opencv/modules/python/test/test_watershed.py
2016-03-03 11:06:21 +03:00

51 lines
1.2 KiB
Python

#!/usr/bin/env python
'''
Watershed segmentation
=========
This program demonstrates the watershed segmentation algorithm
in OpenCV: watershed().
Usage
-----
watershed.py [image filename]
Keys
----
1-7 - switch marker color
SPACE - update segmentation
r - reset
a - toggle autoupdate
ESC - exit
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
from tests_common import NewOpenCVTests
class watershed_test(NewOpenCVTests):
def test_watershed(self):
img = self.get_sample('cv/inpaint/orig.png')
markers = self.get_sample('cv/watershed/wshed_exp.png', 0)
refSegments = self.get_sample('cv/watershed/wshed_segments.png')
if img == None or markers == None:
self.assertEqual(0, 1, 'Missing test data')
colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122
cv2.watershed(img, np.int32(markers))
segments = colors[np.maximum(markers, 0)]
if refSegments == None:
refSegments = segments.copy()
cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)
self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)