vpx/vp9/encoder/vp9_svc_layercontext.c

311 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_extend.h"
void vp9_init_layer_context(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
int layer;
int layer_end;
svc->spatial_layer_id = 0;
svc->temporal_layer_id = 0;
if (svc->number_temporal_layers > 1) {
layer_end = svc->number_temporal_layers;
} else {
layer_end = svc->number_spatial_layers;
}
for (layer = 0; layer < layer_end; ++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
int i;
lc->current_video_frame_in_layer = 0;
lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->ni_av_qi = oxcf->worst_allowed_q;
lrc->total_actual_bits = 0;
lrc->total_target_vs_actual = 0;
lrc->ni_tot_qi = 0;
lrc->tot_q = 0.0;
lrc->avg_q = 0.0;
lrc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
lrc->rate_correction_factors[i] = 1.0;
}
if (svc->number_temporal_layers > 1) {
lc->target_bandwidth = oxcf->ts_target_bitrate[layer];
lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
} else {
lc->target_bandwidth = oxcf->ss_target_bitrate[layer];
lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q;
}
lrc->buffer_level = vp9_rescale((int)(oxcf->starting_buffer_level_ms),
lc->target_bandwidth, 1000);
lrc->bits_off_target = lrc->buffer_level;
}
}
// Update the layer context from a change_config() call.
void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
const int target_bandwidth) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const RATE_CONTROL *const rc = &cpi->rc;
int layer;
int layer_end;
float bitrate_alloc = 1.0;
if (svc->number_temporal_layers > 1) {
layer_end = svc->number_temporal_layers;
} else {
layer_end = svc->number_spatial_layers;
}
for (layer = 0; layer < layer_end; ++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
if (svc->number_temporal_layers > 1) {
lc->target_bandwidth = oxcf->ts_target_bitrate[layer];
} else {
lc->target_bandwidth = oxcf->ss_target_bitrate[layer];
}
bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
// Update buffer-related quantities.
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
// Update framerate-related quantities.
if (svc->number_temporal_layers > 1) {
lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer];
} else {
lc->framerate = oxcf->framerate;
}
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
// Update qp-related quantities.
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
static LAYER_CONTEXT *get_layer_context(SVC *svc) {
return svc->number_temporal_layers > 1 ?
&svc->layer_context[svc->temporal_layer_id] :
&svc->layer_context[svc->spatial_layer_id];
}
void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(svc);
RATE_CONTROL *const lrc = &lc->rc;
const int layer = svc->temporal_layer_id;
lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
// Update the average layer frame size (non-cumulative per-frame-bw).
if (layer == 0) {
lc->avg_frame_size = lrc->avg_frame_bandwidth;
} else {
const double prev_layer_framerate =
oxcf->framerate / oxcf->ts_rate_decimator[layer - 1];
const int prev_layer_target_bandwidth = oxcf->ts_target_bitrate[layer - 1];
lc->avg_frame_size =
(int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
(lc->framerate - prev_layer_framerate));
}
}
void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc);
RATE_CONTROL *const lrc = &lc->rc;
lc->framerate = framerate;
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmin_section / 100);
lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmax_section) / 100);
vp9_rc_set_gf_max_interval(oxcf, lrc);
}
void vp9_restore_layer_context(VP9_COMP *const cpi) {
LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc);
const int old_frame_since_key = cpi->rc.frames_since_key;
const int old_frame_to_key = cpi->rc.frames_to_key;
cpi->rc = lc->rc;
cpi->twopass = lc->twopass;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
// Reset the frames_since_key and frames_to_key counters to their values
// before the layer restore. Keep these defined for the stream (not layer).
if (cpi->svc.number_temporal_layers > 1) {
cpi->rc.frames_since_key = old_frame_since_key;
cpi->rc.frames_to_key = old_frame_to_key;
}
}
void vp9_save_layer_context(VP9_COMP *const cpi) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc);
lc->rc = cpi->rc;
lc->twopass = cpi->twopass;
lc->target_bandwidth = (int)oxcf->target_bandwidth;
}
void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) {
SVC *const svc = &cpi->svc;
int i;
for (i = 0; i < svc->number_spatial_layers; ++i) {
TWO_PASS *const twopass = &svc->layer_context[i].twopass;
svc->spatial_layer_id = i;
vp9_init_second_pass(cpi);
twopass->total_stats.spatial_layer_id = i;
twopass->total_left_stats.spatial_layer_id = i;
}
svc->spatial_layer_id = 0;
}
void vp9_inc_frame_in_layer(SVC *svc) {
LAYER_CONTEXT *const lc = (svc->number_temporal_layers > 1)
? &svc->layer_context[svc->temporal_layer_id]
: &svc->layer_context[svc->spatial_layer_id];
++lc->current_video_frame_in_layer;
}
int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) {
return cpi->use_svc &&
cpi->svc.number_temporal_layers == 1 &&
cpi->svc.spatial_layer_id > 0 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame;
}
int vp9_svc_lookahead_push(const VP9_COMP *const cpi, struct lookahead_ctx *ctx,
YV12_BUFFER_CONFIG *src, int64_t ts_start,
int64_t ts_end, unsigned int flags) {
struct lookahead_entry *buf;
int i, index;
if (vp9_lookahead_push(ctx, src, ts_start, ts_end, flags))
return 1;
index = ctx->write_idx - 1;
if (index < 0)
index += ctx->max_sz;
buf = ctx->buf + index;
if (buf == NULL)
return 1;
// Store svc parameters for each layer
for (i = 0; i < cpi->svc.number_spatial_layers; ++i)
buf->svc_params[i] = cpi->svc.layer_context[i].svc_params_received;
return 0;
}
static int copy_svc_params(VP9_COMP *const cpi, struct lookahead_entry *buf) {
int layer_id;
vpx_svc_parameters_t *layer_param;
vpx_enc_frame_flags_t flags;
// Find the next layer to be encoded
for (layer_id = 0; layer_id < cpi->svc.number_spatial_layers; ++layer_id) {
if (buf->svc_params[layer_id].spatial_layer >=0)
break;
}
if (layer_id == cpi->svc.number_spatial_layers)
return 1;
layer_param = &buf->svc_params[layer_id];
buf->flags = flags = layer_param->flags;
cpi->svc.spatial_layer_id = layer_param->spatial_layer;
cpi->svc.temporal_layer_id = layer_param->temporal_layer;
cpi->lst_fb_idx = layer_param->lst_fb_idx;
cpi->gld_fb_idx = layer_param->gld_fb_idx;
cpi->alt_fb_idx = layer_param->alt_fb_idx;
if (vp9_set_size_literal(cpi, layer_param->width, layer_param->height) != 0)
return VPX_CODEC_INVALID_PARAM;
cpi->oxcf.worst_allowed_q =
vp9_quantizer_to_qindex(layer_param->max_quantizer);
cpi->oxcf.best_allowed_q =
vp9_quantizer_to_qindex(layer_param->min_quantizer);
vp9_change_config(cpi, &cpi->oxcf);
vp9_set_high_precision_mv(cpi, 1);
// Retrieve the encoding flags for each layer and apply it to encoder.
// It includes reference frame flags and update frame flags.
vp9_apply_encoding_flags(cpi, flags);
return 0;
}
struct lookahead_entry *vp9_svc_lookahead_peek(VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int index, int copy_params) {
struct lookahead_entry *buf = vp9_lookahead_peek(ctx, index);
if (buf != NULL && copy_params != 0) {
if (copy_svc_params(cpi, buf) != 0)
return NULL;
}
return buf;
}
struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain) {
struct lookahead_entry *buf = NULL;
if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
buf = vp9_svc_lookahead_peek(cpi, ctx, 0, 1);
if (buf != NULL) {
// Only remove the buffer when pop the highest layer. Simply set the
// spatial_layer to -1 for lower layers.
buf->svc_params[cpi->svc.spatial_layer_id].spatial_layer = -1;
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
vp9_lookahead_pop(ctx, drain);
}
}
}
return buf;
}