updated documentation on features2d; minor features2d changes

This commit is contained in:
Maria Dimashova 2010-11-23 17:00:55 +00:00
parent 562a3bd5ea
commit c6e43c385d
5 changed files with 436 additions and 362 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1448,9 +1448,9 @@ protected:
int levels;
};
/****************************************************************************************\
* Dynamic Feature Detectors *
\****************************************************************************************/
/*
* Dynamic Feature Detectors
*/
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
* of features are detected.
* Beware that this is not thread safe - as the adjustment of parameters breaks the const
@ -1473,9 +1473,9 @@ public:
max_features), adjuster_(a) {
}
protected:
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const {
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const {
//for oscillation testing
bool down = false;
bool up = false;
@ -1630,7 +1630,7 @@ public:
* images Image collection.
* keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i].
* Keypoints for which a descriptor cannot be computed are removed.
* descriptors Descriptor collection. descriptors[i] is descriptors computed for keypoints[i].
* descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
*/
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;
@ -1788,7 +1788,8 @@ public:
static const int PATCH_SIZE = 48;
static const int KERNEL_SIZE = 9;
BriefDescriptorExtractor(int bytes = 32);
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
BriefDescriptorExtractor( int bytes = 32 );
virtual int descriptorSize() const;
virtual int descriptorType() const;
@ -1893,7 +1894,7 @@ struct CV_EXPORTS HammingLUT
/// @todo Variable-length version, maybe default size=0 and specialize
/// @todo Need to choose C/SSE4 at runtime, but amortize this at matcher level for efficiency...
struct Hamming
struct CV_EXPORTS Hamming
{
typedef unsigned char ValueType;
typedef int ResultType;
@ -1936,7 +1937,7 @@ struct CV_EXPORTS DMatch
float distance;
// less is better
bool operator<( const DMatch &m) const
bool operator<( const DMatch &m ) const
{
return distance < m.distance;
}
@ -2370,10 +2371,10 @@ public:
* trainKeypoints Keypoints from the train image
*/
// Classify keypoints from query image under one train image.
virtual void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
// Classify keypoints from query image under train image collection.
virtual void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
/*
* Group of methods to match keypoints from image pair.

View File

@ -84,6 +84,7 @@ void DescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints
void DescriptorExtractor::compute( const vector<Mat>& imageCollection, vector<vector<KeyPoint> >& pointCollection, vector<Mat>& descCollection ) const
{
CV_Assert( imageCollection.size() == pointCollection.size() );
descCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
compute( imageCollection[i], pointCollection[i], descCollection[i] );

View File

@ -591,7 +591,11 @@ void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vec
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType )
{
DescriptorMatcher* dm = 0;
if( !descriptorMatcherType.compare( "BruteForce" ) )
if( !descriptorMatcherType.compare( "FlannBased" ) )
{
dm = new FlannBasedMatcher();
}
else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2
{
dm = new BruteForceMatcher<L2<float> >();
}
@ -599,21 +603,13 @@ Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherT
{
dm = new BruteForceMatcher<L1<float> >();
}
else if ( !descriptorMatcherType.compare( "FlannBased" ) )
else if( !descriptorMatcherType.compare("BruteForce-Hamming") )
{
dm = new FlannBasedMatcher();
dm = new BruteForceMatcher<Hamming>();
}
else if (!descriptorMatcherType.compare("BruteForce-Hamming"))
{
dm = new BruteForceMatcher<Hamming> ();
}
else if (!descriptorMatcherType.compare("BruteForce-HammingLUT"))
{
dm = new BruteForceMatcher<HammingLUT> ();
}
else
else if( !descriptorMatcherType.compare( "BruteForce-HammingLUT") )
{
//CV_Error( CV_StsBadArg, "unsupported descriptor matcher type");
dm = new BruteForceMatcher<HammingLUT>();
}
return dm;
@ -766,83 +762,83 @@ void GenericDescriptorMatcher::clear()
void GenericDescriptorMatcher::train()
{}
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryPoints,
const Mat& trainImage, vector<KeyPoint>& trainPoints ) const
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const
{
vector<DMatch> matches;
match( queryImage, queryPoints, trainImage, trainPoints, matches );
match( queryImage, queryKeypoints, trainImage, trainKeypoints, matches );
// remap keypoint indices to descriptors
for( size_t i = 0; i < matches.size(); i++ )
queryPoints[matches[i].queryIdx].class_id = trainPoints[matches[i].trainIdx].class_id;
queryKeypoints[matches[i].queryIdx].class_id = trainKeypoints[matches[i].trainIdx].class_id;
}
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryPoints )
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints )
{
vector<DMatch> matches;
match( queryImage, queryPoints, matches );
match( queryImage, queryKeypoints, matches );
// remap keypoint indices to descriptors
for( size_t i = 0; i < matches.size(); i++ )
queryPoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id;
queryKeypoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id;
}
void GenericDescriptorMatcher::match( const Mat& queryImg, vector<KeyPoint>& queryPoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints,
void GenericDescriptorMatcher::match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<DMatch>& matches, const Mat& mask ) const
{
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints);
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints );
tempMatcher->match( queryImg, queryPoints, matches, vector<Mat>(1, mask) );
vecTrainPoints[0].swap( trainPoints );
vector<vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( vector<Mat>(1, trainImage), vecTrainPoints );
tempMatcher->match( queryImage, queryKeypoints, matches, vector<Mat>(1, mask) );
vecTrainPoints[0].swap( trainKeypoints );
}
void GenericDescriptorMatcher::knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints,
void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const
{
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints);
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints );
tempMatcher->knnMatch( queryImg, queryPoints, matches, knn, vector<Mat>(1, mask), compactResult );
vecTrainPoints[0].swap( trainPoints );
vector<vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( vector<Mat>(1, trainImage), vecTrainPoints );
tempMatcher->knnMatch( queryImage, queryKeypoints, matches, knn, vector<Mat>(1, mask), compactResult );
vecTrainPoints[0].swap( trainKeypoints );
}
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints,
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask, bool compactResult ) const
{
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints);
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints );
tempMatcher->radiusMatch( queryImg, queryPoints, matches, maxDistance, vector<Mat>(1, mask), compactResult );
vecTrainPoints[0].swap( trainPoints );
vector<vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( vector<Mat>(1, trainImage), vecTrainPoints );
tempMatcher->radiusMatch( queryImage, queryKeypoints, matches, maxDistance, vector<Mat>(1, mask), compactResult );
vecTrainPoints[0].swap( trainKeypoints );
}
void GenericDescriptorMatcher::match( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void GenericDescriptorMatcher::match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<DMatch>& matches, const vector<Mat>& masks )
{
vector<vector<DMatch> > knnMatches;
knnMatch( queryImg, queryPoints, knnMatches, 1, masks, false );
knnMatch( queryImage, queryKeypoints, knnMatches, 1, masks, false );
convertMatches( knnMatches, matches );
}
void GenericDescriptorMatcher::knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& masks, bool compactResult )
{
train();
knnMatchImpl( queryImg, queryPoints, matches, knn, masks, compactResult );
knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult );
}
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult )
{
train();
radiusMatchImpl( queryImg, queryPoints, matches, maxDistance, masks, compactResult );
radiusMatchImpl( queryImage, queryKeypoints, matches, maxDistance, masks, compactResult );
}
void GenericDescriptorMatcher::read( const FileNode& )
@ -920,7 +916,7 @@ bool OneWayDescriptorMatcher::isMaskSupported()
return false;
}
void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
@ -928,30 +924,30 @@ void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint
CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case
matches.resize( queryPoints.size() );
IplImage _qimage = queryImg;
for( size_t i = 0; i < queryPoints.size(); i++ )
matches.resize( queryKeypoints.size() );
IplImage _qimage = queryImage;
for( size_t i = 0; i < queryKeypoints.size(); i++ )
{
int descIdx = -1, poseIdx = -1;
float distance;
base->FindDescriptor( &_qimage, queryPoints[i].pt, descIdx, poseIdx, distance );
base->FindDescriptor( &_qimage, queryKeypoints[i].pt, descIdx, poseIdx, distance );
matches[i].push_back( DMatch(i, descIdx, distance) );
}
}
void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
train();
matches.resize( queryPoints.size() );
IplImage _qimage = queryImg;
for( size_t i = 0; i < queryPoints.size(); i++ )
matches.resize( queryKeypoints.size() );
IplImage _qimage = queryImage;
for( size_t i = 0; i < queryKeypoints.size(); i++ )
{
int descIdx = -1, poseIdx = -1;
float distance;
base->FindDescriptor( &_qimage, queryPoints[i].pt, descIdx, poseIdx, distance );
base->FindDescriptor( &_qimage, queryKeypoints[i].pt, descIdx, poseIdx, distance );
if( distance < maxDistance )
matches[i].push_back( DMatch(i, descIdx, distance) );
}
@ -1064,18 +1060,18 @@ void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Poi
}
}
void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
train();
matches.resize( queryPoints.size() );
matches.resize( queryKeypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t queryIdx = 0; queryIdx < queryPoints.size(); queryIdx++ )
for( size_t queryIdx = 0; queryIdx < queryKeypoints.size(); queryIdx++ )
{
(*classifier)( queryImg, queryPoints[queryIdx].pt, signature);
(*classifier)( queryImage, queryKeypoints[queryIdx].pt, signature);
for( int k = 0; k < knn; k++ )
{
@ -1099,17 +1095,17 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>&
}
}
void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
train();
matches.resize( queryPoints.size() );
matches.resize( queryKeypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t i = 0; i < queryPoints.size(); i++ )
for( size_t i = 0; i < queryKeypoints.size(); i++ )
{
(*classifier)( queryImg, queryPoints[i].pt, signature);
(*classifier)( queryImage, queryKeypoints[i].pt, signature);
for( int ci = 0; ci < classifier->getClassCount(); ci++ )
{
@ -1206,21 +1202,21 @@ bool VectorDescriptorMatcher::isMaskSupported()
return matcher->isMaskSupported();
}
void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& masks, bool compactResult )
{
Mat queryDescriptors;
extractor->compute( queryImg, queryPoints, queryDescriptors );
extractor->compute( queryImage, queryKeypoints, queryDescriptors );
matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult );
}
void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult )
{
Mat queryDescriptors;
extractor->compute( queryImg, queryPoints, queryDescriptors );
extractor->compute( queryImage, queryKeypoints, queryDescriptors );
matcher->radiusMatch( queryDescriptors, matches, maxDistance, masks, compactResult );
}
@ -1245,7 +1241,8 @@ Ptr<GenericDescriptorMatcher> VectorDescriptorMatcher::clone( bool emptyTrainDat
/*
* Factory function for GenericDescriptorMatch creating
*/
Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType, const string &paramsFilename )
Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType,
const string &paramsFilename )
{
Ptr<GenericDescriptorMatcher> descriptorMatcher;
if( ! genericDescritptorMatcherType.compare("ONEWAY") )
@ -1256,12 +1253,8 @@ Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& gene
{
descriptorMatcher = new FernDescriptorMatcher();
}
else if( ! genericDescritptorMatcherType.compare ("CALONDER") )
{
//descriptorMatch = new CalonderDescriptorMatch ();
}
if( !paramsFilename.empty() && descriptorMatcher != 0 )
if( !paramsFilename.empty() && !descriptorMatcher.empty() )
{
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
if( fs.isOpened() )

View File

@ -69,7 +69,7 @@ bool createDetectorDescriptorMatcher( const string& detectorType, const string&
bool isCreated = !( featureDetector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() );
if( !isCreated )
cout << "Can not create feature detector or descriptor exstractor or descriptor matcher of given types." << endl << ">" << endl;
cout << "Can not create feature detector or descriptor extractor or descriptor matcher of given types." << endl << ">" << endl;
return isCreated;
}