Added Hough Circle Tutorial in reST
This commit is contained in:
parent
d32a134b0f
commit
f27796e8cc
@ -7,7 +7,29 @@ Goal
|
||||
=====
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
* Use the OpenCV functions :hough_circles:`HoughCircles <>` to detect circles in an image.
|
||||
* Use the OpenCV function :hough_circles:`HoughCircles <>` to detect circles in an image.
|
||||
|
||||
Theory
|
||||
=======
|
||||
|
||||
Hough Circle Transform
|
||||
------------------------
|
||||
|
||||
* The Hough Circle Transform works in a *roughly* analogous way to the Hough Line Transform explained in the previous tutorial.
|
||||
* In the line detection case, a line was defined by two parameters :math:`(r, \theta)`. In the circle case, we need three parameters to define a circle:
|
||||
|
||||
.. math::
|
||||
|
||||
C : ( x_{center}, y_{center}, r )
|
||||
|
||||
where :math:`(x_{center}, y_{center})` define the center position (gree point) and :math:`r` is the radius, which allows us to completely define a circle, as it can be seen below:
|
||||
|
||||
.. image:: images/Hough_Circle_Tutorial_Theory_0.jpg
|
||||
:alt: Result of detecting circles with Hough Transform
|
||||
:height: 200pt
|
||||
:align: center
|
||||
|
||||
* For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Transform: *The Hough gradient method*. For more details, please check the book *Learning OpenCV* or your favorite Computer Vision bibliography
|
||||
|
||||
Code
|
||||
======
|
||||
@ -70,9 +92,87 @@ Code
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
Explanation
|
||||
============
|
||||
|
||||
|
||||
#. Load an image
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
#. Convert it to grayscale:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
cvtColor( src, src_gray, CV_BGR2GRAY );
|
||||
|
||||
#. Apply a Gaussian blur to reduce noise and avoid false circle detection:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
|
||||
#. Proceed to apply Hough Circle Transform:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<Vec3f> circles;
|
||||
|
||||
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
||||
|
||||
with the arguments:
|
||||
|
||||
* *src_gray*: Input image (grayscale)
|
||||
* *circles*: A vector that stores sets of 3 values: :math:`x_{c}, y_{c}, r` for each detected circle.
|
||||
* *CV_HOUGH_GRADIENT*: Define the detection method. Currently this is the only one available in OpenCV
|
||||
* *dp = 1*: The inverse ratio of resolution
|
||||
* *min_dist = src_gray.rows/8*: Minimum distance between detected centers
|
||||
* *param_1 = 200*: Upper threshold for the internal Canny edge detector
|
||||
* *param_2* = 100*: Threshold for center detection.
|
||||
* *min_radius = 0*: Minimum radio to be detected. If unknown, put zero as default.
|
||||
* *max_radius = 0*: Maximum radius to be detected. If unknown, put zero as default
|
||||
|
||||
#. Draw the detected circles:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// circle center
|
||||
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// circle outline
|
||||
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
|
||||
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
|
||||
|
||||
#. Display the detected circle(s):
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
||||
imshow( "Hough Circle Transform Demo", src );
|
||||
|
||||
#. Wait for the user to exit the program
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
waitKey(0);
|
||||
|
||||
|
||||
Result
|
||||
=======
|
||||
|
||||
|
||||
The result of running the code above with a test image is shown below:
|
||||
|
||||
.. image:: images/Hough_Circle_Tutorial_Result.jpg
|
||||
:alt: Result of detecting circles with Hough Transform
|
||||
:align: center
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
Loading…
x
Reference in New Issue
Block a user