51 lines
1.2 KiB
Python
51 lines
1.2 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
'''
|
||
|
Watershed segmentation
|
||
|
=========
|
||
|
|
||
|
This program demonstrates the watershed segmentation algorithm
|
||
|
in OpenCV: watershed().
|
||
|
|
||
|
Usage
|
||
|
-----
|
||
|
watershed.py [image filename]
|
||
|
|
||
|
Keys
|
||
|
----
|
||
|
1-7 - switch marker color
|
||
|
SPACE - update segmentation
|
||
|
r - reset
|
||
|
a - toggle autoupdate
|
||
|
ESC - exit
|
||
|
|
||
|
'''
|
||
|
|
||
|
|
||
|
# Python 2/3 compatibility
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
|
||
|
from tests_common import NewOpenCVTests
|
||
|
|
||
|
class watershed_test(NewOpenCVTests):
|
||
|
def test_watershed(self):
|
||
|
|
||
|
img = self.get_sample('cv/inpaint/orig.png')
|
||
|
markers = self.get_sample('cv/watershed/wshed_exp.png', 0)
|
||
|
refSegments = self.get_sample('cv/watershed/wshed_segments.png')
|
||
|
|
||
|
if img == None or markers == None:
|
||
|
self.assertEqual(0, 1, 'Missing test data')
|
||
|
|
||
|
colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122
|
||
|
cv2.watershed(img, np.int32(markers))
|
||
|
segments = colors[np.maximum(markers, 0)]
|
||
|
|
||
|
if refSegments == None:
|
||
|
refSegments = segments.copy()
|
||
|
cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)
|
||
|
|
||
|
self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)
|