refactoring dynamic detectors
This commit is contained in:
parent
c6e43c385d
commit
f6b0818996
@ -1451,148 +1451,97 @@ protected:
|
||||
/*
|
||||
* Dynamic Feature Detectors
|
||||
*/
|
||||
|
||||
/** \brief A feature detector parameter adjuster, this is used by the DynamicDetector
|
||||
* and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
|
||||
*/
|
||||
class CV_EXPORTS AdjusterAdapter: public FeatureDetector {
|
||||
public:
|
||||
/** pure virtual interface
|
||||
*/
|
||||
virtual ~AdjusterAdapter() {
|
||||
}
|
||||
/** too few features were detected so, adjust the detector params accordingly
|
||||
* \param min the minimum number of desired features
|
||||
* \param n_detected the number previously detected
|
||||
*/
|
||||
virtual void tooFew(int min, int n_detected) = 0;
|
||||
/** too many features were detected so, adjust the detector params accordingly
|
||||
* \param max the maximum number of desired features
|
||||
* \param n_detected the number previously detected
|
||||
*/
|
||||
virtual void tooMany(int max, int n_detected) = 0;
|
||||
/** are params maxed out or still valid?
|
||||
* \return false if the parameters can't be adjusted any more
|
||||
*/
|
||||
virtual bool good() const = 0;
|
||||
};
|
||||
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
|
||||
* of features are detected.
|
||||
* Beware that this is not thread safe - as the adjustment of parameters breaks the const
|
||||
* of the detection routine...
|
||||
* /TODO Make this const correct and thread safe
|
||||
*/
|
||||
template<typename Adjuster>
|
||||
class DynamicDetectorAdaptor: public FeatureDetector {
|
||||
class CV_EXPORTS DynamicDetector: public FeatureDetector {
|
||||
public:
|
||||
|
||||
/** \param min_features the minimum desired features
|
||||
* \param max_features the maximum desired number of features
|
||||
* \param max_iters the maximum number of times to try to adjust the feature detector params
|
||||
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
|
||||
* \param a a copy of an Adjuster that will do the detection and parameter adjustment
|
||||
* \param a an AdjusterAdapter that will do the detection and parameter adjustment
|
||||
*/
|
||||
DynamicDetectorAdaptor(int min_features, int max_features,
|
||||
int max_iters, const Adjuster& a = Adjuster()) :
|
||||
escape_iters_(max_iters), min_features_(min_features), max_features_(
|
||||
max_features), adjuster_(a) {
|
||||
}
|
||||
DynamicDetector(int min_features, int max_features, int max_iters,
|
||||
const Ptr<AdjusterAdapter>& a);
|
||||
protected:
|
||||
virtual void detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
|
||||
cv::Mat()) const {
|
||||
//for oscillation testing
|
||||
bool down = false;
|
||||
bool up = false;
|
||||
|
||||
//flag for whether the correct threshhold has been reached
|
||||
bool thresh_good = false;
|
||||
|
||||
//this is bad but adjuster should persist from detection to detection
|
||||
Adjuster& adjuster = const_cast<Adjuster&> (adjuster_);
|
||||
|
||||
//break if the desired number hasn't been reached.
|
||||
int iter_count = escape_iters_;
|
||||
|
||||
do {
|
||||
keypoints.clear();
|
||||
|
||||
//the adjuster takes care of calling the detector with updated parameters
|
||||
adjuster.detect(image, mask, keypoints);
|
||||
|
||||
if (int(keypoints.size()) < min_features_) {
|
||||
down = true;
|
||||
adjuster.tooFew(min_features_, keypoints.size());
|
||||
} else if (int(keypoints.size()) > max_features_) {
|
||||
up = true;
|
||||
adjuster.tooMany(max_features_, keypoints.size());
|
||||
} else
|
||||
thresh_good = true;
|
||||
} while (--iter_count >= 0 && !(down && up) && !thresh_good
|
||||
&& adjuster.good());
|
||||
}
|
||||
|
||||
virtual void detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
|
||||
cv::Mat()) const;
|
||||
private:
|
||||
int escape_iters_;
|
||||
int min_features_, max_features_;
|
||||
Adjuster adjuster_;
|
||||
Ptr<AdjusterAdapter> adjuster_;
|
||||
};
|
||||
|
||||
struct FastAdjuster {
|
||||
FastAdjuster() :
|
||||
thresh_(20) {
|
||||
}
|
||||
void detect(const Mat& img, const Mat& mask, std::vector<
|
||||
KeyPoint>& keypoints) const {
|
||||
FastFeatureDetector(thresh_, true).detect(img, keypoints, mask);
|
||||
}
|
||||
void tooFew(int min, int n_detected) {
|
||||
//fast is easy to adjust
|
||||
thresh_--;
|
||||
}
|
||||
void tooMany(int max, int n_detected) {
|
||||
//fast is easy to adjust
|
||||
thresh_++;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool good() const {
|
||||
return (thresh_ > 1) && (thresh_ < 200);
|
||||
}
|
||||
class FastAdjuster: public AdjusterAdapter {
|
||||
public:
|
||||
FastAdjuster(int init_thresh = 20, bool nonmax = true);
|
||||
virtual void tooFew(int min, int n_detected);
|
||||
virtual void tooMany(int max, int n_detected);
|
||||
virtual bool good() const;
|
||||
protected:
|
||||
virtual void detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
|
||||
cv::Mat()) const;
|
||||
int thresh_;
|
||||
bool nonmax_;
|
||||
|
||||
};
|
||||
|
||||
struct StarAdjuster {
|
||||
StarAdjuster() :
|
||||
thresh_(30) {
|
||||
}
|
||||
void detect(const Mat& img, const Mat& mask, std::vector<
|
||||
KeyPoint>& keypoints) const {
|
||||
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
|
||||
detector_tmp.detect(img, keypoints, mask);
|
||||
}
|
||||
void tooFew(int min, int n_detected) {
|
||||
thresh_ *= 0.9;
|
||||
if (thresh_ < 1.1)
|
||||
thresh_ = 1.1;
|
||||
}
|
||||
void tooMany(int max, int n_detected) {
|
||||
thresh_ *= 1.1;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool good() const {
|
||||
return (thresh_ > 2) && (thresh_ < 200);
|
||||
}
|
||||
struct StarAdjuster: public AdjusterAdapter {
|
||||
StarAdjuster(double initial_thresh = 30.0);
|
||||
virtual void tooFew(int min, int n_detected);
|
||||
virtual void tooMany(int max, int n_detected);
|
||||
virtual bool good() const;
|
||||
protected:
|
||||
virtual void detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
|
||||
cv::Mat()) const;
|
||||
double thresh_;
|
||||
};
|
||||
|
||||
struct SurfAdjuster {
|
||||
SurfAdjuster() :
|
||||
thresh_(400.0) {
|
||||
}
|
||||
void detect(const Mat& img, const Mat& mask, std::vector<
|
||||
KeyPoint>& keypoints) const {
|
||||
SurfFeatureDetector detector_tmp(thresh_);
|
||||
detector_tmp.detect(img, keypoints, mask);
|
||||
}
|
||||
void tooFew(int min, int n_detected) {
|
||||
thresh_ *= 0.9;
|
||||
if (thresh_ < 1.1)
|
||||
thresh_ = 1.1;
|
||||
}
|
||||
void tooMany(int max, int n_detected) {
|
||||
thresh_ *= 1.1;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool good() const {
|
||||
return (thresh_ > 2) && (thresh_ < 1000);
|
||||
}
|
||||
struct SurfAdjuster: public AdjusterAdapter {
|
||||
SurfAdjuster();
|
||||
virtual void tooFew(int min, int n_detected);
|
||||
virtual void tooMany(int max, int n_detected);
|
||||
virtual bool good() const;
|
||||
protected:
|
||||
virtual void detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
|
||||
cv::Mat()) const;
|
||||
double thresh_;
|
||||
};
|
||||
|
||||
typedef DynamicDetectorAdaptor<FastAdjuster> FASTDynamicDetector;
|
||||
typedef DynamicDetectorAdaptor<StarAdjuster> StarDynamicDetector;
|
||||
typedef DynamicDetectorAdaptor<SurfAdjuster> SurfDynamicDetector;
|
||||
|
||||
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
|
||||
float maxDeltaX, float maxDeltaY );
|
||||
@ -1865,22 +1814,15 @@ struct CV_EXPORTS L1
|
||||
|
||||
/*
|
||||
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
|
||||
* bit count of A exclusive ored with B
|
||||
* bit count of A exclusive XOR'ed with B
|
||||
*/
|
||||
struct CV_EXPORTS HammingLUT
|
||||
{
|
||||
typedef unsigned char ValueType;
|
||||
typedef int ResultType;
|
||||
|
||||
ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
|
||||
{
|
||||
ResultType result = 0;
|
||||
for (int i = 0; i < size; i++)
|
||||
{
|
||||
result += byteBitsLookUp(a[i] ^ b[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const;
|
||||
|
||||
/** \brief given a byte, count the bits using a compile time generated look up table
|
||||
* \param b the byte to count bits. The look up table has an entry for all
|
||||
* values of b, where that entry is the number of bits.
|
||||
@ -1889,32 +1831,17 @@ struct CV_EXPORTS HammingLUT
|
||||
static unsigned char byteBitsLookUp(unsigned char b);
|
||||
};
|
||||
|
||||
#if __GNUC__
|
||||
/// Hamming distance functor
|
||||
/// @todo Variable-length version, maybe default size=0 and specialize
|
||||
/// @todo Need to choose C/SSE4 at runtime, but amortize this at matcher level for efficiency...
|
||||
|
||||
/// Hamming distance functor, this one will try to use gcc's __builtin_popcountl
|
||||
/// but will fall back on HammingLUT if not available
|
||||
/// bit count of A exclusive XOR'ed with B
|
||||
struct CV_EXPORTS Hamming
|
||||
{
|
||||
typedef unsigned char ValueType;
|
||||
typedef int ResultType;
|
||||
|
||||
ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const
|
||||
{
|
||||
/// @todo Non-GCC-specific version
|
||||
ResultType result = 0;
|
||||
for (int i = 0; i < size; i += sizeof(unsigned long))
|
||||
{
|
||||
unsigned long a2 = *reinterpret_cast<const unsigned long*> (a + i);
|
||||
unsigned long b2 = *reinterpret_cast<const unsigned long*> (b + i);
|
||||
result += __builtin_popcountl(a2 ^ b2);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const;
|
||||
};
|
||||
#else
|
||||
typedef HammingLUT Hamming;
|
||||
#endif
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* DMatch *
|
||||
|
@ -92,7 +92,30 @@ void pixelTests64(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& d
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
ResultType HammingLUT::operator()( const unsigned char* a, const unsigned char* b, int size ) const
|
||||
{
|
||||
ResultType result = 0;
|
||||
for (int i = 0; i < size; i++)
|
||||
{
|
||||
result += byteBitsLookUp(a[i] ^ b[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
ResultType Hamming::operator()(const unsigned char* a, const unsigned char* b, int size) const
|
||||
{
|
||||
#if __GNUC__
|
||||
ResultType result = 0;
|
||||
for (int i = 0; i < size; i += sizeof(unsigned long))
|
||||
{
|
||||
unsigned long a2 = *reinterpret_cast<const unsigned long*> (a + i);
|
||||
unsigned long b2 = *reinterpret_cast<const unsigned long*> (b + i);
|
||||
result += __builtin_popcountl(a2 ^ b2);
|
||||
}
|
||||
return result;
|
||||
#else
|
||||
return HammingLUT()(a,b,size);
|
||||
#endif
|
||||
}
|
||||
BriefDescriptorExtractor::BriefDescriptorExtractor(int bytes) :
|
||||
bytes_(bytes), test_fn_(NULL)
|
||||
{
|
||||
|
@ -528,7 +528,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
}
|
||||
else if( !detectorType.compare( "DynamicFAST" ) )
|
||||
{
|
||||
fd = new FASTDynamicDetector(400,500,5);
|
||||
fd = new DynamicDetector(400,500,5,new FastAdjuster());
|
||||
}
|
||||
else if( !detectorType.compare( "STAR" ) )
|
||||
{
|
||||
@ -536,7 +536,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
}
|
||||
else if( !detectorType.compare( "DynamicSTAR" ) )
|
||||
{
|
||||
fd = new StarDynamicDetector(400,500,5);
|
||||
fd = new DynamicDetector(400,500,5,new StarAdjuster());
|
||||
}
|
||||
else if( !detectorType.compare( "SIFT" ) )
|
||||
{
|
||||
@ -549,7 +549,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
}
|
||||
else if( !detectorType.compare( "DynamicSURF" ) )
|
||||
{
|
||||
fd = new SurfDynamicDetector(400,500,5);
|
||||
fd =new DynamicDetector(400,500,5,new SurfAdjuster());
|
||||
}
|
||||
else if( !detectorType.compare( "MSER" ) )
|
||||
{
|
||||
|
149
modules/features2d/src/dynamic.cpp
Normal file
149
modules/features2d/src/dynamic.cpp
Normal file
@ -0,0 +1,149 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
namespace cv {
|
||||
DynamicDetector::DynamicDetector(int min_features,
|
||||
int max_features, int max_iters, const Ptr<AdjusterAdapter>& a) :
|
||||
escape_iters_(max_iters), min_features_(min_features), max_features_(
|
||||
max_features), adjuster_(a) {
|
||||
}
|
||||
void DynamicDetector::detectImpl(const cv::Mat& image, std::vector<
|
||||
cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||||
//for oscillation testing
|
||||
bool down = false;
|
||||
bool up = false;
|
||||
|
||||
//flag for whether the correct threshhold has been reached
|
||||
bool thresh_good = false;
|
||||
|
||||
//this is bad but adjuster should persist from detection to detection
|
||||
AdjusterAdapter& adjuster = const_cast<AdjusterAdapter&> (*adjuster_);
|
||||
|
||||
//break if the desired number hasn't been reached.
|
||||
int iter_count = escape_iters_;
|
||||
|
||||
do {
|
||||
keypoints.clear();
|
||||
|
||||
//the adjuster takes care of calling the detector with updated parameters
|
||||
adjuster.detect(image, keypoints,mask);
|
||||
|
||||
if (int(keypoints.size()) < min_features_) {
|
||||
down = true;
|
||||
adjuster.tooFew(min_features_, keypoints.size());
|
||||
} else if (int(keypoints.size()) > max_features_) {
|
||||
up = true;
|
||||
adjuster.tooMany(max_features_, keypoints.size());
|
||||
} else
|
||||
thresh_good = true;
|
||||
} while (--iter_count >= 0 && !(down && up) && !thresh_good
|
||||
&& adjuster.good());
|
||||
}
|
||||
|
||||
FastAdjuster::FastAdjuster(int init_thresh, bool nonmax) :
|
||||
thresh_(init_thresh), nonmax_(nonmax) {
|
||||
}
|
||||
void FastAdjuster::detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||||
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask);
|
||||
}
|
||||
void FastAdjuster::tooFew(int min, int n_detected) {
|
||||
//fast is easy to adjust
|
||||
thresh_--;
|
||||
}
|
||||
void FastAdjuster::tooMany(int max, int n_detected) {
|
||||
//fast is easy to adjust
|
||||
thresh_++;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool FastAdjuster::good() const {
|
||||
return (thresh_ > 1) && (thresh_ < 200);
|
||||
}
|
||||
|
||||
StarAdjuster::StarAdjuster(double initial_thresh) :
|
||||
thresh_(initial_thresh) {
|
||||
}
|
||||
void StarAdjuster::detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||||
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
|
||||
detector_tmp.detect(image, keypoints, mask);
|
||||
}
|
||||
void StarAdjuster::tooFew(int min, int n_detected) {
|
||||
thresh_ *= 0.9;
|
||||
if (thresh_ < 1.1)
|
||||
thresh_ = 1.1;
|
||||
}
|
||||
void StarAdjuster::tooMany(int max, int n_detected) {
|
||||
thresh_ *= 1.1;
|
||||
}
|
||||
|
||||
bool StarAdjuster::good() const {
|
||||
return (thresh_ > 2) && (thresh_ < 200);
|
||||
}
|
||||
|
||||
SurfAdjuster::SurfAdjuster() :
|
||||
thresh_(400.0) {
|
||||
}
|
||||
void SurfAdjuster::detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||||
SurfFeatureDetector detector_tmp(thresh_);
|
||||
detector_tmp.detect(image, keypoints, mask);
|
||||
}
|
||||
void SurfAdjuster::tooFew(int min, int n_detected) {
|
||||
thresh_ *= 0.9;
|
||||
if (thresh_ < 1.1)
|
||||
thresh_ = 1.1;
|
||||
}
|
||||
void SurfAdjuster::tooMany(int max, int n_detected) {
|
||||
thresh_ *= 1.1;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool SurfAdjuster::good() const {
|
||||
return (thresh_ > 2) && (thresh_ < 1000);
|
||||
}
|
||||
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user