#!/usr/bin/env python ''' Watershed segmentation ========= This program demonstrates the watershed segmentation algorithm in OpenCV: watershed(). Usage ----- watershed.py [image filename] Keys ---- 1-7 - switch marker color SPACE - update segmentation r - reset a - toggle autoupdate ESC - exit ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 from tests_common import NewOpenCVTests class watershed_test(NewOpenCVTests): def test_watershed(self): img = self.get_sample('cv/inpaint/orig.png') markers = self.get_sample('cv/watershed/wshed_exp.png', 0) refSegments = self.get_sample('cv/watershed/wshed_segments.png') if img == None or markers == None: self.assertEqual(0, 1, 'Missing test data') colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122 cv2.watershed(img, np.int32(markers)) segments = colors[np.maximum(markers, 0)] if refSegments == None: refSegments = segments.copy() cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments) self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)