
@ -1485,12 +1485,12 @@ static double calc_frame_boost(VP10_COMP *cpi,
|
||||
const double lq =
|
||||
vp10_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
|
||||
cpi->common.bit_depth);
|
||||
const double boost_q_correction = MIN((0.5 + (lq * 0.015)), 1.5);
|
||||
const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
|
||||
int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
||||
? cpi->initial_mbs : cpi->common.MBs;
|
||||
|
||||
// Correct for any inactive region in the image
|
||||
num_mbs = (int)MAX(1, num_mbs * calculate_active_area(cpi, this_frame));
|
||||
num_mbs = (int)VPXMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
|
||||
|
||||
// Underlying boost factor is based on inter error ratio.
|
||||
frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
|
||||
@ -1506,7 +1506,7 @@ static double calc_frame_boost(VP10_COMP *cpi,
|
||||
else
|
||||
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
|
||||
|
||||
return MIN(frame_boost, max_boost * boost_q_correction);
|
||||
return VPXMIN(frame_boost, max_boost * boost_q_correction);
|
||||
}
|
||||
|
||||
static int calc_arf_boost(VP10_COMP *cpi, int offset,
|
||||
@ -1595,7 +1595,7 @@ static int calc_arf_boost(VP10_COMP *cpi, int offset,
|
||||
arf_boost = (*f_boost + *b_boost);
|
||||
if (arf_boost < ((b_frames + f_frames) * 20))
|
||||
arf_boost = ((b_frames + f_frames) * 20);
|
||||
arf_boost = MAX(arf_boost, MIN_ARF_GF_BOOST);
|
||||
arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
|
||||
|
||||
return arf_boost;
|
||||
}
|
||||
@ -1666,7 +1666,8 @@ static int calculate_boost_bits(int frame_count,
|
||||
}
|
||||
|
||||
// Calculate the number of extra bits for use in the boosted frame or frames.
|
||||
return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
|
||||
return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
|
||||
0);
|
||||
}
|
||||
|
||||
// Current limit on maximum number of active arfs in a GF/ARF group.
|
||||
@ -1805,7 +1806,7 @@ static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits,
|
||||
gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
|
||||
|
||||
target_frame_size = clamp(target_frame_size, 0,
|
||||
MIN(max_bits, (int)total_group_bits));
|
||||
VPXMIN(max_bits, (int)total_group_bits));
|
||||
|
||||
gf_group->update_type[frame_index] = LF_UPDATE;
|
||||
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
||||
@ -1926,7 +1927,7 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
int int_lbq =
|
||||
(int)(vp10_convert_qindex_to_q(rc->last_boosted_qindex,
|
||||
cpi->common.bit_depth));
|
||||
active_min_gf_interval = rc->min_gf_interval + MIN(2, int_max_q / 200);
|
||||
active_min_gf_interval = rc->min_gf_interval + VPXMIN(2, int_max_q / 200);
|
||||
if (active_min_gf_interval > rc->max_gf_interval)
|
||||
active_min_gf_interval = rc->max_gf_interval;
|
||||
|
||||
@ -1937,7 +1938,7 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// bits to spare and are better with a smaller interval and smaller boost.
|
||||
// At high Q when there are few bits to spare we are better with a longer
|
||||
// interval to spread the cost of the GF.
|
||||
active_max_gf_interval = 12 + MIN(4, (int_lbq / 6));
|
||||
active_max_gf_interval = 12 + VPXMIN(4, (int_lbq / 6));
|
||||
if (active_max_gf_interval < active_min_gf_interval)
|
||||
active_max_gf_interval = active_min_gf_interval;
|
||||
|
||||
@ -1982,8 +1983,8 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
decay_accumulator = decay_accumulator * loop_decay_rate;
|
||||
|
||||
// Monitor for static sections.
|
||||
zero_motion_accumulator =
|
||||
MIN(zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
||||
zero_motion_accumulator = VPXMIN(
|
||||
zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
||||
|
||||
// Break clause to detect very still sections after motion. For example,
|
||||
// a static image after a fade or other transition.
|
||||
@ -2039,7 +2040,7 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
(cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
|
||||
(zero_motion_accumulator < 0.995)) ? 1 : 0;
|
||||
} else {
|
||||
rc->gfu_boost = MAX((int)boost_score, MIN_ARF_GF_BOOST);
|
||||
rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
|
||||
rc->source_alt_ref_pending = 0;
|
||||
}
|
||||
|
||||
@ -2094,11 +2095,11 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// rc factor is a weight factor that corrects for local rate control drift.
|
||||
double rc_factor = 1.0;
|
||||
if (rc->rate_error_estimate > 0) {
|
||||
rc_factor = MAX(RC_FACTOR_MIN,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
rc_factor = VPXMAX(RC_FACTOR_MIN,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
} else {
|
||||
rc_factor = MIN(RC_FACTOR_MAX,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
rc_factor = VPXMIN(RC_FACTOR_MAX,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
}
|
||||
tmp_q =
|
||||
get_twopass_worst_quality(cpi, group_av_err,
|
||||
@ -2106,7 +2107,7 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
vbr_group_bits_per_frame,
|
||||
twopass->kfgroup_inter_fraction * rc_factor);
|
||||
twopass->active_worst_quality =
|
||||
MAX(tmp_q, twopass->active_worst_quality >> 1);
|
||||
VPXMAX(tmp_q, twopass->active_worst_quality >> 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -2423,7 +2424,7 @@ static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
} else {
|
||||
twopass->kf_group_bits = 0;
|
||||
}
|
||||
twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
|
||||
twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
|
||||
|
||||
// Reset the first pass file position.
|
||||
reset_fpf_position(twopass, start_position);
|
||||
@ -2437,9 +2438,8 @@ static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
break;
|
||||
|
||||
// Monitor for static sections.
|
||||
zero_motion_accumulator =
|
||||
MIN(zero_motion_accumulator,
|
||||
get_zero_motion_factor(cpi, &next_frame));
|
||||
zero_motion_accumulator = VPXMIN(
|
||||
zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
||||
|
||||
// Not all frames in the group are necessarily used in calculating boost.
|
||||
if ((i <= rc->max_gf_interval) ||
|
||||
@ -2452,7 +2452,7 @@ static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
const double loop_decay_rate =
|
||||
get_prediction_decay_rate(cpi, &next_frame);
|
||||
decay_accumulator *= loop_decay_rate;
|
||||
decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
|
||||
decay_accumulator = VPXMAX(decay_accumulator, MIN_DECAY_FACTOR);
|
||||
av_decay_accumulator += decay_accumulator;
|
||||
++loop_decay_counter;
|
||||
}
|
||||
@ -2473,8 +2473,8 @@ static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// Apply various clamps for min and max boost
|
||||
rc->kf_boost = (int)(av_decay_accumulator * boost_score);
|
||||
rc->kf_boost = MAX(rc->kf_boost, (rc->frames_to_key * 3));
|
||||
rc->kf_boost = MAX(rc->kf_boost, MIN_KF_BOOST);
|
||||
rc->kf_boost = VPXMAX(rc->kf_boost, (rc->frames_to_key * 3));
|
||||
rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_BOOST);
|
||||
|
||||
// Work out how many bits to allocate for the key frame itself.
|
||||
kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
|
||||
@ -2772,7 +2772,7 @@ void vp10_twopass_postencode_update(VP10_COMP *cpi) {
|
||||
// is designed to prevent extreme behaviour at the end of a clip
|
||||
// or group of frames.
|
||||
rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
|
||||
twopass->bits_left = MAX(twopass->bits_left - bits_used, 0);
|
||||
twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
|
||||
|
||||
// Calculate the pct rc error.
|
||||
if (rc->total_actual_bits) {
|
||||
@ -2788,7 +2788,7 @@ void vp10_twopass_postencode_update(VP10_COMP *cpi) {
|
||||
twopass->kf_group_bits -= bits_used;
|
||||
twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
|
||||
}
|
||||
twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
|
||||
twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
|
||||
|
||||
// Increment the gf group index ready for the next frame.
|
||||
++twopass->gf_group.index;
|
||||
@ -2838,18 +2838,18 @@ void vp10_twopass_postencode_update(VP10_COMP *cpi) {
|
||||
rc->vbr_bits_off_target_fast +=
|
||||
fast_extra_thresh - rc->projected_frame_size;
|
||||
rc->vbr_bits_off_target_fast =
|
||||
MIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
|
||||
VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
|
||||
|
||||
// Fast adaptation of minQ if necessary to use up the extra bits.
|
||||
if (rc->avg_frame_bandwidth) {
|
||||
twopass->extend_minq_fast =
|
||||
(int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
|
||||
}
|
||||
twopass->extend_minq_fast = MIN(twopass->extend_minq_fast,
|
||||
minq_adj_limit - twopass->extend_minq);
|
||||
twopass->extend_minq_fast = VPXMIN(
|
||||
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
|
||||
} else if (rc->vbr_bits_off_target_fast) {
|
||||
twopass->extend_minq_fast = MIN(twopass->extend_minq_fast,
|
||||
minq_adj_limit - twopass->extend_minq);
|
||||
twopass->extend_minq_fast = VPXMIN(
|
||||
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
|
||||
} else {
|
||||
twopass->extend_minq_fast = 0;
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ static unsigned int do_16x16_motion_iteration(VP10_COMP *cpi,
|
||||
|
||||
// Further step/diamond searches as necessary
|
||||
int step_param = mv_sf->reduce_first_step_size;
|
||||
step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
|
||||
vp10_set_mv_search_range(x, ref_mv);
|
||||
|
||||
|
@ -37,10 +37,10 @@ void vp10_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
|
||||
int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
|
||||
int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
|
||||
|
||||
col_min = MAX(col_min, (MV_LOW >> 3) + 1);
|
||||
row_min = MAX(row_min, (MV_LOW >> 3) + 1);
|
||||
col_max = MIN(col_max, (MV_UPP >> 3) - 1);
|
||||
row_max = MIN(row_max, (MV_UPP >> 3) - 1);
|
||||
col_min = VPXMAX(col_min, (MV_LOW >> 3) + 1);
|
||||
row_min = VPXMAX(row_min, (MV_LOW >> 3) + 1);
|
||||
col_max = VPXMIN(col_max, (MV_UPP >> 3) - 1);
|
||||
row_max = VPXMIN(row_max, (MV_UPP >> 3) - 1);
|
||||
|
||||
// Get intersection of UMV window and valid MV window to reduce # of checks
|
||||
// in diamond search.
|
||||
@ -57,12 +57,12 @@ void vp10_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
|
||||
int vp10_init_search_range(int size) {
|
||||
int sr = 0;
|
||||
// Minimum search size no matter what the passed in value.
|
||||
size = MAX(16, size);
|
||||
size = VPXMAX(16, size);
|
||||
|
||||
while ((size << sr) < MAX_FULL_PEL_VAL)
|
||||
sr++;
|
||||
|
||||
sr = MIN(sr, MAX_MVSEARCH_STEPS - 2);
|
||||
sr = VPXMIN(sr, MAX_MVSEARCH_STEPS - 2);
|
||||
return sr;
|
||||
}
|
||||
|
||||
@ -297,10 +297,10 @@ static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
|
||||
int br = bestmv->row * 8; \
|
||||
int bc = bestmv->col * 8; \
|
||||
int hstep = 4; \
|
||||
const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX); \
|
||||
const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX); \
|
||||
const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX); \
|
||||
const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX); \
|
||||
const int minc = VPXMAX(x->mv_col_min * 8, ref_mv->col - MV_MAX); \
|
||||
const int maxc = VPXMIN(x->mv_col_max * 8, ref_mv->col + MV_MAX); \
|
||||
const int minr = VPXMAX(x->mv_row_min * 8, ref_mv->row - MV_MAX); \
|
||||
const int maxr = VPXMIN(x->mv_row_max * 8, ref_mv->row + MV_MAX); \
|
||||
int tr = br; \
|
||||
int tc = bc; \
|
||||
\
|
||||
@ -668,10 +668,10 @@ int vp10_find_best_sub_pixel_tree(const MACROBLOCK *x,
|
||||
int bc = bestmv->col * 8;
|
||||
int hstep = 4;
|
||||
int iter, round = 3 - forced_stop;
|
||||
const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
|
||||
const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
|
||||
const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
|
||||
const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
|
||||
const int minc = VPXMAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
|
||||
const int maxc = VPXMIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
|
||||
const int minr = VPXMAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
|
||||
const int maxr = VPXMIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
|
||||
int tr = br;
|
||||
int tc = bc;
|
||||
const MV *search_step = search_step_table;
|
||||
@ -1500,9 +1500,9 @@ int vp10_fast_hex_search(const MACROBLOCK *x,
|
||||
int use_mvcost,
|
||||
const MV *center_mv,
|
||||
MV *best_mv) {
|
||||
return vp10_hex_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
|
||||
sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
|
||||
center_mv, best_mv);
|
||||
return vp10_hex_search(
|
||||
x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit,
|
||||
do_init_search, cost_list, vfp, use_mvcost, center_mv, best_mv);
|
||||
}
|
||||
|
||||
int vp10_fast_dia_search(const MACROBLOCK *x,
|
||||
@ -1515,9 +1515,9 @@ int vp10_fast_dia_search(const MACROBLOCK *x,
|
||||
int use_mvcost,
|
||||
const MV *center_mv,
|
||||
MV *best_mv) {
|
||||
return vp10_bigdia_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
|
||||
sad_per_bit, do_init_search, cost_list, vfp,
|
||||
use_mvcost, center_mv, best_mv);
|
||||
return vp10_bigdia_search(
|
||||
x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit,
|
||||
do_init_search, cost_list, vfp, use_mvcost, center_mv, best_mv);
|
||||
}
|
||||
|
||||
#undef CHECK_BETTER
|
||||
@ -1547,10 +1547,10 @@ int vp10_full_range_search_c(const MACROBLOCK *x,
|
||||
best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
|
||||
start_row = MAX(-range, x->mv_row_min - ref_mv->row);
|
||||
start_col = MAX(-range, x->mv_col_min - ref_mv->col);
|
||||
end_row = MIN(range, x->mv_row_max - ref_mv->row);
|
||||
end_col = MIN(range, x->mv_col_max - ref_mv->col);
|
||||
start_row = VPXMAX(-range, x->mv_row_min - ref_mv->row);
|
||||
start_col = VPXMAX(-range, x->mv_col_min - ref_mv->col);
|
||||
end_row = VPXMIN(range, x->mv_row_max - ref_mv->row);
|
||||
end_col = VPXMIN(range, x->mv_col_max - ref_mv->col);
|
||||
|
||||
for (r = start_row; r <= end_row; ++r) {
|
||||
for (c = start_col; c <= end_col; c += 4) {
|
||||
@ -2021,10 +2021,10 @@ int vp10_full_search_sad_c(const MACROBLOCK *x, const MV *ref_mv,
|
||||
const MACROBLOCKD *const xd = &x->e_mbd;
|
||||
const struct buf_2d *const what = &x->plane[0].src;
|
||||
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
|
||||
const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
|
||||
int best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
@ -2054,10 +2054,10 @@ int vp10_full_search_sadx3(const MACROBLOCK *x, const MV *ref_mv,
|
||||
const MACROBLOCKD *const xd = &x->e_mbd;
|
||||
const struct buf_2d *const what = &x->plane[0].src;
|
||||
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
|
||||
const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
|
||||
unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
@ -2119,10 +2119,10 @@ int vp10_full_search_sadx8(const MACROBLOCK *x, const MV *ref_mv,
|
||||
const MACROBLOCKD *const xd = &x->e_mbd;
|
||||
const struct buf_2d *const what = &x->plane[0].src;
|
||||
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
|
||||
const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
|
||||
unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
|
@ -92,8 +92,8 @@ static int search_filter_level(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
|
||||
ss_err[filt_mid] = best_err;
|
||||
|
||||
while (filter_step > 0) {
|
||||
const int filt_high = MIN(filt_mid + filter_step, max_filter_level);
|
||||
const int filt_low = MAX(filt_mid - filter_step, min_filter_level);
|
||||
const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
|
||||
const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);
|
||||
|
||||
// Bias against raising loop filter in favor of lowering it.
|
||||
int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
|
||||
|
@ -106,8 +106,7 @@ static int kf_low = 400;
|
||||
static int get_minq_index(double maxq, double x3, double x2, double x1,
|
||||
vpx_bit_depth_t bit_depth) {
|
||||
int i;
|
||||
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
|
||||
maxq);
|
||||
const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
|
||||
|
||||
// Special case handling to deal with the step from q2.0
|
||||
// down to lossless mode represented by q 1.0.
|
||||
@ -192,15 +191,15 @@ int vp10_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
|
||||
vpx_bit_depth_t bit_depth) {
|
||||
const int bpm = (int)(vp10_rc_bits_per_mb(frame_type, q, correction_factor,
|
||||
bit_depth));
|
||||
return MAX(FRAME_OVERHEAD_BITS,
|
||||
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
|
||||
return VPXMAX(FRAME_OVERHEAD_BITS,
|
||||
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
|
||||
}
|
||||
|
||||
int vp10_rc_clamp_pframe_target_size(const VP10_COMP *const cpi, int target) {
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
const VP10EncoderConfig *oxcf = &cpi->oxcf;
|
||||
const int min_frame_target = MAX(rc->min_frame_bandwidth,
|
||||
rc->avg_frame_bandwidth >> 5);
|
||||
const int min_frame_target = VPXMAX(rc->min_frame_bandwidth,
|
||||
rc->avg_frame_bandwidth >> 5);
|
||||
if (target < min_frame_target)
|
||||
target = min_frame_target;
|
||||
if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
|
||||
@ -216,7 +215,7 @@ int vp10_rc_clamp_pframe_target_size(const VP10_COMP *const cpi, int target) {
|
||||
if (oxcf->rc_max_inter_bitrate_pct) {
|
||||
const int max_rate = rc->avg_frame_bandwidth *
|
||||
oxcf->rc_max_inter_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
target = VPXMIN(target, max_rate);
|
||||
}
|
||||
return target;
|
||||
}
|
||||
@ -227,7 +226,7 @@ int vp10_rc_clamp_iframe_target_size(const VP10_COMP *const cpi, int target) {
|
||||
if (oxcf->rc_max_intra_bitrate_pct) {
|
||||
const int max_rate = rc->avg_frame_bandwidth *
|
||||
oxcf->rc_max_intra_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
target = VPXMIN(target, max_rate);
|
||||
}
|
||||
if (target > rc->max_frame_bandwidth)
|
||||
target = rc->max_frame_bandwidth;
|
||||
@ -250,7 +249,8 @@ static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
|
||||
lrc->bits_off_target += bits_off_for_this_layer;
|
||||
|
||||
// Clip buffer level to maximum buffer size for the layer.
|
||||
lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->bits_off_target =
|
||||
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = lrc->bits_off_target;
|
||||
}
|
||||
}
|
||||
@ -268,7 +268,7 @@ static void update_buffer_level(VP10_COMP *cpi, int encoded_frame_size) {
|
||||
}
|
||||
|
||||
// Clip the buffer level to the maximum specified buffer size.
|
||||
rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->buffer_level = rc->bits_off_target;
|
||||
|
||||
if (is_one_pass_cbr_svc(cpi)) {
|
||||
@ -287,8 +287,8 @@ int vp10_rc_get_default_min_gf_interval(
|
||||
if (factor <= factor_safe)
|
||||
return default_interval;
|
||||
else
|
||||
return MAX(default_interval,
|
||||
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
|
||||
return VPXMAX(default_interval,
|
||||
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
|
||||
// Note this logic makes:
|
||||
// 4K24: 5
|
||||
// 4K30: 6
|
||||
@ -296,9 +296,9 @@ int vp10_rc_get_default_min_gf_interval(
|
||||
}
|
||||
|
||||
int vp10_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
|
||||
int interval = MIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
|
||||
int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
|
||||
interval += (interval & 0x01); // Round to even value
|
||||
return MAX(interval, min_gf_interval);
|
||||
return VPXMAX(interval, min_gf_interval);
|
||||
}
|
||||
|
||||
void vp10_rc_init(const VP10EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
|
||||
@ -478,7 +478,7 @@ void vp10_rc_update_rate_correction_factors(VP10_COMP *cpi) {
|
||||
// More heavily damped adjustment used if we have been oscillating either side
|
||||
// of target.
|
||||
adjustment_limit = 0.25 +
|
||||
0.5 * MIN(1, fabs(log10(0.01 * correction_factor)));
|
||||
0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
|
||||
|
||||
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
|
||||
cpi->rc.q_1_frame = cm->base_qindex;
|
||||
@ -558,8 +558,8 @@ int vp10_rc_regulate_q(const VP10_COMP *cpi, int target_bits_per_frame,
|
||||
if (cpi->oxcf.rc_mode == VPX_CBR &&
|
||||
(cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
|
||||
cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
|
||||
q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
|
||||
MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
|
||||
q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
|
||||
VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
|
||||
}
|
||||
return q;
|
||||
}
|
||||
@ -617,7 +617,7 @@ static int calc_active_worst_quality_one_pass_vbr(const VP10_COMP *cpi) {
|
||||
: rc->last_q[INTER_FRAME] * 2;
|
||||
}
|
||||
}
|
||||
return MIN(active_worst_quality, rc->worst_quality);
|
||||
return VPXMIN(active_worst_quality, rc->worst_quality);
|
||||
}
|
||||
|
||||
// Adjust active_worst_quality level based on buffer level.
|
||||
@ -643,10 +643,10 @@ static int calc_active_worst_quality_one_pass_cbr(const VP10_COMP *cpi) {
|
||||
// So for first few frames following key, the qp of that key frame is weighted
|
||||
// into the active_worst_quality setting.
|
||||
ambient_qp = (cm->current_video_frame < 5) ?
|
||||
MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) :
|
||||
rc->avg_frame_qindex[INTER_FRAME];
|
||||
active_worst_quality = MIN(rc->worst_quality,
|
||||
ambient_qp * 5 / 4);
|
||||
VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
|
||||
rc->avg_frame_qindex[KEY_FRAME]) :
|
||||
rc->avg_frame_qindex[INTER_FRAME];
|
||||
active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 / 4);
|
||||
if (rc->buffer_level > rc->optimal_buffer_level) {
|
||||
// Adjust down.
|
||||
// Maximum limit for down adjustment, ~30%.
|
||||
@ -699,7 +699,7 @@ static int rc_pick_q_and_bounds_one_pass_cbr(const VP10_COMP *cpi,
|
||||
int delta_qindex = vp10_compute_qdelta(rc, last_boosted_q,
|
||||
(last_boosted_q * 0.75),
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
||||
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
|
||||
} else if (cm->current_video_frame > 0) {
|
||||
// not first frame of one pass and kf_boost is set
|
||||
double q_adj_factor = 1.0;
|
||||
@ -833,7 +833,7 @@ static int rc_pick_q_and_bounds_one_pass_vbr(const VP10_COMP *cpi,
|
||||
int delta_qindex = vp10_compute_qdelta(rc, last_boosted_q,
|
||||
last_boosted_q * 0.75,
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
||||
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
|
||||
} else {
|
||||
// not first frame of one pass and kf_boost is set
|
||||
double q_adj_factor = 1.0;
|
||||
@ -1002,21 +1002,21 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
|
||||
int qindex;
|
||||
|
||||
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
|
||||
qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
active_best_quality = qindex;
|
||||
last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
|
||||
delta_qindex = vp10_compute_qdelta(rc, last_boosted_q,
|
||||
last_boosted_q * 1.25,
|
||||
cm->bit_depth);
|
||||
active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality);
|
||||
|
||||
active_worst_quality =
|
||||
VPXMIN(qindex + delta_qindex, active_worst_quality);
|
||||
} else {
|
||||
qindex = rc->last_boosted_qindex;
|
||||
last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth);
|
||||
delta_qindex = vp10_compute_qdelta(rc, last_boosted_q,
|
||||
last_boosted_q * 0.75,
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
||||
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
|
||||
}
|
||||
} else {
|
||||
// Not forced keyframe.
|
||||
@ -1116,8 +1116,8 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
|
||||
(cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
|
||||
int qdelta = vp10_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
|
||||
active_worst_quality);
|
||||
active_worst_quality = MAX(active_worst_quality + qdelta,
|
||||
active_best_quality);
|
||||
active_worst_quality = VPXMAX(active_worst_quality + qdelta,
|
||||
active_best_quality);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -1126,7 +1126,8 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
|
||||
int qdelta = vp10_compute_qdelta_by_rate(rc, cm->frame_type,
|
||||
active_best_quality, 2.0,
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality);
|
||||
active_best_quality =
|
||||
VPXMAX(active_best_quality + qdelta, rc->best_quality);
|
||||
}
|
||||
|
||||
active_best_quality = clamp(active_best_quality,
|
||||
@ -1141,7 +1142,7 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
|
||||
rc->this_key_frame_forced) {
|
||||
// If static since last kf use better of last boosted and last kf q.
|
||||
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
|
||||
q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
} else {
|
||||
q = rc->last_boosted_qindex;
|
||||
}
|
||||
@ -1195,9 +1196,9 @@ void vp10_rc_compute_frame_size_bounds(const VP10_COMP *cpi,
|
||||
// For very small rate targets where the fractional adjustment
|
||||
// may be tiny make sure there is at least a minimum range.
|
||||
const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
|
||||
*frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
|
||||
*frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
|
||||
cpi->rc.max_frame_bandwidth);
|
||||
*frame_under_shoot_limit = VPXMAX(frame_target - tolerance - 200, 0);
|
||||
*frame_over_shoot_limit = VPXMIN(frame_target + tolerance + 200,
|
||||
cpi->rc.max_frame_bandwidth);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1436,7 +1437,8 @@ static int calc_pframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
|
||||
const SVC *const svc = &cpi->svc;
|
||||
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
|
||||
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
|
||||
int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
|
||||
int min_frame_target =
|
||||
VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
|
||||
int target;
|
||||
|
||||
if (oxcf->gf_cbr_boost_pct) {
|
||||
@ -1458,23 +1460,24 @@ static int calc_pframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
|
||||
svc->temporal_layer_id, svc->number_temporal_layers);
|
||||
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
|
||||
target = lc->avg_frame_size;
|
||||
min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
|
||||
min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
|
||||
}
|
||||
if (diff > 0) {
|
||||
// Lower the target bandwidth for this frame.
|
||||
const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
||||
const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
||||
target -= (target * pct_low) / 200;
|
||||
} else if (diff < 0) {
|
||||
// Increase the target bandwidth for this frame.
|
||||
const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
||||
const int pct_high =
|
||||
(int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
||||
target += (target * pct_high) / 200;
|
||||
}
|
||||
if (oxcf->rc_max_inter_bitrate_pct) {
|
||||
const int max_rate = rc->avg_frame_bandwidth *
|
||||
oxcf->rc_max_inter_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
target = VPXMIN(target, max_rate);
|
||||
}
|
||||
return MAX(min_frame_target, target);
|
||||
return VPXMAX(min_frame_target, target);
|
||||
}
|
||||
|
||||
static int calc_iframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
|
||||
@ -1496,7 +1499,7 @@ static int calc_iframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
|
||||
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
|
||||
framerate = lc->framerate;
|
||||
}
|
||||
kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
|
||||
kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
|
||||
if (rc->frames_since_key < framerate / 2) {
|
||||
kf_boost = (int)(kf_boost * rc->frames_since_key /
|
||||
(framerate / 2));
|
||||
@ -1704,7 +1707,7 @@ void vp10_rc_set_gf_interval_range(const VP10_COMP *const cpi,
|
||||
rc->max_gf_interval = rc->static_scene_max_gf_interval;
|
||||
|
||||
// Clamp min to max
|
||||
rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval);
|
||||
rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
|
||||
}
|
||||
|
||||
void vp10_rc_update_framerate(VP10_COMP *cpi) {
|
||||
@ -1717,7 +1720,8 @@ void vp10_rc_update_framerate(VP10_COMP *cpi) {
|
||||
rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
|
||||
oxcf->two_pass_vbrmin_section / 100);
|
||||
|
||||
rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
|
||||
rc->min_frame_bandwidth =
|
||||
VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
|
||||
|
||||
// A maximum bitrate for a frame is defined.
|
||||
// The baseline for this aligns with HW implementations that
|
||||
@ -1728,8 +1732,8 @@ void vp10_rc_update_framerate(VP10_COMP *cpi) {
|
||||
// specifies lossless encode.
|
||||
vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
|
||||
oxcf->two_pass_vbrmax_section) / 100);
|
||||
rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
|
||||
vbr_max_bits);
|
||||
rc->max_frame_bandwidth =
|
||||
VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
|
||||
|
||||
vp10_rc_set_gf_interval_range(cpi, rc);
|
||||
}
|
||||
@ -1767,12 +1771,12 @@ static void vbr_rate_correction(VP10_COMP *cpi, int *this_frame_target) {
|
||||
// Dont do it for kf,arf,gf or overlay frames.
|
||||
if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
|
||||
rc->vbr_bits_off_target_fast) {
|
||||
int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target);
|
||||
int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
|
||||
int fast_extra_bits;
|
||||
fast_extra_bits =
|
||||
(int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits);
|
||||
fast_extra_bits = (int)MIN(fast_extra_bits,
|
||||
MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
|
||||
fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
|
||||
fast_extra_bits = (int)VPXMIN(
|
||||
fast_extra_bits,
|
||||
VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
|
||||
*this_frame_target += (int)fast_extra_bits;
|
||||
rc->vbr_bits_off_target_fast -= fast_extra_bits;
|
||||
}
|
||||
|
@ -172,7 +172,7 @@ int vp10_compute_rd_mult(const VP10_COMP *cpi, int qindex) {
|
||||
if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
|
||||
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
||||
const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
|
||||
const int boost_index = MIN(15, (cpi->rc.gfu_boost / 100));
|
||||
const int boost_index = VPXMIN(15, (cpi->rc.gfu_boost / 100));
|
||||
|
||||
rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
|
||||
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
|
||||
@ -204,7 +204,7 @@ static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
|
||||
q = vp10_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
// TODO(debargha): Adjust the function below.
|
||||
return MAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
|
||||
return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
|
||||
}
|
||||
|
||||
void vp10_initialize_me_consts(VP10_COMP *cpi, MACROBLOCK *x, int qindex) {
|
||||
@ -400,7 +400,7 @@ void vp10_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
|
||||
static const uint32_t MAX_XSQ_Q10 = 245727;
|
||||
const uint64_t xsq_q10_64 =
|
||||
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
|
||||
const int xsq_q10 = (int)MIN(xsq_q10_64, MAX_XSQ_Q10);
|
||||
const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
|
||||
model_rd_norm(xsq_q10, &r_q10, &d_q10);
|
||||
*rate = ((r_q10 << n_log2) + 2) >> 2;
|
||||
*dist = (var * (int64_t)d_q10 + 512) >> 10;
|
||||
@ -481,7 +481,7 @@ void vp10_mv_pred(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
continue;
|
||||
fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
|
||||
fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
|
||||
max_mv = MAX(max_mv, MAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
|
||||
max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
|
||||
|
||||
if (fp_row ==0 && fp_col == 0 && zero_seen)
|
||||
continue;
|
||||
@ -626,16 +626,15 @@ void vp10_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
|
||||
const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
|
||||
int mode;
|
||||
for (mode = 0; mode < top_mode; ++mode) {
|
||||
const BLOCK_SIZE min_size = MAX(bsize - 1, BLOCK_4X4);
|
||||
const BLOCK_SIZE max_size = MIN(bsize + 2, BLOCK_64X64);
|
||||
const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
|
||||
const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
|
||||
BLOCK_SIZE bs;
|
||||
for (bs = min_size; bs <= max_size; ++bs) {
|
||||
int *const fact = &factor_buf[bs][mode];
|
||||
if (mode == best_mode_index) {
|
||||
*fact -= (*fact >> 4);
|
||||
} else {
|
||||
*fact = MIN(*fact + RD_THRESH_INC,
|
||||
rd_thresh * RD_THRESH_MAX_FACT);
|
||||
*fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -192,8 +192,8 @@ static void model_rd_for_sb(VP10_COMP *cpi, BLOCK_SIZE bsize,
|
||||
const int64_t ac_thr = p->quant_thred[1] >> shift;
|
||||
// The low thresholds are used to measure if the prediction errors are
|
||||
// low enough so that we can skip the mode search.
|
||||
const int64_t low_dc_thr = MIN(50, dc_thr >> 2);
|
||||
const int64_t low_ac_thr = MIN(80, ac_thr >> 2);
|
||||
const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2);
|
||||
const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2);
|
||||
int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
|
||||
int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
|
||||
int idx, idy;
|
||||
@ -505,7 +505,7 @@ static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
|
||||
if (tx_size != TX_32X32)
|
||||
dc_correct >>= 2;
|
||||
|
||||
dist = MAX(0, sse - dc_correct);
|
||||
dist = VPXMAX(0, sse - dc_correct);
|
||||
}
|
||||
} else {
|
||||
// SKIP_TXFM_AC_DC
|
||||
@ -531,7 +531,7 @@ static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
|
||||
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
|
||||
|
||||
// TODO(jingning): temporarily enabled only for luma component
|
||||
rd = MIN(rd1, rd2);
|
||||
rd = VPXMIN(rd1, rd2);
|
||||
if (plane == 0)
|
||||
x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] ||
|
||||
(rd1 > rd2 && !xd->lossless);
|
||||
@ -599,7 +599,7 @@ static void choose_largest_tx_size(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
MACROBLOCKD *const xd = &x->e_mbd;
|
||||
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
||||
|
||||
mbmi->tx_size = MIN(max_tx_size, largest_tx_size);
|
||||
mbmi->tx_size = VPXMIN(max_tx_size, largest_tx_size);
|
||||
|
||||
txfm_rd_in_plane(x, rate, distortion, skip,
|
||||
sse, ref_best_rd, 0, bs,
|
||||
@ -639,8 +639,8 @@ static void choose_tx_size_from_rd(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
start_tx = max_tx_size;
|
||||
end_tx = 0;
|
||||
} else {
|
||||
TX_SIZE chosen_tx_size = MIN(max_tx_size,
|
||||
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
||||
TX_SIZE chosen_tx_size = VPXMIN(max_tx_size,
|
||||
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
||||
start_tx = chosen_tx_size;
|
||||
end_tx = chosen_tx_size;
|
||||
}
|
||||
@ -1389,7 +1389,7 @@ static int64_t encode_inter_mb_segment(VP10_COMP *cpi,
|
||||
cpi->sf.use_fast_coef_costing);
|
||||
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
|
||||
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
|
||||
rd = MIN(rd1, rd2);
|
||||
rd = VPXMIN(rd1, rd2);
|
||||
if (rd >= best_yrd)
|
||||
return INT64_MAX;
|
||||
}
|
||||
@ -1808,7 +1808,8 @@ static int64_t rd_pick_best_sub8x8_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
if (i == 0)
|
||||
max_mv = x->max_mv_context[mbmi->ref_frame[0]];
|
||||
else
|
||||
max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
|
||||
max_mv =
|
||||
VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
|
||||
|
||||
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
||||
// Take wtd average of the step_params based on the last frame's
|
||||
@ -1826,7 +1827,7 @@ static int64_t rd_pick_best_sub8x8_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
if (cpi->sf.adaptive_motion_search) {
|
||||
mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
|
||||
mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
|
||||
step_param = MAX(step_param, 8);
|
||||
step_param = VPXMAX(step_param, 8);
|
||||
}
|
||||
|
||||
// adjust src pointer for this block
|
||||
@ -2231,7 +2232,7 @@ static void single_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
vp10_set_mv_search_range(x, &ref_mv);
|
||||
|
||||
// Work out the size of the first step in the mv step search.
|
||||
// 0 here is maximum length first step. 1 is MAX >> 1 etc.
|
||||
// 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
|
||||
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
||||
// Take wtd average of the step_params based on the last frame's
|
||||
// max mv magnitude and that based on the best ref mvs of the current
|
||||
@ -2243,9 +2244,10 @@ static void single_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
}
|
||||
|
||||
if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
|
||||
int boffset = 2 * (b_width_log2_lookup[BLOCK_64X64] -
|
||||
MIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
||||
step_param = MAX(step_param, boffset);
|
||||
int boffset =
|
||||
2 * (b_width_log2_lookup[BLOCK_64X64] -
|
||||
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
||||
step_param = VPXMAX(step_param, boffset);
|
||||
}
|
||||
|
||||
if (cpi->sf.adaptive_motion_search) {
|
||||
@ -2466,7 +2468,7 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
// motion field, where the distortion gain for a single block may not
|
||||
// be enough to overcome the cost of a new mv.
|
||||
if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
|
||||
*rate2 += MAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
||||
*rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
||||
} else {
|
||||
*rate2 += rate_mv;
|
||||
}
|
||||
@ -2503,10 +2505,10 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
// initiation of a motion field.
|
||||
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]],
|
||||
mode_mv, refs[0])) {
|
||||
*rate2 += MIN(cost_mv_ref(cpi, this_mode,
|
||||
mbmi_ext->mode_context[refs[0]]),
|
||||
cost_mv_ref(cpi, NEARESTMV,
|
||||
mbmi_ext->mode_context[refs[0]]));
|
||||
*rate2 += VPXMIN(cost_mv_ref(cpi, this_mode,
|
||||
mbmi_ext->mode_context[refs[0]]),
|
||||
cost_mv_ref(cpi, NEARESTMV,
|
||||
mbmi_ext->mode_context[refs[0]]));
|
||||
} else {
|
||||
*rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]);
|
||||
}
|
||||
@ -2548,10 +2550,10 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
|
||||
filter_cache[i] = rd;
|
||||
filter_cache[SWITCHABLE_FILTERS] =
|
||||
MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
if (cm->interp_filter == SWITCHABLE)
|
||||
rd += rs_rd;
|
||||
*mask_filter = MAX(*mask_filter, rd);
|
||||
*mask_filter = VPXMAX(*mask_filter, rd);
|
||||
} else {
|
||||
int rate_sum = 0;
|
||||
int64_t dist_sum = 0;
|
||||
@ -2581,10 +2583,10 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
|
||||
filter_cache[i] = rd;
|
||||
filter_cache[SWITCHABLE_FILTERS] =
|
||||
MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
if (cm->interp_filter == SWITCHABLE)
|
||||
rd += rs_rd;
|
||||
*mask_filter = MAX(*mask_filter, rd);
|
||||
*mask_filter = VPXMAX(*mask_filter, rd);
|
||||
|
||||
if (i == 0 && intpel_mv) {
|
||||
tmp_rate_sum = rate_sum;
|
||||
@ -2695,7 +2697,7 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
*distortion += distortion_y;
|
||||
|
||||
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
|
||||
rdcosty = MIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
|
||||
rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
|
||||
|
||||
if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
|
||||
&sseuv, bsize, ref_best_rd - rdcosty)) {
|
||||
@ -2760,7 +2762,7 @@ void vp10_rd_pick_intra_mode_sb(VP10_COMP *cpi, MACROBLOCK *x,
|
||||
pd[1].subsampling_x,
|
||||
pd[1].subsampling_y);
|
||||
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly,
|
||||
&dist_uv, &uv_skip, MAX(BLOCK_8X8, bsize),
|
||||
&dist_uv, &uv_skip, VPXMAX(BLOCK_8X8, bsize),
|
||||
max_uv_tx_size);
|
||||
|
||||
if (y_skip && uv_skip) {
|
||||
@ -2827,12 +2829,12 @@ static void rd_variance_adjustment(VP10_COMP *cpi,
|
||||
// to a predictor with a low spatial complexity compared to the source.
|
||||
if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
|
||||
(source_variance > recon_variance)) {
|
||||
var_factor = MIN(absvar_diff, MIN(VLOW_ADJ_MAX, var_error));
|
||||
var_factor = VPXMIN(absvar_diff, VPXMIN(VLOW_ADJ_MAX, var_error));
|
||||
// A second possible case of interest is where the source variance
|
||||
// is very low and we wish to discourage false texture or motion trails.
|
||||
} else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
|
||||
(recon_variance > source_variance)) {
|
||||
var_factor = MIN(absvar_diff, MIN(VHIGH_ADJ_MAX, var_error));
|
||||
var_factor = VPXMIN(absvar_diff, VPXMIN(VHIGH_ADJ_MAX, var_error));
|
||||
}
|
||||
*this_rd += (*this_rd * var_factor) / 100;
|
||||
}
|
||||
@ -2862,7 +2864,7 @@ int vp10_active_h_edge(VP10_COMP *cpi, int mi_row, int mi_step) {
|
||||
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
||||
|
||||
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
||||
bottom_edge = MAX(top_edge, bottom_edge);
|
||||
bottom_edge = VPXMAX(top_edge, bottom_edge);
|
||||
}
|
||||
|
||||
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
|
||||
@ -2889,7 +2891,7 @@ int vp10_active_v_edge(VP10_COMP *cpi, int mi_col, int mi_step) {
|
||||
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
||||
|
||||
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
||||
right_edge = MAX(left_edge, right_edge);
|
||||
right_edge = VPXMAX(left_edge, right_edge);
|
||||
}
|
||||
|
||||
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
|
||||
@ -3136,7 +3138,7 @@ void vp10_rd_pick_inter_mode_sb(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
||||
(ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame))))
|
||||
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
|
||||
continue;
|
||||
|
||||
if (mode_skip_mask[ref_frame] & (1 << this_mode))
|
||||
@ -3150,10 +3152,10 @@ void vp10_rd_pick_inter_mode_sb(VP10_COMP *cpi,
|
||||
continue;
|
||||
|
||||
if (sf->motion_field_mode_search) {
|
||||
const int mi_width = MIN(num_8x8_blocks_wide_lookup[bsize],
|
||||
tile_info->mi_col_end - mi_col);
|
||||
const int mi_height = MIN(num_8x8_blocks_high_lookup[bsize],
|
||||
tile_info->mi_row_end - mi_row);
|
||||
const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize],
|
||||
tile_info->mi_col_end - mi_col);
|
||||
const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize],
|
||||
tile_info->mi_row_end - mi_row);
|
||||
const int bsl = mi_width_log2_lookup[bsize];
|
||||
int cb_partition_search_ctrl = (((mi_row + mi_col) >> bsl)
|
||||
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
|
||||
@ -3371,9 +3373,9 @@ void vp10_rd_pick_inter_mode_sb(VP10_COMP *cpi,
|
||||
|
||||
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
||||
for (i = 0; i < REFERENCE_MODES; ++i)
|
||||
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
|
||||
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
|
||||
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
|
||||
}
|
||||
|
||||
// Did this mode help.. i.e. is it the new best mode
|
||||
@ -3472,7 +3474,7 @@ void vp10_rd_pick_inter_mode_sb(VP10_COMP *cpi,
|
||||
adj_rd = filter_cache[i] - ref;
|
||||
|
||||
adj_rd += this_rd;
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -3815,7 +3817,7 @@ void vp10_rd_pick_inter_mode_sub8x8(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
||||
(ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame))))
|
||||
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
|
||||
continue;
|
||||
|
||||
// Test best rd so far against threshold for trying this mode.
|
||||
@ -3970,12 +3972,11 @@ void vp10_rd_pick_inter_mode_sub8x8(VP10_COMP *cpi,
|
||||
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
|
||||
filter_cache[switchable_filter_index] = tmp_rd;
|
||||
filter_cache[SWITCHABLE_FILTERS] =
|
||||
MIN(filter_cache[SWITCHABLE_FILTERS],
|
||||
tmp_rd + rs_rd);
|
||||
VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd);
|
||||
if (cm->interp_filter == SWITCHABLE)
|
||||
tmp_rd += rs_rd;
|
||||
|
||||
mask_filter = MAX(mask_filter, tmp_rd);
|
||||
mask_filter = VPXMAX(mask_filter, tmp_rd);
|
||||
|
||||
newbest = (tmp_rd < tmp_best_rd);
|
||||
if (newbest) {
|
||||
@ -4053,8 +4054,8 @@ void vp10_rd_pick_inter_mode_sub8x8(VP10_COMP *cpi,
|
||||
compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred);
|
||||
|
||||
tmp_best_rdu = best_rd -
|
||||
MIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
|
||||
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
|
||||
VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
|
||||
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
|
||||
|
||||
if (tmp_best_rdu > 0) {
|
||||
// If even the 'Y' rd value of split is higher than best so far
|
||||
@ -4114,9 +4115,9 @@ void vp10_rd_pick_inter_mode_sub8x8(VP10_COMP *cpi,
|
||||
|
||||
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
||||
for (i = 0; i < REFERENCE_MODES; ++i)
|
||||
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
|
||||
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
|
||||
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
|
||||
}
|
||||
|
||||
// Did this mode help.. i.e. is it the new best mode
|
||||
@ -4215,7 +4216,7 @@ void vp10_rd_pick_inter_mode_sub8x8(VP10_COMP *cpi,
|
||||
adj_rd = filter_cache[i] - ref;
|
||||
|
||||
adj_rd += this_rd;
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -49,7 +49,7 @@ static void set_good_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
VP10_COMMON *const cm = &cpi->common;
|
||||
|
||||
if (speed >= 1) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
sf->partition_search_breakout_dist_thr = (1 << 23);
|
||||
@ -60,7 +60,7 @@ static void set_good_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 2) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
sf->adaptive_pred_interp_filter = 0;
|
||||
@ -75,7 +75,7 @@ static void set_good_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 3) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = DISABLE_ALL_SPLIT;
|
||||
sf->schedule_mode_search = cm->base_qindex < 220 ? 1 : 0;
|
||||
sf->partition_search_breakout_dist_thr = (1 << 25);
|
||||
@ -99,7 +99,7 @@ static void set_good_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 4) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 26);
|
||||
} else {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 24);
|
||||
@ -215,7 +215,7 @@ static void set_rt_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
VP10_COMMON *const cm = &cpi->common;
|
||||
|
||||
if (speed >= 1) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
} else {
|
||||
@ -224,7 +224,7 @@ static void set_rt_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 2) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
} else {
|
||||
@ -233,7 +233,7 @@ static void set_rt_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 5) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 25);
|
||||
} else {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 23);
|
||||
@ -241,7 +241,7 @@ static void set_rt_speed_feature_framesize_dependent(VP10_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 7) {
|
||||
sf->encode_breakout_thresh = (MIN(cm->width, cm->height) >= 720) ?
|
||||
sf->encode_breakout_thresh = (VPXMIN(cm->width, cm->height) >= 720) ?
|
||||
800 : 300;
|
||||
}
|
||||
}
|
||||
|
@ -141,8 +141,8 @@ void vp10_update_layer_context_change_config(VP10_COMP *const cpi,
|
||||
lrc->maximum_buffer_size =
|
||||
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
|
||||
lrc->bits_off_target =
|
||||
MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
|
||||
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
|
||||
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
|
||||
@ -173,9 +173,9 @@ void vp10_update_layer_context_change_config(VP10_COMP *const cpi,
|
||||
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
|
||||
lrc->maximum_buffer_size =
|
||||
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
|
||||
lrc->bits_off_target = MIN(lrc->bits_off_target,
|
||||
lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
lrc->bits_off_target = VPXMIN(lrc->bits_off_target,
|
||||
lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
// Update framerate-related quantities.
|
||||
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
|
||||
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer];
|
||||
|
@ -242,7 +242,7 @@ static int temporal_filter_find_matching_mb_c(VP10_COMP *cpi,
|
||||
xd->plane[0].pre[0].stride = stride;
|
||||
|
||||
step_param = mv_sf->reduce_first_step_size;
|
||||
step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
|
||||
// Ignore mv costing by sending NULL pointer instead of cost arrays
|
||||
vp10_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
|
||||
|
@ -183,7 +183,7 @@ static vpx_codec_err_t decoder_peek_si_internal(const uint8_t *data,
|
||||
si->w = si->h = 0;
|
||||
|
||||
if (decrypt_cb) {
|
||||
data_sz = MIN(sizeof(clear_buffer), data_sz);
|
||||
data_sz = VPXMIN(sizeof(clear_buffer), data_sz);
|
||||
decrypt_cb(decrypt_state, data, clear_buffer, data_sz);
|
||||
data = clear_buffer;
|
||||
}
|
||||
|
@ -235,7 +235,7 @@ static INLINE TX_SIZE get_uv_tx_size_impl(TX_SIZE y_tx_size, BLOCK_SIZE bsize,
|
||||
return TX_4X4;
|
||||
} else {
|
||||
const BLOCK_SIZE plane_bsize = ss_size_lookup[bsize][xss][yss];
|
||||
return MIN(y_tx_size, max_txsize_lookup[plane_bsize]);
|
||||
return VPXMIN(y_tx_size, max_txsize_lookup[plane_bsize]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -27,7 +27,7 @@ const uint8_t num_8x8_blocks_wide_lookup[BLOCK_SIZES] =
|
||||
const uint8_t num_8x8_blocks_high_lookup[BLOCK_SIZES] =
|
||||
{1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8};
|
||||
|
||||
// MIN(3, MIN(b_width_log2(bsize), b_height_log2(bsize)))
|
||||
// VPXMIN(3, VPXMIN(b_width_log2(bsize), b_height_log2(bsize)))
|
||||
const uint8_t size_group_lookup[BLOCK_SIZES] =
|
||||
{0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3};
|
||||
|
||||
|
@ -1588,7 +1588,7 @@ void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
|
||||
if (partial_frame && cm->mi_rows > 8) {
|
||||
start_mi_row = cm->mi_rows >> 1;
|
||||
start_mi_row &= 0xfffffff8;
|
||||
mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
|
||||
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
|
||||
}
|
||||
end_mi_row = start_mi_row + mi_rows_to_filter;
|
||||
vp9_loop_filter_frame_init(cm, frame_filter_level);
|
||||
|
@ -625,7 +625,7 @@ static void swap_mi_and_prev_mi(VP9_COMMON *cm) {
|
||||
|
||||
int vp9_post_proc_frame(struct VP9Common *cm,
|
||||
YV12_BUFFER_CONFIG *dest, vp9_ppflags_t *ppflags) {
|
||||
const int q = MIN(105, cm->lf.filter_level * 2);
|
||||
const int q = VPXMIN(105, cm->lf.filter_level * 2);
|
||||
const int flags = ppflags->post_proc_flag;
|
||||
YV12_BUFFER_CONFIG *const ppbuf = &cm->post_proc_buffer;
|
||||
struct postproc_state *const ppstate = &cm->postproc_state;
|
||||
|
@ -24,14 +24,14 @@ static INLINE int get_segment_id(const VP9_COMMON *cm,
|
||||
const int mi_offset = mi_row * cm->mi_cols + mi_col;
|
||||
const int bw = num_8x8_blocks_wide_lookup[bsize];
|
||||
const int bh = num_8x8_blocks_high_lookup[bsize];
|
||||
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
int x, y, segment_id = MAX_SEGMENTS;
|
||||
|
||||
for (y = 0; y < ymis; ++y)
|
||||
for (x = 0; x < xmis; ++x)
|
||||
segment_id = MIN(segment_id,
|
||||
segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
segment_id =
|
||||
VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
|
||||
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
|
||||
return segment_id;
|
||||
|
@ -165,7 +165,7 @@ static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame,
|
||||
// Decoder may allocate more threads than number of tiles based on user's
|
||||
// input.
|
||||
const int tile_cols = 1 << cm->log2_tile_cols;
|
||||
const int num_workers = MIN(nworkers, tile_cols);
|
||||
const int num_workers = VPXMIN(nworkers, tile_cols);
|
||||
int i;
|
||||
|
||||
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
|
||||
@ -229,7 +229,7 @@ void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
|
||||
if (partial_frame && cm->mi_rows > 8) {
|
||||
start_mi_row = cm->mi_rows >> 1;
|
||||
start_mi_row &= 0xfffffff8;
|
||||
mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
|
||||
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
|
||||
}
|
||||
end_mi_row = start_mi_row + mi_rows_to_filter;
|
||||
vp9_loop_filter_frame_init(cm, frame_filter_level);
|
||||
|
@ -18,7 +18,7 @@
|
||||
static int get_tile_offset(int idx, int mis, int log2) {
|
||||
const int sb_cols = mi_cols_aligned_to_sb(mis) >> MI_BLOCK_SIZE_LOG2;
|
||||
const int offset = ((idx * sb_cols) >> log2) << MI_BLOCK_SIZE_LOG2;
|
||||
return MIN(offset, mis);
|
||||
return VPXMIN(offset, mis);
|
||||
}
|
||||
|
||||
void vp9_tile_set_row(TileInfo *tile, const VP9_COMMON *cm, int row) {
|
||||
|
@ -658,7 +658,7 @@ static void dec_build_inter_predictors(VP9Decoder *const pbi, MACROBLOCKD *xd,
|
||||
// pixels of each superblock row can be changed by next superblock row.
|
||||
if (pbi->frame_parallel_decode)
|
||||
vp9_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf,
|
||||
MAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
|
||||
// Skip border extension if block is inside the frame.
|
||||
if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
|
||||
@ -686,7 +686,7 @@ static void dec_build_inter_predictors(VP9Decoder *const pbi, MACROBLOCKD *xd,
|
||||
if (pbi->frame_parallel_decode) {
|
||||
const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS;
|
||||
vp9_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf,
|
||||
MAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1));
|
||||
}
|
||||
}
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
@ -757,8 +757,8 @@ static void dec_build_inter_predictors_sb(VP9Decoder *const pbi,
|
||||
static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi,
|
||||
int n4_wl, int n4_hl) {
|
||||
// get minimum log2 num4x4s dimension
|
||||
const int x = MIN(n4_wl, n4_hl);
|
||||
return MIN(mbmi->tx_size, x);
|
||||
const int x = VPXMIN(n4_wl, n4_hl);
|
||||
return VPXMIN(mbmi->tx_size, x);
|
||||
}
|
||||
|
||||
static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
|
||||
@ -819,8 +819,8 @@ static void decode_block(VP9Decoder *const pbi, MACROBLOCKD *const xd,
|
||||
const int less8x8 = bsize < BLOCK_8X8;
|
||||
const int bw = 1 << (bwl - 1);
|
||||
const int bh = 1 << (bhl - 1);
|
||||
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
|
||||
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
||||
|
||||
MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col,
|
||||
bw, bh, x_mis, y_mis, bwl, bhl);
|
||||
@ -1603,7 +1603,7 @@ static const uint8_t *decode_tiles_mt(VP9Decoder *pbi,
|
||||
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
||||
const int tile_cols = 1 << cm->log2_tile_cols;
|
||||
const int tile_rows = 1 << cm->log2_tile_rows;
|
||||
const int num_workers = MIN(pbi->max_threads & ~1, tile_cols);
|
||||
const int num_workers = VPXMIN(pbi->max_threads & ~1, tile_cols);
|
||||
TileBuffer tile_buffers[1][1 << 6];
|
||||
int n;
|
||||
int final_worker = -1;
|
||||
@ -1670,7 +1670,7 @@ static const uint8_t *decode_tiles_mt(VP9Decoder *pbi,
|
||||
int group_start = 0;
|
||||
while (group_start < tile_cols) {
|
||||
const TileBuffer largest = tile_buffers[0][group_start];
|
||||
const int group_end = MIN(group_start + num_workers, tile_cols) - 1;
|
||||
const int group_end = VPXMIN(group_start + num_workers, tile_cols) - 1;
|
||||
memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1,
|
||||
(group_end - group_start) * sizeof(tile_buffers[0][0]));
|
||||
tile_buffers[0][group_end] = largest;
|
||||
@ -2102,7 +2102,7 @@ static struct vpx_read_bit_buffer *init_read_bit_buffer(
|
||||
rb->error_handler = error_handler;
|
||||
rb->error_handler_data = &pbi->common;
|
||||
if (pbi->decrypt_cb) {
|
||||
const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data);
|
||||
const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
|
||||
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
|
||||
rb->bit_buffer = clear_data;
|
||||
rb->bit_buffer_end = clear_data + n;
|
||||
|
@ -87,7 +87,7 @@ static TX_SIZE read_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd,
|
||||
if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8)
|
||||
return read_selected_tx_size(cm, xd, max_tx_size, r);
|
||||
else
|
||||
return MIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
return VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
}
|
||||
|
||||
static int dec_get_segment_id(const VP9_COMMON *cm, const uint8_t *segment_ids,
|
||||
@ -96,8 +96,8 @@ static int dec_get_segment_id(const VP9_COMMON *cm, const uint8_t *segment_ids,
|
||||
|
||||
for (y = 0; y < y_mis; y++)
|
||||
for (x = 0; x < x_mis; x++)
|
||||
segment_id = MIN(segment_id,
|
||||
segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
segment_id =
|
||||
VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
|
||||
|
||||
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
|
||||
return segment_id;
|
||||
@ -156,8 +156,8 @@ static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
||||
const int bh = xd->plane[0].n4_h >> 1;
|
||||
|
||||
// TODO(slavarnway): move x_mis, y_mis into xd ?????
|
||||
const int x_mis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int x_mis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
|
||||
if (!seg->enabled)
|
||||
return 0; // Default for disabled segmentation
|
||||
@ -212,8 +212,8 @@ static void read_intra_frame_mode_info(VP9_COMMON *const cm,
|
||||
const int bh = xd->plane[0].n4_h >> 1;
|
||||
|
||||
// TODO(slavarnway): move x_mis, y_mis into xd ?????
|
||||
const int x_mis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int x_mis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int y_mis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
|
||||
mbmi->segment_id = read_intra_segment_id(cm, mi_offset, x_mis, y_mis, r);
|
||||
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
|
||||
|
@ -117,8 +117,8 @@ void vp9_caq_select_segment(VP9_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs,
|
||||
const int mi_offset = mi_row * cm->mi_cols + mi_col;
|
||||
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
|
||||
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
|
||||
const int xmis = MIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]);
|
||||
const int ymis = MIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]);
|
||||
const int xmis = VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]);
|
||||
const int ymis = VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]);
|
||||
int x, y;
|
||||
int i;
|
||||
unsigned char segment;
|
||||
@ -136,7 +136,7 @@ void vp9_caq_select_segment(VP9_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs,
|
||||
|
||||
vpx_clear_system_state();
|
||||
low_var_thresh = (cpi->oxcf.pass == 2)
|
||||
? MAX(cpi->twopass.mb_av_energy, MIN_DEFAULT_LV_THRESH)
|
||||
? VPXMAX(cpi->twopass.mb_av_energy, MIN_DEFAULT_LV_THRESH)
|
||||
: DEFAULT_LV_THRESH;
|
||||
|
||||
vp9_setup_src_planes(mb, cpi->Source, mi_row, mi_col);
|
||||
|
@ -223,8 +223,8 @@ void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi,
|
||||
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
|
||||
const int bw = num_8x8_blocks_wide_lookup[bsize];
|
||||
const int bh = num_8x8_blocks_high_lookup[bsize];
|
||||
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
||||
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
|
||||
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
|
||||
const int block_index = mi_row * cm->mi_cols + mi_col;
|
||||
const int refresh_this_block = candidate_refresh_aq(cr, mbmi, rate, dist,
|
||||
bsize);
|
||||
@ -416,10 +416,10 @@ static void cyclic_refresh_update_map(VP9_COMP *const cpi) {
|
||||
assert(mi_col >= 0 && mi_col < cm->mi_cols);
|
||||
bl_index = mi_row * cm->mi_cols + mi_col;
|
||||
// Loop through all 8x8 blocks in superblock and update map.
|
||||
xmis = MIN(cm->mi_cols - mi_col,
|
||||
num_8x8_blocks_wide_lookup[BLOCK_64X64]);
|
||||
ymis = MIN(cm->mi_rows - mi_row,
|
||||
num_8x8_blocks_high_lookup[BLOCK_64X64]);
|
||||
xmis =
|
||||
VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]);
|
||||
ymis =
|
||||
VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]);
|
||||
for (y = 0; y < ymis; y++) {
|
||||
for (x = 0; x < xmis; x++) {
|
||||
const int bl_index2 = bl_index + y * cm->mi_cols + x;
|
||||
@ -551,8 +551,9 @@ void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
|
||||
|
||||
// Set a more aggressive (higher) q delta for segment BOOST2.
|
||||
qindex_delta = compute_deltaq(
|
||||
cpi, cm->base_qindex, MIN(CR_MAX_RATE_TARGET_RATIO,
|
||||
0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
|
||||
cpi, cm->base_qindex,
|
||||
VPXMIN(CR_MAX_RATE_TARGET_RATIO,
|
||||
0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
|
||||
cr->qindex_delta[2] = qindex_delta;
|
||||
vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
|
||||
|
||||
|
@ -815,7 +815,7 @@ static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
|
||||
static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
|
||||
FRAME_COUNTS *counts) {
|
||||
// Mode
|
||||
vpx_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
|
||||
vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
|
||||
if (cm->tx_mode >= ALLOW_32X32)
|
||||
vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
|
||||
|
||||
|
@ -120,10 +120,10 @@ int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
|
||||
adj = adj_val[2];
|
||||
}
|
||||
if (diff > 0) {
|
||||
avg[c] = MIN(UINT8_MAX, sig[c] + adj);
|
||||
avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj);
|
||||
total_adj += adj;
|
||||
} else {
|
||||
avg[c] = MAX(0, sig[c] - adj);
|
||||
avg[c] = VPXMAX(0, sig[c] - adj);
|
||||
total_adj -= adj;
|
||||
}
|
||||
}
|
||||
@ -160,13 +160,13 @@ int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
|
||||
// Diff positive means we made positive adjustment above
|
||||
// (in first try/attempt), so now make negative adjustment to bring
|
||||
// denoised signal down.
|
||||
avg[c] = MAX(0, avg[c] - adj);
|
||||
avg[c] = VPXMAX(0, avg[c] - adj);
|
||||
total_adj -= adj;
|
||||
} else {
|
||||
// Diff negative means we made negative adjustment above
|
||||
// (in first try/attempt), so now make positive adjustment to bring
|
||||
// denoised signal up.
|
||||
avg[c] = MIN(UINT8_MAX, avg[c] + adj);
|
||||
avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj);
|
||||
total_adj += adj;
|
||||
}
|
||||
}
|
||||
|
@ -979,8 +979,8 @@ static void update_state(VP9_COMP *cpi, ThreadData *td,
|
||||
const struct segmentation *const seg = &cm->seg;
|
||||
const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
|
||||
const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
|
||||
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
|
||||
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
||||
MV_REF *const frame_mvs =
|
||||
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
||||
int w, h;
|
||||
@ -1132,8 +1132,8 @@ static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
|
||||
|
||||
mbmi->sb_type = bsize;
|
||||
mbmi->mode = ZEROMV;
|
||||
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
mbmi->tx_size =
|
||||
VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
|
||||
mbmi->skip = 1;
|
||||
mbmi->uv_mode = DC_PRED;
|
||||
mbmi->ref_frame[0] = LAST_FRAME;
|
||||
@ -1496,7 +1496,7 @@ static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
|
||||
int rows_left, int cols_left,
|
||||
int *bh, int *bw) {
|
||||
if (rows_left <= 0 || cols_left <= 0) {
|
||||
return MIN(bsize, BLOCK_8X8);
|
||||
return VPXMIN(bsize, BLOCK_8X8);
|
||||
} else {
|
||||
for (; bsize > 0; bsize -= 3) {
|
||||
*bh = num_8x8_blocks_high_lookup[bsize];
|
||||
@ -1672,8 +1672,8 @@ static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
|
||||
const struct segmentation *const seg = &cm->seg;
|
||||
const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
|
||||
const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
|
||||
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
|
||||
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
|
||||
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
|
||||
|
||||
*(xd->mi[0]) = ctx->mic;
|
||||
*(x->mbmi_ext) = ctx->mbmi_ext;
|
||||
@ -1741,7 +1741,7 @@ static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
|
||||
if (cpi->oxcf.noise_sensitivity > 0 && output_enabled &&
|
||||
cpi->common.frame_type != KEY_FRAME) {
|
||||
vp9_denoiser_denoise(&cpi->denoiser, x, mi_row, mi_col,
|
||||
MAX(BLOCK_8X8, bsize), ctx);
|
||||
VPXMAX(BLOCK_8X8, bsize), ctx);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -2133,8 +2133,8 @@ static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
|
||||
MODE_INFO *mi = mi_8x8[index+j];
|
||||
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
|
||||
bs_hist[sb_type]++;
|
||||
*min_block_size = MIN(*min_block_size, sb_type);
|
||||
*max_block_size = MAX(*max_block_size, sb_type);
|
||||
*min_block_size = VPXMIN(*min_block_size, sb_type);
|
||||
*max_block_size = VPXMAX(*max_block_size, sb_type);
|
||||
}
|
||||
index += xd->mi_stride;
|
||||
}
|
||||
@ -2211,8 +2211,8 @@ static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
|
||||
if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
|
||||
min_size = BLOCK_4X4;
|
||||
} else {
|
||||
min_size = MIN(cpi->sf.rd_auto_partition_min_limit,
|
||||
MIN(min_size, max_size));
|
||||
min_size =
|
||||
VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
|
||||
}
|
||||
|
||||
// When use_square_partition_only is true, make sure at least one square
|
||||
@ -2248,8 +2248,8 @@ static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
|
||||
for (idx = 0; idx < mi_width; ++idx) {
|
||||
mi = prev_mi[idy * cm->mi_stride + idx];
|
||||
bs = mi ? mi->mbmi.sb_type : bsize;
|
||||
min_size = MIN(min_size, bs);
|
||||
max_size = MAX(max_size, bs);
|
||||
min_size = VPXMIN(min_size, bs);
|
||||
max_size = VPXMAX(max_size, bs);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2258,8 +2258,8 @@ static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
|
||||
for (idy = 0; idy < mi_height; ++idy) {
|
||||
mi = xd->mi[idy * cm->mi_stride - 1];
|
||||
bs = mi ? mi->mbmi.sb_type : bsize;
|
||||
min_size = MIN(min_size, bs);
|
||||
max_size = MAX(max_size, bs);
|
||||
min_size = VPXMIN(min_size, bs);
|
||||
max_size = VPXMAX(max_size, bs);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2267,8 +2267,8 @@ static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
|
||||
for (idx = 0; idx < mi_width; ++idx) {
|
||||
mi = xd->mi[idx - cm->mi_stride];
|
||||
bs = mi ? mi->mbmi.sb_type : bsize;
|
||||
min_size = MIN(min_size, bs);
|
||||
max_size = MAX(max_size, bs);
|
||||
min_size = VPXMIN(min_size, bs);
|
||||
max_size = VPXMAX(max_size, bs);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2433,9 +2433,9 @@ static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
|
||||
int mb_row = mi_row >> 1;
|
||||
int mb_col = mi_col >> 1;
|
||||
int mb_row_end =
|
||||
MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
int mb_col_end =
|
||||
MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
int r, c;
|
||||
|
||||
// compute a complexity measure, basically measure inconsistency of motion
|
||||
@ -2524,9 +2524,9 @@ static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
|
||||
int mb_row = mi_row >> 1;
|
||||
int mb_col = mi_col >> 1;
|
||||
int mb_row_end =
|
||||
MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
||||
int mb_col_end =
|
||||
MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
||||
int r, c;
|
||||
|
||||
int skip = 1;
|
||||
@ -3646,7 +3646,7 @@ static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
|
||||
const int last_stride = cpi->Last_Source->y_stride;
|
||||
|
||||
// Pick cutoff threshold
|
||||
const int cutoff = (MIN(cm->width, cm->height) >= 720) ?
|
||||
const int cutoff = (VPXMIN(cm->width, cm->height) >= 720) ?
|
||||
(cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
|
||||
(cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
|
||||
DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
|
||||
@ -3947,7 +3947,7 @@ static void encode_frame_internal(VP9_COMP *cpi) {
|
||||
#endif
|
||||
|
||||
// If allowed, encoding tiles in parallel with one thread handling one tile.
|
||||
if (MIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
|
||||
if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
|
||||
vp9_encode_tiles_mt(cpi);
|
||||
else
|
||||
encode_tiles(cpi);
|
||||
@ -4162,10 +4162,10 @@ static void encode_superblock(VP9_COMP *cpi, ThreadData *td,
|
||||
int plane;
|
||||
mbmi->skip = 1;
|
||||
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
|
||||
vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
|
||||
vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane);
|
||||
if (output_enabled)
|
||||
sum_intra_stats(td->counts, mi);
|
||||
vp9_tokenize_sb(cpi, td, t, !output_enabled, MAX(bsize, BLOCK_8X8));
|
||||
vp9_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
|
||||
} else {
|
||||
int ref;
|
||||
const int is_compound = has_second_ref(mbmi);
|
||||
@ -4178,12 +4178,14 @@ static void encode_superblock(VP9_COMP *cpi, ThreadData *td,
|
||||
&xd->block_refs[ref]->sf);
|
||||
}
|
||||
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
|
||||
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
|
||||
vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
|
||||
VPXMAX(bsize, BLOCK_8X8));
|
||||
|
||||
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
|
||||
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
|
||||
VPXMAX(bsize, BLOCK_8X8));
|
||||
|
||||
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
|
||||
vp9_tokenize_sb(cpi, td, t, !output_enabled, MAX(bsize, BLOCK_8X8));
|
||||
vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
|
||||
vp9_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
|
||||
}
|
||||
|
||||
if (output_enabled) {
|
||||
@ -4197,8 +4199,8 @@ static void encode_superblock(VP9_COMP *cpi, ThreadData *td,
|
||||
TX_SIZE tx_size;
|
||||
// The new intra coding scheme requires no change of transform size
|
||||
if (is_inter_block(&mi->mbmi)) {
|
||||
tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
|
||||
max_txsize_lookup[bsize]);
|
||||
tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
|
||||
max_txsize_lookup[bsize]);
|
||||
} else {
|
||||
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
|
||||
}
|
||||
|
@ -216,8 +216,8 @@ void vp9_encode_mv(VP9_COMP* cpi, vpx_writer* w,
|
||||
// If auto_mv_step_size is enabled then keep track of the largest
|
||||
// motion vector component used.
|
||||
if (cpi->sf.mv.auto_mv_step_size) {
|
||||
unsigned int maxv = MAX(abs(mv->row), abs(mv->col)) >> 3;
|
||||
cpi->max_mv_magnitude = MAX(maxv, cpi->max_mv_magnitude);
|
||||
unsigned int maxv = VPXMAX(abs(mv->row), abs(mv->col)) >> 3;
|
||||
cpi->max_mv_magnitude = VPXMAX(maxv, cpi->max_mv_magnitude);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1490,8 +1490,8 @@ void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
|
||||
|
||||
// Under a configuration change, where maximum_buffer_size may change,
|
||||
// keep buffer level clipped to the maximum allowed buffer size.
|
||||
rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->buffer_level = MIN(rc->buffer_level, rc->maximum_buffer_size);
|
||||
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size);
|
||||
|
||||
// Set up frame rate and related parameters rate control values.
|
||||
vp9_new_framerate(cpi, cpi->framerate);
|
||||
@ -2615,7 +2615,7 @@ static int scale_down(VP9_COMP *cpi, int q) {
|
||||
if (rc->frame_size_selector == UNSCALED &&
|
||||
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
|
||||
const int max_size_thresh = (int)(rate_thresh_mult[SCALE_STEP1]
|
||||
* MAX(rc->this_frame_target, rc->avg_frame_bandwidth));
|
||||
* VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
|
||||
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
|
||||
}
|
||||
return scale;
|
||||
@ -2998,7 +2998,7 @@ static void output_frame_level_debug_stats(VP9_COMP *cpi) {
|
||||
|
||||
static void set_mv_search_params(VP9_COMP *cpi) {
|
||||
const VP9_COMMON *const cm = &cpi->common;
|
||||
const unsigned int max_mv_def = MIN(cm->width, cm->height);
|
||||
const unsigned int max_mv_def = VPXMIN(cm->width, cm->height);
|
||||
|
||||
// Default based on max resolution.
|
||||
cpi->mv_step_param = vp9_init_search_range(max_mv_def);
|
||||
@ -3013,8 +3013,8 @@ static void set_mv_search_params(VP9_COMP *cpi) {
|
||||
// Allow mv_steps to correspond to twice the max mv magnitude found
|
||||
// in the previous frame, capped by the default max_mv_magnitude based
|
||||
// on resolution.
|
||||
cpi->mv_step_param =
|
||||
vp9_init_search_range(MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
|
||||
cpi->mv_step_param = vp9_init_search_range(
|
||||
VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
|
||||
}
|
||||
cpi->max_mv_magnitude = 0;
|
||||
}
|
||||
@ -3414,7 +3414,7 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
|
||||
|
||||
// Adjust Q
|
||||
q = (int)((q * high_err_target) / kf_err);
|
||||
q = MIN(q, (q_high + q_low) >> 1);
|
||||
q = VPXMIN(q, (q_high + q_low) >> 1);
|
||||
} else if (kf_err < low_err_target &&
|
||||
rc->projected_frame_size >= frame_under_shoot_limit) {
|
||||
// The key frame is much better than the previous frame
|
||||
@ -3423,7 +3423,7 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
|
||||
|
||||
// Adjust Q
|
||||
q = (int)((q * low_err_target) / kf_err);
|
||||
q = MIN(q, (q_high + q_low + 1) >> 1);
|
||||
q = VPXMIN(q, (q_high + q_low + 1) >> 1);
|
||||
}
|
||||
|
||||
// Clamp Q to upper and lower limits:
|
||||
@ -3432,7 +3432,7 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
|
||||
loop = q != last_q;
|
||||
} else if (recode_loop_test(
|
||||
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
|
||||
q, MAX(q_high, top_index), bottom_index)) {
|
||||
q, VPXMAX(q_high, top_index), bottom_index)) {
|
||||
// Is the projected frame size out of range and are we allowed
|
||||
// to attempt to recode.
|
||||
int last_q = q;
|
||||
@ -3474,12 +3474,12 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
|
||||
vp9_rc_update_rate_correction_factors(cpi);
|
||||
|
||||
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
||||
bottom_index, MAX(q_high, top_index));
|
||||
bottom_index, VPXMAX(q_high, top_index));
|
||||
|
||||
while (q < q_low && retries < 10) {
|
||||
vp9_rc_update_rate_correction_factors(cpi);
|
||||
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
||||
bottom_index, MAX(q_high, top_index));
|
||||
bottom_index, VPXMAX(q_high, top_index));
|
||||
retries++;
|
||||
}
|
||||
}
|
||||
@ -4053,8 +4053,8 @@ static void adjust_frame_rate(VP9_COMP *cpi,
|
||||
// Average this frame's rate into the last second's average
|
||||
// frame rate. If we haven't seen 1 second yet, then average
|
||||
// over the whole interval seen.
|
||||
const double interval = MIN((double)(source->ts_end
|
||||
- cpi->first_time_stamp_ever), 10000000.0);
|
||||
const double interval = VPXMIN(
|
||||
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
|
||||
double avg_duration = 10000000.0 / cpi->framerate;
|
||||
avg_duration *= (interval - avg_duration + this_duration);
|
||||
avg_duration /= interval;
|
||||
@ -4118,7 +4118,7 @@ static void adjust_image_stat(double y, double u, double v, double all,
|
||||
s->stat[U] += u;
|
||||
s->stat[V] += v;
|
||||
s->stat[ALL] += all;
|
||||
s->worst = MIN(s->worst, all);
|
||||
s->worst = VPXMIN(s->worst, all);
|
||||
}
|
||||
#endif // CONFIG_INTERNAL_STATS
|
||||
|
||||
@ -4448,7 +4448,7 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
|
||||
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
|
||||
cpi->worst_ssim= MIN(cpi->worst_ssim, frame_ssim2);
|
||||
cpi->worst_ssim = VPXMIN(cpi->worst_ssim, frame_ssim2);
|
||||
cpi->summed_quality += frame_ssim2 * weight;
|
||||
cpi->summed_weights += weight;
|
||||
|
||||
@ -4485,7 +4485,8 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
|
||||
cpi->Source->y_buffer, cpi->Source->y_stride,
|
||||
cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
|
||||
cpi->Source->y_width, cpi->Source->y_height);
|
||||
cpi->worst_blockiness = MAX(cpi->worst_blockiness, frame_blockiness);
|
||||
cpi->worst_blockiness =
|
||||
VPXMAX(cpi->worst_blockiness, frame_blockiness);
|
||||
cpi->total_blockiness += frame_blockiness;
|
||||
}
|
||||
}
|
||||
@ -4505,8 +4506,8 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
|
||||
double consistency = vpx_sse_to_psnr(samples, peak,
|
||||
(double)cpi->total_inconsistency);
|
||||
if (consistency > 0.0)
|
||||
cpi->worst_consistency = MIN(cpi->worst_consistency,
|
||||
consistency);
|
||||
cpi->worst_consistency =
|
||||
VPXMIN(cpi->worst_consistency, consistency);
|
||||
cpi->total_inconsistency += this_inconsistency;
|
||||
}
|
||||
}
|
||||
|
@ -67,7 +67,7 @@ void vp9_encode_tiles_mt(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
const int tile_cols = 1 << cm->log2_tile_cols;
|
||||
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
|
||||
const int num_workers = MIN(cpi->oxcf.max_threads, tile_cols);
|
||||
const int num_workers = VPXMIN(cpi->oxcf.max_threads, tile_cols);
|
||||
int i;
|
||||
|
||||
vp9_init_tile_data(cpi);
|
||||
@ -80,7 +80,7 @@ void vp9_encode_tiles_mt(VP9_COMP *cpi) {
|
||||
// resolution.
|
||||
if (cpi->use_svc) {
|
||||
int max_tile_cols = get_max_tile_cols(cpi);
|
||||
allocated_workers = MIN(cpi->oxcf.max_threads, max_tile_cols);
|
||||
allocated_workers = VPXMIN(cpi->oxcf.max_threads, max_tile_cols);
|
||||
}
|
||||
|
||||
CHECK_MEM_ERROR(cm, cpi->workers,
|
||||
|
@ -111,10 +111,12 @@ void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
|
||||
// Motion estimation may use src block variance with the block size up
|
||||
// to 64x64, so the right and bottom need to be extended to 64 multiple
|
||||
// or up to 16, whichever is greater.
|
||||
const int er_y = MAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6))
|
||||
- src->y_crop_width;
|
||||
const int eb_y = MAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6))
|
||||
- src->y_crop_height;
|
||||
const int er_y =
|
||||
VPXMAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6)) -
|
||||
src->y_crop_width;
|
||||
const int eb_y =
|
||||
VPXMAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6)) -
|
||||
src->y_crop_height;
|
||||
const int uv_width_subsampling = (src->uv_width != src->y_width);
|
||||
const int uv_height_subsampling = (src->uv_height != src->y_height);
|
||||
const int et_uv = et_y >> uv_height_subsampling;
|
||||
|
@ -381,7 +381,7 @@ static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
|
||||
// for first pass test.
|
||||
static int get_search_range(const VP9_COMP *cpi) {
|
||||
int sr = 0;
|
||||
const int dim = MIN(cpi->initial_width, cpi->initial_height);
|
||||
const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
|
||||
|
||||
while ((dim << sr) < MAX_FULL_PEL_VAL)
|
||||
++sr;
|
||||
@ -1024,7 +1024,7 @@ void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
|
||||
// Exclude any image dead zone
|
||||
if (image_data_start_row > 0) {
|
||||
intra_skip_count =
|
||||
MAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
|
||||
VPXMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
|
||||
}
|
||||
|
||||
{
|
||||
@ -1161,7 +1161,7 @@ static double calc_correction_factor(double err_per_mb,
|
||||
|
||||
// Adjustment based on actual quantizer to power term.
|
||||
const double power_term =
|
||||
MIN(vp9_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
|
||||
VPXMIN(vp9_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
|
||||
|
||||
// Calculate correction factor.
|
||||
if (power_term < 1.0)
|
||||
@ -1190,7 +1190,7 @@ static int get_twopass_worst_quality(const VP9_COMP *cpi,
|
||||
} else {
|
||||
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
||||
? cpi->initial_mbs : cpi->common.MBs;
|
||||
const int active_mbs = MAX(1, num_mbs - (int)(num_mbs * inactive_zone));
|
||||
const int active_mbs = VPXMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
|
||||
const double av_err_per_mb = section_err / active_mbs;
|
||||
const double speed_term = 1.0 + 0.04 * oxcf->speed;
|
||||
const double ediv_size_correction = (double)num_mbs / EDIV_SIZE_FACTOR;
|
||||
@ -1223,7 +1223,7 @@ static int get_twopass_worst_quality(const VP9_COMP *cpi,
|
||||
|
||||
// Restriction on active max q for constrained quality mode.
|
||||
if (cpi->oxcf.rc_mode == VPX_CQ)
|
||||
q = MAX(q, oxcf->cq_level);
|
||||
q = VPXMAX(q, oxcf->cq_level);
|
||||
return q;
|
||||
}
|
||||
}
|
||||
@ -1233,7 +1233,7 @@ static void setup_rf_level_maxq(VP9_COMP *cpi) {
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
|
||||
int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
|
||||
rc->rf_level_maxq[i] = MAX(rc->worst_quality + qdelta, rc->best_quality);
|
||||
rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1364,12 +1364,12 @@ static double get_sr_decay_rate(const VP9_COMP *cpi,
|
||||
|
||||
|
||||
if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
|
||||
sr_diff = MIN(sr_diff, SR_DIFF_MAX);
|
||||
sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
|
||||
sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
|
||||
(MOTION_AMP_PART * motion_amplitude_factor) -
|
||||
(INTRA_PART * modified_pcnt_intra);
|
||||
}
|
||||
return MAX(sr_decay, MIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
|
||||
return VPXMAX(sr_decay, VPXMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
|
||||
}
|
||||
|
||||
// This function gives an estimate of how badly we believe the prediction
|
||||
@ -1379,7 +1379,7 @@ static double get_zero_motion_factor(const VP9_COMP *cpi,
|
||||
const double zero_motion_pct = frame->pcnt_inter -
|
||||
frame->pcnt_motion;
|
||||
double sr_decay = get_sr_decay_rate(cpi, frame);
|
||||
return MIN(sr_decay, zero_motion_pct);
|
||||
return VPXMIN(sr_decay, zero_motion_pct);
|
||||
}
|
||||
|
||||
#define ZM_POWER_FACTOR 0.75
|
||||
@ -1391,8 +1391,8 @@ static double get_prediction_decay_rate(const VP9_COMP *cpi,
|
||||
(0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
|
||||
ZM_POWER_FACTOR));
|
||||
|
||||
return MAX(zero_motion_factor,
|
||||
(sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
|
||||
return VPXMAX(zero_motion_factor,
|
||||
(sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
|
||||
}
|
||||
|
||||
// Function to test for a condition where a complex transition is followed
|
||||
@ -1483,12 +1483,12 @@ static double calc_frame_boost(VP9_COMP *cpi,
|
||||
const double lq =
|
||||
vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
|
||||
cpi->common.bit_depth);
|
||||
const double boost_q_correction = MIN((0.5 + (lq * 0.015)), 1.5);
|
||||
const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
|
||||
int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
||||
? cpi->initial_mbs : cpi->common.MBs;
|
||||
|
||||
// Correct for any inactive region in the image
|
||||
num_mbs = (int)MAX(1, num_mbs * calculate_active_area(cpi, this_frame));
|
||||
num_mbs = (int)VPXMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
|
||||
|
||||
// Underlying boost factor is based on inter error ratio.
|
||||
frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
|
||||
@ -1504,7 +1504,7 @@ static double calc_frame_boost(VP9_COMP *cpi,
|
||||
else
|
||||
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
|
||||
|
||||
return MIN(frame_boost, max_boost * boost_q_correction);
|
||||
return VPXMIN(frame_boost, max_boost * boost_q_correction);
|
||||
}
|
||||
|
||||
static int calc_arf_boost(VP9_COMP *cpi, int offset,
|
||||
@ -1593,7 +1593,7 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
|
||||
arf_boost = (*f_boost + *b_boost);
|
||||
if (arf_boost < ((b_frames + f_frames) * 20))
|
||||
arf_boost = ((b_frames + f_frames) * 20);
|
||||
arf_boost = MAX(arf_boost, MIN_ARF_GF_BOOST);
|
||||
arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
|
||||
|
||||
return arf_boost;
|
||||
}
|
||||
@ -1664,7 +1664,8 @@ static int calculate_boost_bits(int frame_count,
|
||||
}
|
||||
|
||||
// Calculate the number of extra bits for use in the boosted frame or frames.
|
||||
return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
|
||||
return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
|
||||
0);
|
||||
}
|
||||
|
||||
// Current limit on maximum number of active arfs in a GF/ARF group.
|
||||
@ -1803,7 +1804,7 @@ static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
|
||||
gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
|
||||
|
||||
target_frame_size = clamp(target_frame_size, 0,
|
||||
MIN(max_bits, (int)total_group_bits));
|
||||
VPXMIN(max_bits, (int)total_group_bits));
|
||||
|
||||
gf_group->update_type[frame_index] = LF_UPDATE;
|
||||
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
||||
@ -1924,7 +1925,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
int int_lbq =
|
||||
(int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex,
|
||||
cpi->common.bit_depth));
|
||||
active_min_gf_interval = rc->min_gf_interval + MIN(2, int_max_q / 200);
|
||||
active_min_gf_interval = rc->min_gf_interval + VPXMIN(2, int_max_q / 200);
|
||||
if (active_min_gf_interval > rc->max_gf_interval)
|
||||
active_min_gf_interval = rc->max_gf_interval;
|
||||
|
||||
@ -1935,7 +1936,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// bits to spare and are better with a smaller interval and smaller boost.
|
||||
// At high Q when there are few bits to spare we are better with a longer
|
||||
// interval to spread the cost of the GF.
|
||||
active_max_gf_interval = 12 + MIN(4, (int_lbq / 6));
|
||||
active_max_gf_interval = 12 + VPXMIN(4, (int_lbq / 6));
|
||||
if (active_max_gf_interval < active_min_gf_interval)
|
||||
active_max_gf_interval = active_min_gf_interval;
|
||||
|
||||
@ -1980,8 +1981,8 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
decay_accumulator = decay_accumulator * loop_decay_rate;
|
||||
|
||||
// Monitor for static sections.
|
||||
zero_motion_accumulator =
|
||||
MIN(zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
||||
zero_motion_accumulator = VPXMIN(
|
||||
zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
||||
|
||||
// Break clause to detect very still sections after motion. For example,
|
||||
// a static image after a fade or other transition.
|
||||
@ -2037,7 +2038,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
(cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
|
||||
(zero_motion_accumulator < 0.995)) ? 1 : 0;
|
||||
} else {
|
||||
rc->gfu_boost = MAX((int)boost_score, MIN_ARF_GF_BOOST);
|
||||
rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
|
||||
rc->source_alt_ref_pending = 0;
|
||||
}
|
||||
|
||||
@ -2092,11 +2093,11 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// rc factor is a weight factor that corrects for local rate control drift.
|
||||
double rc_factor = 1.0;
|
||||
if (rc->rate_error_estimate > 0) {
|
||||
rc_factor = MAX(RC_FACTOR_MIN,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
rc_factor = VPXMAX(RC_FACTOR_MIN,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
} else {
|
||||
rc_factor = MIN(RC_FACTOR_MAX,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
rc_factor = VPXMIN(RC_FACTOR_MAX,
|
||||
(double)(100 - rc->rate_error_estimate) / 100.0);
|
||||
}
|
||||
tmp_q =
|
||||
get_twopass_worst_quality(cpi, group_av_err,
|
||||
@ -2104,7 +2105,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
vbr_group_bits_per_frame,
|
||||
twopass->kfgroup_inter_fraction * rc_factor);
|
||||
twopass->active_worst_quality =
|
||||
MAX(tmp_q, twopass->active_worst_quality >> 1);
|
||||
VPXMAX(tmp_q, twopass->active_worst_quality >> 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -2421,7 +2422,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
} else {
|
||||
twopass->kf_group_bits = 0;
|
||||
}
|
||||
twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
|
||||
twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
|
||||
|
||||
// Reset the first pass file position.
|
||||
reset_fpf_position(twopass, start_position);
|
||||
@ -2435,9 +2436,8 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
break;
|
||||
|
||||
// Monitor for static sections.
|
||||
zero_motion_accumulator =
|
||||
MIN(zero_motion_accumulator,
|
||||
get_zero_motion_factor(cpi, &next_frame));
|
||||
zero_motion_accumulator = VPXMIN(
|
||||
zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
||||
|
||||
// Not all frames in the group are necessarily used in calculating boost.
|
||||
if ((i <= rc->max_gf_interval) ||
|
||||
@ -2450,7 +2450,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
const double loop_decay_rate =
|
||||
get_prediction_decay_rate(cpi, &next_frame);
|
||||
decay_accumulator *= loop_decay_rate;
|
||||
decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
|
||||
decay_accumulator = VPXMAX(decay_accumulator, MIN_DECAY_FACTOR);
|
||||
av_decay_accumulator += decay_accumulator;
|
||||
++loop_decay_counter;
|
||||
}
|
||||
@ -2471,8 +2471,8 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// Apply various clamps for min and max boost
|
||||
rc->kf_boost = (int)(av_decay_accumulator * boost_score);
|
||||
rc->kf_boost = MAX(rc->kf_boost, (rc->frames_to_key * 3));
|
||||
rc->kf_boost = MAX(rc->kf_boost, MIN_KF_BOOST);
|
||||
rc->kf_boost = VPXMAX(rc->kf_boost, (rc->frames_to_key * 3));
|
||||
rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_BOOST);
|
||||
|
||||
// Work out how many bits to allocate for the key frame itself.
|
||||
kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
|
||||
@ -2770,7 +2770,7 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi) {
|
||||
// is designed to prevent extreme behaviour at the end of a clip
|
||||
// or group of frames.
|
||||
rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
|
||||
twopass->bits_left = MAX(twopass->bits_left - bits_used, 0);
|
||||
twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
|
||||
|
||||
// Calculate the pct rc error.
|
||||
if (rc->total_actual_bits) {
|
||||
@ -2786,7 +2786,7 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi) {
|
||||
twopass->kf_group_bits -= bits_used;
|
||||
twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
|
||||
}
|
||||
twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
|
||||
twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
|
||||
|
||||
// Increment the gf group index ready for the next frame.
|
||||
++twopass->gf_group.index;
|
||||
@ -2836,18 +2836,18 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi) {
|
||||
rc->vbr_bits_off_target_fast +=
|
||||
fast_extra_thresh - rc->projected_frame_size;
|
||||
rc->vbr_bits_off_target_fast =
|
||||
MIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
|
||||
VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
|
||||
|
||||
// Fast adaptation of minQ if necessary to use up the extra bits.
|
||||
if (rc->avg_frame_bandwidth) {
|
||||
twopass->extend_minq_fast =
|
||||
(int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
|
||||
}
|
||||
twopass->extend_minq_fast = MIN(twopass->extend_minq_fast,
|
||||
minq_adj_limit - twopass->extend_minq);
|
||||
twopass->extend_minq_fast = VPXMIN(
|
||||
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
|
||||
} else if (rc->vbr_bits_off_target_fast) {
|
||||
twopass->extend_minq_fast = MIN(twopass->extend_minq_fast,
|
||||
minq_adj_limit - twopass->extend_minq);
|
||||
twopass->extend_minq_fast = VPXMIN(
|
||||
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
|
||||
} else {
|
||||
twopass->extend_minq_fast = 0;
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi,
|
||||
|
||||
// Further step/diamond searches as necessary
|
||||
int step_param = mv_sf->reduce_first_step_size;
|
||||
step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
|
||||
vp9_set_mv_search_range(x, ref_mv);
|
||||
|
||||
|
@ -37,10 +37,10 @@ void vp9_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
|
||||
int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
|
||||
int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
|
||||
|
||||
col_min = MAX(col_min, (MV_LOW >> 3) + 1);
|
||||
row_min = MAX(row_min, (MV_LOW >> 3) + 1);
|
||||
col_max = MIN(col_max, (MV_UPP >> 3) - 1);
|
||||
row_max = MIN(row_max, (MV_UPP >> 3) - 1);
|
||||
col_min = VPXMAX(col_min, (MV_LOW >> 3) + 1);
|
||||
row_min = VPXMAX(row_min, (MV_LOW >> 3) + 1);
|
||||
col_max = VPXMIN(col_max, (MV_UPP >> 3) - 1);
|
||||
row_max = VPXMIN(row_max, (MV_UPP >> 3) - 1);
|
||||
|
||||
// Get intersection of UMV window and valid MV window to reduce # of checks
|
||||
// in diamond search.
|
||||
@ -57,12 +57,12 @@ void vp9_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
|
||||
int vp9_init_search_range(int size) {
|
||||
int sr = 0;
|
||||
// Minimum search size no matter what the passed in value.
|
||||
size = MAX(16, size);
|
||||
size = VPXMAX(16, size);
|
||||
|
||||
while ((size << sr) < MAX_FULL_PEL_VAL)
|
||||
sr++;
|
||||
|
||||
sr = MIN(sr, MAX_MVSEARCH_STEPS - 2);
|
||||
sr = VPXMIN(sr, MAX_MVSEARCH_STEPS - 2);
|
||||
return sr;
|
||||
}
|
||||
|
||||
@ -297,10 +297,10 @@ static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
|
||||
int br = bestmv->row * 8; \
|
||||
int bc = bestmv->col * 8; \
|
||||
int hstep = 4; \
|
||||
const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX); \
|
||||
const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX); \
|
||||
const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX); \
|
||||
const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX); \
|
||||
const int minc = VPXMAX(x->mv_col_min * 8, ref_mv->col - MV_MAX); \
|
||||
const int maxc = VPXMIN(x->mv_col_max * 8, ref_mv->col + MV_MAX); \
|
||||
const int minr = VPXMAX(x->mv_row_min * 8, ref_mv->row - MV_MAX); \
|
||||
const int maxr = VPXMIN(x->mv_row_max * 8, ref_mv->row + MV_MAX); \
|
||||
int tr = br; \
|
||||
int tc = bc; \
|
||||
\
|
||||
@ -668,10 +668,10 @@ int vp9_find_best_sub_pixel_tree(const MACROBLOCK *x,
|
||||
int bc = bestmv->col * 8;
|
||||
int hstep = 4;
|
||||
int iter, round = 3 - forced_stop;
|
||||
const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
|
||||
const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
|
||||
const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
|
||||
const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
|
||||
const int minc = VPXMAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
|
||||
const int maxc = VPXMIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
|
||||
const int minr = VPXMAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
|
||||
const int maxr = VPXMIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
|
||||
int tr = br;
|
||||
int tc = bc;
|
||||
const MV *search_step = search_step_table;
|
||||
@ -1500,7 +1500,7 @@ int vp9_fast_hex_search(const MACROBLOCK *x,
|
||||
int use_mvcost,
|
||||
const MV *center_mv,
|
||||
MV *best_mv) {
|
||||
return vp9_hex_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
|
||||
return vp9_hex_search(x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param),
|
||||
sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
|
||||
center_mv, best_mv);
|
||||
}
|
||||
@ -1515,9 +1515,9 @@ int vp9_fast_dia_search(const MACROBLOCK *x,
|
||||
int use_mvcost,
|
||||
const MV *center_mv,
|
||||
MV *best_mv) {
|
||||
return vp9_bigdia_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
|
||||
sad_per_bit, do_init_search, cost_list, vfp,
|
||||
use_mvcost, center_mv, best_mv);
|
||||
return vp9_bigdia_search(
|
||||
x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit,
|
||||
do_init_search, cost_list, vfp, use_mvcost, center_mv, best_mv);
|
||||
}
|
||||
|
||||
#undef CHECK_BETTER
|
||||
@ -1547,10 +1547,10 @@ int vp9_full_range_search_c(const MACROBLOCK *x,
|
||||
best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
|
||||
start_row = MAX(-range, x->mv_row_min - ref_mv->row);
|
||||
start_col = MAX(-range, x->mv_col_min - ref_mv->col);
|
||||
end_row = MIN(range, x->mv_row_max - ref_mv->row);
|
||||
end_col = MIN(range, x->mv_col_max - ref_mv->col);
|
||||
start_row = VPXMAX(-range, x->mv_row_min - ref_mv->row);
|
||||
start_col = VPXMAX(-range, x->mv_col_min - ref_mv->col);
|
||||
end_row = VPXMIN(range, x->mv_row_max - ref_mv->row);
|
||||
end_col = VPXMIN(range, x->mv_col_max - ref_mv->col);
|
||||
|
||||
for (r = start_row; r <= end_row; ++r) {
|
||||
for (c = start_col; c <= end_col; c += 4) {
|
||||
@ -2021,10 +2021,10 @@ int vp9_full_search_sad_c(const MACROBLOCK *x, const MV *ref_mv,
|
||||
const MACROBLOCKD *const xd = &x->e_mbd;
|
||||
const struct buf_2d *const what = &x->plane[0].src;
|
||||
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
|
||||
const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
|
||||
int best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
@ -2054,10 +2054,10 @@ int vp9_full_search_sadx3(const MACROBLOCK *x, const MV *ref_mv,
|
||||
const MACROBLOCKD *const xd = &x->e_mbd;
|
||||
const struct buf_2d *const what = &x->plane[0].src;
|
||||
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
|
||||
const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
|
||||
unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
@ -2119,10 +2119,10 @@ int vp9_full_search_sadx8(const MACROBLOCK *x, const MV *ref_mv,
|
||||
const MACROBLOCKD *const xd = &x->e_mbd;
|
||||
const struct buf_2d *const what = &x->plane[0].src;
|
||||
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
|
||||
const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_row_min);
|
||||
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_row_max);
|
||||
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_col_min);
|
||||
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_col_max);
|
||||
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
|
||||
unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
|
||||
get_buf_from_mv(in_what, ref_mv), in_what->stride) +
|
||||
|
@ -92,8 +92,8 @@ static int search_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi,
|
||||
ss_err[filt_mid] = best_err;
|
||||
|
||||
while (filter_step > 0) {
|
||||
const int filt_high = MIN(filt_mid + filter_step, max_filter_level);
|
||||
const int filt_low = MAX(filt_mid - filter_step, min_filter_level);
|
||||
const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
|
||||
const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);
|
||||
|
||||
// Bias against raising loop filter in favor of lowering it.
|
||||
int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
|
||||
|
@ -293,8 +293,8 @@ static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
|
||||
|
||||
if (cpi->common.tx_mode == TX_MODE_SELECT) {
|
||||
if (sse > (var << 2))
|
||||
tx_size = MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
tx_size = VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
else
|
||||
tx_size = TX_8X8;
|
||||
|
||||
@ -304,8 +304,8 @@ static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
|
||||
else if (tx_size > TX_16X16)
|
||||
tx_size = TX_16X16;
|
||||
} else {
|
||||
tx_size = MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
tx_size = VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
}
|
||||
|
||||
assert(tx_size >= TX_8X8);
|
||||
@ -475,8 +475,8 @@ static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
|
||||
if (cpi->common.tx_mode == TX_MODE_SELECT) {
|
||||
if (sse > (var << 2))
|
||||
xd->mi[0]->mbmi.tx_size =
|
||||
MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
else
|
||||
xd->mi[0]->mbmi.tx_size = TX_8X8;
|
||||
|
||||
@ -487,8 +487,8 @@ static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
|
||||
xd->mi[0]->mbmi.tx_size = TX_16X16;
|
||||
} else {
|
||||
xd->mi[0]->mbmi.tx_size =
|
||||
MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
}
|
||||
|
||||
// Evaluate if the partition block is a skippable block in Y plane.
|
||||
@ -791,7 +791,7 @@ static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
const unsigned int max_thresh = 36000;
|
||||
// The encode_breakout input
|
||||
const unsigned int min_thresh =
|
||||
MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
|
||||
VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh);
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
const int shift = (xd->bd << 1) - 16;
|
||||
#endif
|
||||
@ -911,7 +911,7 @@ static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
|
||||
|
||||
// TODO(jingning): This needs further refactoring.
|
||||
block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0,
|
||||
bsize_tx, MIN(tx_size, TX_16X16));
|
||||
bsize_tx, VPXMIN(tx_size, TX_16X16));
|
||||
x->skip_txfm[0] = is_skippable;
|
||||
rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), is_skippable);
|
||||
|
||||
@ -961,8 +961,8 @@ static INLINE void update_thresh_freq_fact(VP9_COMP *cpi,
|
||||
if (thr_mode_idx == best_mode_idx)
|
||||
*freq_fact -= (*freq_fact >> 4);
|
||||
else
|
||||
*freq_fact = MIN(*freq_fact + RD_THRESH_INC,
|
||||
cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
|
||||
*freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC,
|
||||
cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
|
||||
}
|
||||
|
||||
void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
|
||||
@ -973,8 +973,8 @@ void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
|
||||
PREDICTION_MODE this_mode;
|
||||
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
|
||||
const TX_SIZE intra_tx_size =
|
||||
MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
MODE_INFO *const mic = xd->mi[0];
|
||||
int *bmode_costs;
|
||||
const MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
|
||||
@ -1160,8 +1160,8 @@ void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
mbmi->sb_type = bsize;
|
||||
mbmi->ref_frame[0] = NONE;
|
||||
mbmi->ref_frame[1] = NONE;
|
||||
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
||||
mbmi->tx_size = VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
||||
|
||||
#if CONFIG_VP9_TEMPORAL_DENOISING
|
||||
vp9_denoiser_reset_frame_stats(ctx);
|
||||
@ -1414,7 +1414,7 @@ void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
if (!this_early_term) {
|
||||
this_sse = (int64_t)sse_y;
|
||||
block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable,
|
||||
&this_sse, 0, bsize, MIN(mbmi->tx_size, TX_16X16));
|
||||
&this_sse, 0, bsize, VPXMIN(mbmi->tx_size, TX_16X16));
|
||||
x->skip_txfm[0] = is_skippable;
|
||||
if (is_skippable) {
|
||||
this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
|
||||
@ -1523,8 +1523,8 @@ void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
bsize <= cpi->sf.max_intra_bsize)) {
|
||||
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
|
||||
const TX_SIZE intra_tx_size =
|
||||
MIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
VPXMIN(max_txsize_lookup[bsize],
|
||||
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
|
||||
int i;
|
||||
TX_SIZE best_intra_tx_size = TX_SIZES;
|
||||
|
||||
|
@ -106,8 +106,8 @@ static int kf_low = 400;
|
||||
static int get_minq_index(double maxq, double x3, double x2, double x1,
|
||||
vpx_bit_depth_t bit_depth) {
|
||||
int i;
|
||||
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
|
||||
maxq);
|
||||
const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq,
|
||||
maxq);
|
||||
|
||||
// Special case handling to deal with the step from q2.0
|
||||
// down to lossless mode represented by q 1.0.
|
||||
@ -192,15 +192,15 @@ int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
|
||||
vpx_bit_depth_t bit_depth) {
|
||||
const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
|
||||
bit_depth));
|
||||
return MAX(FRAME_OVERHEAD_BITS,
|
||||
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
|
||||
return VPXMAX(FRAME_OVERHEAD_BITS,
|
||||
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
|
||||
}
|
||||
|
||||
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
||||
const int min_frame_target = MAX(rc->min_frame_bandwidth,
|
||||
rc->avg_frame_bandwidth >> 5);
|
||||
const int min_frame_target = VPXMAX(rc->min_frame_bandwidth,
|
||||
rc->avg_frame_bandwidth >> 5);
|
||||
if (target < min_frame_target)
|
||||
target = min_frame_target;
|
||||
if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
|
||||
@ -216,7 +216,7 @@ int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
|
||||
if (oxcf->rc_max_inter_bitrate_pct) {
|
||||
const int max_rate = rc->avg_frame_bandwidth *
|
||||
oxcf->rc_max_inter_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
target = VPXMIN(target, max_rate);
|
||||
}
|
||||
return target;
|
||||
}
|
||||
@ -227,7 +227,7 @@ int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
|
||||
if (oxcf->rc_max_intra_bitrate_pct) {
|
||||
const int max_rate = rc->avg_frame_bandwidth *
|
||||
oxcf->rc_max_intra_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
target = VPXMIN(target, max_rate);
|
||||
}
|
||||
if (target > rc->max_frame_bandwidth)
|
||||
target = rc->max_frame_bandwidth;
|
||||
@ -250,7 +250,8 @@ static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
|
||||
lrc->bits_off_target += bits_off_for_this_layer;
|
||||
|
||||
// Clip buffer level to maximum buffer size for the layer.
|
||||
lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->bits_off_target =
|
||||
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = lrc->bits_off_target;
|
||||
}
|
||||
}
|
||||
@ -268,7 +269,7 @@ static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
|
||||
}
|
||||
|
||||
// Clip the buffer level to the maximum specified buffer size.
|
||||
rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
|
||||
rc->buffer_level = rc->bits_off_target;
|
||||
|
||||
if (is_one_pass_cbr_svc(cpi)) {
|
||||
@ -287,8 +288,8 @@ int vp9_rc_get_default_min_gf_interval(
|
||||
if (factor <= factor_safe)
|
||||
return default_interval;
|
||||
else
|
||||
return MAX(default_interval,
|
||||
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
|
||||
return VPXMAX(default_interval,
|
||||
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
|
||||
// Note this logic makes:
|
||||
// 4K24: 5
|
||||
// 4K30: 6
|
||||
@ -296,9 +297,9 @@ int vp9_rc_get_default_min_gf_interval(
|
||||
}
|
||||
|
||||
int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
|
||||
int interval = MIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
|
||||
int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
|
||||
interval += (interval & 0x01); // Round to even value
|
||||
return MAX(interval, min_gf_interval);
|
||||
return VPXMAX(interval, min_gf_interval);
|
||||
}
|
||||
|
||||
void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
|
||||
@ -478,7 +479,7 @@ void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
|
||||
// More heavily damped adjustment used if we have been oscillating either side
|
||||
// of target.
|
||||
adjustment_limit = 0.25 +
|
||||
0.5 * MIN(1, fabs(log10(0.01 * correction_factor)));
|
||||
0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
|
||||
|
||||
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
|
||||
cpi->rc.q_1_frame = cm->base_qindex;
|
||||
@ -558,8 +559,8 @@ int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
|
||||
if (cpi->oxcf.rc_mode == VPX_CBR &&
|
||||
(cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
|
||||
cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
|
||||
q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
|
||||
MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
|
||||
q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
|
||||
VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
|
||||
}
|
||||
return q;
|
||||
}
|
||||
@ -617,7 +618,7 @@ static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
|
||||
: rc->last_q[INTER_FRAME] * 2;
|
||||
}
|
||||
}
|
||||
return MIN(active_worst_quality, rc->worst_quality);
|
||||
return VPXMIN(active_worst_quality, rc->worst_quality);
|
||||
}
|
||||
|
||||
// Adjust active_worst_quality level based on buffer level.
|
||||
@ -644,10 +645,10 @@ static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
// So for first few frames following key, the qp of that key frame is weighted
|
||||
// into the active_worst_quality setting.
|
||||
ambient_qp = (cm->current_video_frame < num_frames_weight_key) ?
|
||||
MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) :
|
||||
rc->avg_frame_qindex[INTER_FRAME];
|
||||
active_worst_quality = MIN(rc->worst_quality,
|
||||
ambient_qp * 5 / 4);
|
||||
VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
|
||||
rc->avg_frame_qindex[KEY_FRAME]) :
|
||||
rc->avg_frame_qindex[INTER_FRAME];
|
||||
active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 / 4);
|
||||
if (rc->buffer_level > rc->optimal_buffer_level) {
|
||||
// Adjust down.
|
||||
// Maximum limit for down adjustment, ~30%.
|
||||
@ -700,7 +701,7 @@ static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
|
||||
int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
||||
(last_boosted_q * 0.75),
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
||||
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
|
||||
} else if (cm->current_video_frame > 0) {
|
||||
// not first frame of one pass and kf_boost is set
|
||||
double q_adj_factor = 1.0;
|
||||
@ -833,7 +834,7 @@ static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
|
||||
int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
||||
last_boosted_q * 0.75,
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
||||
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
|
||||
} else {
|
||||
// not first frame of one pass and kf_boost is set
|
||||
double q_adj_factor = 1.0;
|
||||
@ -1002,21 +1003,21 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
|
||||
int qindex;
|
||||
|
||||
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
|
||||
qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
active_best_quality = qindex;
|
||||
last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
||||
delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
||||
last_boosted_q * 1.25,
|
||||
cm->bit_depth);
|
||||
active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality);
|
||||
|
||||
active_worst_quality =
|
||||
VPXMIN(qindex + delta_qindex, active_worst_quality);
|
||||
} else {
|
||||
qindex = rc->last_boosted_qindex;
|
||||
last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
||||
delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
||||
last_boosted_q * 0.75,
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
||||
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
|
||||
}
|
||||
} else {
|
||||
// Not forced keyframe.
|
||||
@ -1116,8 +1117,8 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
|
||||
(cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
|
||||
int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
|
||||
active_worst_quality);
|
||||
active_worst_quality = MAX(active_worst_quality + qdelta,
|
||||
active_best_quality);
|
||||
active_worst_quality = VPXMAX(active_worst_quality + qdelta,
|
||||
active_best_quality);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -1126,7 +1127,8 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
|
||||
int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
|
||||
active_best_quality, 2.0,
|
||||
cm->bit_depth);
|
||||
active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality);
|
||||
active_best_quality =
|
||||
VPXMAX(active_best_quality + qdelta, rc->best_quality);
|
||||
}
|
||||
|
||||
active_best_quality = clamp(active_best_quality,
|
||||
@ -1141,7 +1143,7 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
|
||||
rc->this_key_frame_forced) {
|
||||
// If static since last kf use better of last boosted and last kf q.
|
||||
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
|
||||
q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
||||
} else {
|
||||
q = rc->last_boosted_qindex;
|
||||
}
|
||||
@ -1203,9 +1205,9 @@ void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
|
||||
// For very small rate targets where the fractional adjustment
|
||||
// may be tiny make sure there is at least a minimum range.
|
||||
const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
|
||||
*frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
|
||||
*frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
|
||||
cpi->rc.max_frame_bandwidth);
|
||||
*frame_under_shoot_limit = VPXMAX(frame_target - tolerance - 200, 0);
|
||||
*frame_over_shoot_limit = VPXMIN(frame_target + tolerance + 200,
|
||||
cpi->rc.max_frame_bandwidth);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1458,7 +1460,8 @@ static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
const SVC *const svc = &cpi->svc;
|
||||
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
|
||||
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
|
||||
int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
|
||||
int min_frame_target =
|
||||
VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
|
||||
int target;
|
||||
|
||||
if (oxcf->gf_cbr_boost_pct) {
|
||||
@ -1480,23 +1483,24 @@ static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
svc->temporal_layer_id, svc->number_temporal_layers);
|
||||
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
|
||||
target = lc->avg_frame_size;
|
||||
min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
|
||||
min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
|
||||
}
|
||||
if (diff > 0) {
|
||||
// Lower the target bandwidth for this frame.
|
||||
const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
||||
const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
||||
target -= (target * pct_low) / 200;
|
||||
} else if (diff < 0) {
|
||||
// Increase the target bandwidth for this frame.
|
||||
const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
||||
const int pct_high =
|
||||
(int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
||||
target += (target * pct_high) / 200;
|
||||
}
|
||||
if (oxcf->rc_max_inter_bitrate_pct) {
|
||||
const int max_rate = rc->avg_frame_bandwidth *
|
||||
oxcf->rc_max_inter_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
target = VPXMIN(target, max_rate);
|
||||
}
|
||||
return MAX(min_frame_target, target);
|
||||
return VPXMAX(min_frame_target, target);
|
||||
}
|
||||
|
||||
static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
@ -1518,7 +1522,7 @@ static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
|
||||
framerate = lc->framerate;
|
||||
}
|
||||
kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
|
||||
kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
|
||||
if (rc->frames_since_key < framerate / 2) {
|
||||
kf_boost = (int)(kf_boost * rc->frames_since_key /
|
||||
(framerate / 2));
|
||||
@ -1726,7 +1730,7 @@ void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
|
||||
rc->max_gf_interval = rc->static_scene_max_gf_interval;
|
||||
|
||||
// Clamp min to max
|
||||
rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval);
|
||||
rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
|
||||
}
|
||||
|
||||
void vp9_rc_update_framerate(VP9_COMP *cpi) {
|
||||
@ -1739,7 +1743,8 @@ void vp9_rc_update_framerate(VP9_COMP *cpi) {
|
||||
rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
|
||||
oxcf->two_pass_vbrmin_section / 100);
|
||||
|
||||
rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
|
||||
rc->min_frame_bandwidth =
|
||||
VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
|
||||
|
||||
// A maximum bitrate for a frame is defined.
|
||||
// The baseline for this aligns with HW implementations that
|
||||
@ -1750,8 +1755,8 @@ void vp9_rc_update_framerate(VP9_COMP *cpi) {
|
||||
// specifies lossless encode.
|
||||
vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
|
||||
oxcf->two_pass_vbrmax_section) / 100);
|
||||
rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
|
||||
vbr_max_bits);
|
||||
rc->max_frame_bandwidth =
|
||||
VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
|
||||
|
||||
vp9_rc_set_gf_interval_range(cpi, rc);
|
||||
}
|
||||
@ -1789,12 +1794,12 @@ static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
|
||||
// Dont do it for kf,arf,gf or overlay frames.
|
||||
if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
|
||||
rc->vbr_bits_off_target_fast) {
|
||||
int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target);
|
||||
int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
|
||||
int fast_extra_bits;
|
||||
fast_extra_bits =
|
||||
(int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits);
|
||||
fast_extra_bits = (int)MIN(fast_extra_bits,
|
||||
MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
|
||||
fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
|
||||
fast_extra_bits = (int)VPXMIN(
|
||||
fast_extra_bits,
|
||||
VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
|
||||
*this_frame_target += (int)fast_extra_bits;
|
||||
rc->vbr_bits_off_target_fast -= fast_extra_bits;
|
||||
}
|
||||
@ -1948,7 +1953,7 @@ void vp9_avg_source_sad(VP9_COMP *cpi) {
|
||||
// between current and the previous frame value(s). Use a minimum threshold
|
||||
// for cases where there is small change from content that is completely
|
||||
// static.
|
||||
if (avg_sad > MAX(4000, (rc->avg_source_sad << 3)) &&
|
||||
if (avg_sad > VPXMAX(4000, (rc->avg_source_sad << 3)) &&
|
||||
rc->frames_since_key > 1)
|
||||
rc->high_source_sad = 1;
|
||||
else
|
||||
|
@ -172,7 +172,7 @@ int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
|
||||
if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
|
||||
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
||||
const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
|
||||
const int boost_index = MIN(15, (cpi->rc.gfu_boost / 100));
|
||||
const int boost_index = VPXMIN(15, (cpi->rc.gfu_boost / 100));
|
||||
|
||||
rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
|
||||
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
|
||||
@ -204,7 +204,7 @@ static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
|
||||
q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
// TODO(debargha): Adjust the function below.
|
||||
return MAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
|
||||
return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
|
||||
}
|
||||
|
||||
void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
|
||||
@ -404,7 +404,7 @@ void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
|
||||
static const uint32_t MAX_XSQ_Q10 = 245727;
|
||||
const uint64_t xsq_q10_64 =
|
||||
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
|
||||
const int xsq_q10 = (int)MIN(xsq_q10_64, MAX_XSQ_Q10);
|
||||
const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
|
||||
model_rd_norm(xsq_q10, &r_q10, &d_q10);
|
||||
*rate = ((r_q10 << n_log2) + 2) >> 2;
|
||||
*dist = (var * (int64_t)d_q10 + 512) >> 10;
|
||||
@ -485,7 +485,7 @@ void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
continue;
|
||||
fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
|
||||
fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
|
||||
max_mv = MAX(max_mv, MAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
|
||||
max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
|
||||
|
||||
if (fp_row ==0 && fp_col == 0 && zero_seen)
|
||||
continue;
|
||||
@ -629,16 +629,15 @@ void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
|
||||
const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
|
||||
int mode;
|
||||
for (mode = 0; mode < top_mode; ++mode) {
|
||||
const BLOCK_SIZE min_size = MAX(bsize - 1, BLOCK_4X4);
|
||||
const BLOCK_SIZE max_size = MIN(bsize + 2, BLOCK_64X64);
|
||||
const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
|
||||
const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
|
||||
BLOCK_SIZE bs;
|
||||
for (bs = min_size; bs <= max_size; ++bs) {
|
||||
int *const fact = &factor_buf[bs][mode];
|
||||
if (mode == best_mode_index) {
|
||||
*fact -= (*fact >> 4);
|
||||
} else {
|
||||
*fact = MIN(*fact + RD_THRESH_INC,
|
||||
rd_thresh * RD_THRESH_MAX_FACT);
|
||||
*fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -192,8 +192,8 @@ static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize,
|
||||
const int64_t ac_thr = p->quant_thred[1] >> shift;
|
||||
// The low thresholds are used to measure if the prediction errors are
|
||||
// low enough so that we can skip the mode search.
|
||||
const int64_t low_dc_thr = MIN(50, dc_thr >> 2);
|
||||
const int64_t low_ac_thr = MIN(80, ac_thr >> 2);
|
||||
const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2);
|
||||
const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2);
|
||||
int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
|
||||
int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
|
||||
int idx, idy;
|
||||
@ -505,7 +505,7 @@ static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
|
||||
if (tx_size != TX_32X32)
|
||||
dc_correct >>= 2;
|
||||
|
||||
dist = MAX(0, sse - dc_correct);
|
||||
dist = VPXMAX(0, sse - dc_correct);
|
||||
}
|
||||
} else {
|
||||
// SKIP_TXFM_AC_DC
|
||||
@ -531,7 +531,7 @@ static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
|
||||
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
|
||||
|
||||
// TODO(jingning): temporarily enabled only for luma component
|
||||
rd = MIN(rd1, rd2);
|
||||
rd = VPXMIN(rd1, rd2);
|
||||
if (plane == 0)
|
||||
x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] ||
|
||||
(rd1 > rd2 && !xd->lossless);
|
||||
@ -597,7 +597,7 @@ static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
MACROBLOCKD *const xd = &x->e_mbd;
|
||||
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
||||
|
||||
mbmi->tx_size = MIN(max_tx_size, largest_tx_size);
|
||||
mbmi->tx_size = VPXMIN(max_tx_size, largest_tx_size);
|
||||
|
||||
txfm_rd_in_plane(x, rate, distortion, skip,
|
||||
sse, ref_best_rd, 0, bs,
|
||||
@ -637,8 +637,8 @@ static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
start_tx = max_tx_size;
|
||||
end_tx = 0;
|
||||
} else {
|
||||
TX_SIZE chosen_tx_size = MIN(max_tx_size,
|
||||
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
||||
TX_SIZE chosen_tx_size = VPXMIN(max_tx_size,
|
||||
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
||||
start_tx = chosen_tx_size;
|
||||
end_tx = chosen_tx_size;
|
||||
}
|
||||
@ -1389,7 +1389,7 @@ static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
|
||||
cpi->sf.use_fast_coef_costing);
|
||||
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
|
||||
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
|
||||
rd = MIN(rd1, rd2);
|
||||
rd = VPXMIN(rd1, rd2);
|
||||
if (rd >= best_yrd)
|
||||
return INT64_MAX;
|
||||
}
|
||||
@ -1808,7 +1808,8 @@ static int64_t rd_pick_best_sub8x8_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
if (i == 0)
|
||||
max_mv = x->max_mv_context[mbmi->ref_frame[0]];
|
||||
else
|
||||
max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
|
||||
max_mv =
|
||||
VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
|
||||
|
||||
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
||||
// Take wtd average of the step_params based on the last frame's
|
||||
@ -1826,7 +1827,7 @@ static int64_t rd_pick_best_sub8x8_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
if (cpi->sf.adaptive_motion_search) {
|
||||
mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
|
||||
mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
|
||||
step_param = MAX(step_param, 8);
|
||||
step_param = VPXMAX(step_param, 8);
|
||||
}
|
||||
|
||||
// adjust src pointer for this block
|
||||
@ -2231,7 +2232,7 @@ static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
vp9_set_mv_search_range(x, &ref_mv);
|
||||
|
||||
// Work out the size of the first step in the mv step search.
|
||||
// 0 here is maximum length first step. 1 is MAX >> 1 etc.
|
||||
// 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
|
||||
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
||||
// Take wtd average of the step_params based on the last frame's
|
||||
// max mv magnitude and that based on the best ref mvs of the current
|
||||
@ -2243,9 +2244,10 @@ static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
}
|
||||
|
||||
if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
|
||||
int boffset = 2 * (b_width_log2_lookup[BLOCK_64X64] -
|
||||
MIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
||||
step_param = MAX(step_param, boffset);
|
||||
int boffset =
|
||||
2 * (b_width_log2_lookup[BLOCK_64X64] -
|
||||
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
||||
step_param = VPXMAX(step_param, boffset);
|
||||
}
|
||||
|
||||
if (cpi->sf.adaptive_motion_search) {
|
||||
@ -2466,7 +2468,7 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
// motion field, where the distortion gain for a single block may not
|
||||
// be enough to overcome the cost of a new mv.
|
||||
if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
|
||||
*rate2 += MAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
||||
*rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
||||
} else {
|
||||
*rate2 += rate_mv;
|
||||
}
|
||||
@ -2502,10 +2504,10 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
// initiation of a motion field.
|
||||
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]],
|
||||
mode_mv, refs[0])) {
|
||||
*rate2 += MIN(cost_mv_ref(cpi, this_mode,
|
||||
mbmi_ext->mode_context[refs[0]]),
|
||||
cost_mv_ref(cpi, NEARESTMV,
|
||||
mbmi_ext->mode_context[refs[0]]));
|
||||
*rate2 += VPXMIN(cost_mv_ref(cpi, this_mode,
|
||||
mbmi_ext->mode_context[refs[0]]),
|
||||
cost_mv_ref(cpi, NEARESTMV,
|
||||
mbmi_ext->mode_context[refs[0]]));
|
||||
} else {
|
||||
*rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]);
|
||||
}
|
||||
@ -2547,10 +2549,10 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
|
||||
filter_cache[i] = rd;
|
||||
filter_cache[SWITCHABLE_FILTERS] =
|
||||
MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
if (cm->interp_filter == SWITCHABLE)
|
||||
rd += rs_rd;
|
||||
*mask_filter = MAX(*mask_filter, rd);
|
||||
*mask_filter = VPXMAX(*mask_filter, rd);
|
||||
} else {
|
||||
int rate_sum = 0;
|
||||
int64_t dist_sum = 0;
|
||||
@ -2580,10 +2582,10 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
|
||||
filter_cache[i] = rd;
|
||||
filter_cache[SWITCHABLE_FILTERS] =
|
||||
MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
||||
if (cm->interp_filter == SWITCHABLE)
|
||||
rd += rs_rd;
|
||||
*mask_filter = MAX(*mask_filter, rd);
|
||||
*mask_filter = VPXMAX(*mask_filter, rd);
|
||||
|
||||
if (i == 0 && intpel_mv) {
|
||||
tmp_rate_sum = rate_sum;
|
||||
@ -2694,7 +2696,7 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
*distortion += distortion_y;
|
||||
|
||||
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
|
||||
rdcosty = MIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
|
||||
rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
|
||||
|
||||
if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
|
||||
&sseuv, bsize, ref_best_rd - rdcosty)) {
|
||||
@ -2759,7 +2761,7 @@ void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
|
||||
pd[1].subsampling_x,
|
||||
pd[1].subsampling_y);
|
||||
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly,
|
||||
&dist_uv, &uv_skip, MAX(BLOCK_8X8, bsize),
|
||||
&dist_uv, &uv_skip, VPXMAX(BLOCK_8X8, bsize),
|
||||
max_uv_tx_size);
|
||||
|
||||
if (y_skip && uv_skip) {
|
||||
@ -2826,12 +2828,12 @@ static void rd_variance_adjustment(VP9_COMP *cpi,
|
||||
// to a predictor with a low spatial complexity compared to the source.
|
||||
if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
|
||||
(source_variance > recon_variance)) {
|
||||
var_factor = MIN(absvar_diff, MIN(VLOW_ADJ_MAX, var_error));
|
||||
var_factor = VPXMIN(absvar_diff, VPXMIN(VLOW_ADJ_MAX, var_error));
|
||||
// A second possible case of interest is where the source variance
|
||||
// is very low and we wish to discourage false texture or motion trails.
|
||||
} else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
|
||||
(recon_variance > source_variance)) {
|
||||
var_factor = MIN(absvar_diff, MIN(VHIGH_ADJ_MAX, var_error));
|
||||
var_factor = VPXMIN(absvar_diff, VPXMIN(VHIGH_ADJ_MAX, var_error));
|
||||
}
|
||||
*this_rd += (*this_rd * var_factor) / 100;
|
||||
}
|
||||
@ -2861,7 +2863,7 @@ int vp9_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) {
|
||||
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
||||
|
||||
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
||||
bottom_edge = MAX(top_edge, bottom_edge);
|
||||
bottom_edge = VPXMAX(top_edge, bottom_edge);
|
||||
}
|
||||
|
||||
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
|
||||
@ -2888,7 +2890,7 @@ int vp9_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) {
|
||||
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
||||
|
||||
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
||||
right_edge = MAX(left_edge, right_edge);
|
||||
right_edge = VPXMAX(left_edge, right_edge);
|
||||
}
|
||||
|
||||
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
|
||||
@ -3135,7 +3137,7 @@ void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
||||
(ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame))))
|
||||
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
|
||||
continue;
|
||||
|
||||
if (mode_skip_mask[ref_frame] & (1 << this_mode))
|
||||
@ -3149,10 +3151,10 @@ void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi,
|
||||
continue;
|
||||
|
||||
if (sf->motion_field_mode_search) {
|
||||
const int mi_width = MIN(num_8x8_blocks_wide_lookup[bsize],
|
||||
tile_info->mi_col_end - mi_col);
|
||||
const int mi_height = MIN(num_8x8_blocks_high_lookup[bsize],
|
||||
tile_info->mi_row_end - mi_row);
|
||||
const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize],
|
||||
tile_info->mi_col_end - mi_col);
|
||||
const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize],
|
||||
tile_info->mi_row_end - mi_row);
|
||||
const int bsl = mi_width_log2_lookup[bsize];
|
||||
int cb_partition_search_ctrl = (((mi_row + mi_col) >> bsl)
|
||||
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
|
||||
@ -3370,9 +3372,9 @@ void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi,
|
||||
|
||||
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
||||
for (i = 0; i < REFERENCE_MODES; ++i)
|
||||
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
|
||||
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
|
||||
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
|
||||
}
|
||||
|
||||
// Did this mode help.. i.e. is it the new best mode
|
||||
@ -3471,7 +3473,7 @@ void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi,
|
||||
adj_rd = filter_cache[i] - ref;
|
||||
|
||||
adj_rd += this_rd;
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -3814,7 +3816,7 @@ void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
||||
(ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame))))
|
||||
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
|
||||
continue;
|
||||
|
||||
// Test best rd so far against threshold for trying this mode.
|
||||
@ -3969,12 +3971,11 @@ void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
|
||||
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
|
||||
filter_cache[switchable_filter_index] = tmp_rd;
|
||||
filter_cache[SWITCHABLE_FILTERS] =
|
||||
MIN(filter_cache[SWITCHABLE_FILTERS],
|
||||
tmp_rd + rs_rd);
|
||||
VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd);
|
||||
if (cm->interp_filter == SWITCHABLE)
|
||||
tmp_rd += rs_rd;
|
||||
|
||||
mask_filter = MAX(mask_filter, tmp_rd);
|
||||
mask_filter = VPXMAX(mask_filter, tmp_rd);
|
||||
|
||||
newbest = (tmp_rd < tmp_best_rd);
|
||||
if (newbest) {
|
||||
@ -4051,9 +4052,9 @@ void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
|
||||
|
||||
compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
|
||||
|
||||
tmp_best_rdu = best_rd -
|
||||
MIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
|
||||
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
|
||||
tmp_best_rdu =
|
||||
best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
|
||||
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
|
||||
|
||||
if (tmp_best_rdu > 0) {
|
||||
// If even the 'Y' rd value of split is higher than best so far
|
||||
@ -4113,9 +4114,9 @@ void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
|
||||
|
||||
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
||||
for (i = 0; i < REFERENCE_MODES; ++i)
|
||||
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
|
||||
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
|
||||
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
|
||||
}
|
||||
|
||||
// Did this mode help.. i.e. is it the new best mode
|
||||
@ -4214,7 +4215,7 @@ void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
|
||||
adj_rd = filter_cache[i] - ref;
|
||||
|
||||
adj_rd += this_rd;
|
||||
best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
|
||||
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -49,7 +49,7 @@ static void set_good_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
|
||||
if (speed >= 1) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
sf->partition_search_breakout_dist_thr = (1 << 23);
|
||||
@ -60,7 +60,7 @@ static void set_good_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 2) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
sf->adaptive_pred_interp_filter = 0;
|
||||
@ -75,7 +75,7 @@ static void set_good_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 3) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = DISABLE_ALL_SPLIT;
|
||||
sf->schedule_mode_search = cm->base_qindex < 220 ? 1 : 0;
|
||||
sf->partition_search_breakout_dist_thr = (1 << 25);
|
||||
@ -99,7 +99,7 @@ static void set_good_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 4) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 26);
|
||||
} else {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 24);
|
||||
@ -215,7 +215,7 @@ static void set_rt_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
|
||||
if (speed >= 1) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
} else {
|
||||
@ -224,7 +224,7 @@ static void set_rt_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 2) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
|
||||
: DISABLE_ALL_INTER_SPLIT;
|
||||
} else {
|
||||
@ -233,7 +233,7 @@ static void set_rt_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 5) {
|
||||
if (MIN(cm->width, cm->height) >= 720) {
|
||||
if (VPXMIN(cm->width, cm->height) >= 720) {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 25);
|
||||
} else {
|
||||
sf->partition_search_breakout_dist_thr = (1 << 23);
|
||||
@ -241,7 +241,7 @@ static void set_rt_speed_feature_framesize_dependent(VP9_COMP *cpi,
|
||||
}
|
||||
|
||||
if (speed >= 7) {
|
||||
sf->encode_breakout_thresh = (MIN(cm->width, cm->height) >= 720) ?
|
||||
sf->encode_breakout_thresh = (VPXMIN(cm->width, cm->height) >= 720) ?
|
||||
800 : 300;
|
||||
}
|
||||
}
|
||||
|
@ -139,8 +139,8 @@ void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
|
||||
lrc->maximum_buffer_size =
|
||||
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
|
||||
lrc->bits_off_target =
|
||||
MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
|
||||
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
|
||||
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
|
||||
@ -171,9 +171,9 @@ void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
|
||||
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
|
||||
lrc->maximum_buffer_size =
|
||||
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
|
||||
lrc->bits_off_target = MIN(lrc->bits_off_target,
|
||||
lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
lrc->bits_off_target = VPXMIN(lrc->bits_off_target,
|
||||
lrc->maximum_buffer_size);
|
||||
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
|
||||
// Update framerate-related quantities.
|
||||
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
|
||||
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer];
|
||||
|
@ -242,7 +242,7 @@ static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
|
||||
xd->plane[0].pre[0].stride = stride;
|
||||
|
||||
step_param = mv_sf->reduce_first_step_size;
|
||||
step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
|
||||
|
||||
// Ignore mv costing by sending NULL pointer instead of cost arrays
|
||||
vp9_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
|
||||
|
@ -18,6 +18,7 @@
|
||||
#include "vpx/vp8dx.h"
|
||||
#include "vpx/vpx_decoder.h"
|
||||
#include "vpx_dsp/bitreader_buffer.h"
|
||||
#include "vpx_dsp/vpx_dsp_common.h"
|
||||
#include "vpx_util/vpx_thread.h"
|
||||
|
||||
#include "vp9/common/vp9_alloccommon.h"
|
||||
@ -183,7 +184,7 @@ static vpx_codec_err_t decoder_peek_si_internal(const uint8_t *data,
|
||||
si->w = si->h = 0;
|
||||
|
||||
if (decrypt_cb) {
|
||||
data_sz = MIN(sizeof(clear_buffer), data_sz);
|
||||
data_sz = VPXMIN(sizeof(clear_buffer), data_sz);
|
||||
decrypt_cb(decrypt_state, data, clear_buffer, data_sz);
|
||||
data = clear_buffer;
|
||||
}
|
||||
|
@ -48,7 +48,7 @@ void vpx_reader_fill(vpx_reader *r) {
|
||||
int shift = BD_VALUE_SIZE - CHAR_BIT - (count + CHAR_BIT);
|
||||
|
||||
if (r->decrypt_cb) {
|
||||
size_t n = MIN(sizeof(r->clear_buffer), bytes_left);
|
||||
size_t n = VPXMIN(sizeof(r->clear_buffer), bytes_left);
|
||||
r->decrypt_cb(r->decrypt_state, buffer, r->clear_buffer, (int)n);
|
||||
buffer = r->clear_buffer;
|
||||
buffer_start = r->clear_buffer;
|
||||
|
@ -65,7 +65,7 @@ static INLINE vpx_prob merge_probs(vpx_prob pre_prob,
|
||||
unsigned int count_sat,
|
||||
unsigned int max_update_factor) {
|
||||
const vpx_prob prob = get_binary_prob(ct[0], ct[1]);
|
||||
const unsigned int count = MIN(ct[0] + ct[1], count_sat);
|
||||
const unsigned int count = VPXMIN(ct[0] + ct[1], count_sat);
|
||||
const unsigned int factor = max_update_factor * count / count_sat;
|
||||
return weighted_prob(pre_prob, prob, factor);
|
||||
}
|
||||
@ -82,7 +82,7 @@ static INLINE vpx_prob mode_mv_merge_probs(vpx_prob pre_prob,
|
||||
if (den == 0) {
|
||||
return pre_prob;
|
||||
} else {
|
||||
const unsigned int count = MIN(den, MODE_MV_COUNT_SAT);
|
||||
const unsigned int count = VPXMIN(den, MODE_MV_COUNT_SAT);
|
||||
const unsigned int factor = count_to_update_factor[count];
|
||||
const vpx_prob prob =
|
||||
clip_prob(((int64_t)(ct[0]) * 256 + (den >> 1)) / den);
|
||||
|
@ -19,8 +19,8 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
|
||||
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
|
||||
#define VPXMIN(x, y) (((x) < (y)) ? (x) : (y))
|
||||
#define VPXMAX(x, y) (((x) > (y)) ? (x) : (y))
|
||||
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
// Note:
|
||||
|
Loading…
Reference in New Issue
Block a user