Added Hough Lines Tutorial in reST
@ -313,7 +313,10 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
|
||||
'laplacian': ('http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-laplacian%s', None),
|
||||
'canny': ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#Canny%s', None),
|
||||
'copy_to': ('http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?#Mat::copyTo%s', None),
|
||||
'opencv_group' : ('http://tech.groups.yahoo.com/group/OpenCV/%s', None)
|
||||
'opencv_group' : ('http://tech.groups.yahoo.com/group/OpenCV/%s', None),
|
||||
'hough_lines' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlines%s', None),
|
||||
'hough_lines_p' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlinesp%s', None),
|
||||
'hough_circles' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghcircles%s', None)
|
||||
}
|
||||
|
||||
|
||||
|
After Width: | Height: | Size: 39 KiB |
After Width: | Height: | Size: 31 KiB |
78
doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.rst
Normal file
@ -0,0 +1,78 @@
|
||||
.. _hough_circle:
|
||||
|
||||
Hough Circle Transform
|
||||
***********************
|
||||
|
||||
Goal
|
||||
=====
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
* Use the OpenCV functions :hough_circles:`HoughCircles <>` to detect circles in an image.
|
||||
|
||||
Code
|
||||
======
|
||||
|
||||
#. **What does this program do?**
|
||||
|
||||
* Loads an image and blur it to reduce the noise
|
||||
* Applies the *Hough Circle Transform* to the blurred image .
|
||||
* Display the detected circle in a window.
|
||||
|
||||
#. The sample code that we will explain can be downloaded from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp>`_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/** @function main */
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat src, src_gray;
|
||||
|
||||
/// Read the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Convert it to gray
|
||||
cvtColor( src, src_gray, CV_BGR2GRAY );
|
||||
|
||||
/// Reduce the noise so we avoid false circle detection
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
|
||||
vector<Vec3f> circles;
|
||||
|
||||
/// Apply the Hough Transform to find the circles
|
||||
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
||||
|
||||
/// Draw the circles detected
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// circle center
|
||||
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// circle outline
|
||||
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
|
||||
/// Show your results
|
||||
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
||||
imshow( "Hough Circle Transform Demo", src );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Result
|
||||
=======
|
||||
|
||||
.. image:: images/Hough_Circle_Tutorial_Result.jpg
|
||||
:alt: Result of detecting circles with Hough Transform
|
||||
:align: center
|
After Width: | Height: | Size: 46 KiB |
289
doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.rst
Normal file
@ -0,0 +1,289 @@
|
||||
.. _hough_lines:
|
||||
|
||||
Hough Line Transform
|
||||
*********************
|
||||
|
||||
Goal
|
||||
=====
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
* Use the OpenCV functions :hough_lines:`HoughLines <>` and :hough_lines_p:`HoughLinesP <>` to detect lines in an image.
|
||||
|
||||
Theory
|
||||
=======
|
||||
|
||||
.. note::
|
||||
The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.
|
||||
|
||||
Hough Line Transform
|
||||
---------------------
|
||||
#. The Hough Line Transform is a transform used to detect straight lines.
|
||||
#. To apply the Transform, first an edge detection pre-processing is desirable.
|
||||
|
||||
How does it work?
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
#. As you know, a line in the image space can be expressed with two variables. For example:
|
||||
|
||||
a. In the **Cartesian coordinate system:** Parameters: :math:`(m,b)`.
|
||||
b. In the **Polar coordinate system:** Parameters: :math:`(r,\theta)`
|
||||
|
||||
.. image:: images/Hough_Lines_Tutorial_Theory_0.jpg
|
||||
:alt: Line variables
|
||||
:height: 200pt
|
||||
:align: center
|
||||
|
||||
For Hough Transforms, we will express lines in the *Polar system*. Hence, a line equation can be written as:
|
||||
|
||||
.. math::
|
||||
|
||||
y = \left ( -\dfrac{\cos \theta}{\sin \theta} \right ) x + \left ( \dfrac{r}{\sin \theta} \right )
|
||||
|
||||
Arranging the terms: :math:`r = x \cos \theta + y \sin \theta`
|
||||
|
||||
#. In general for each point :math:`(x_{0}, y_{0})`, we can define the family of lines that goes through that point as:
|
||||
|
||||
.. math::
|
||||
|
||||
r_{\theta} = x_{0} \cdot \cos \theta + y_{0} \cdot \sin \theta
|
||||
|
||||
Meaning that each pair :math:`(r_{\theta},\theta)` represents each line that passes by :math:`(x_{0}, y_{0})`.
|
||||
|
||||
#. If for a given :math:`(x_{0}, y_{0})` we plot the family of lines that goes through it, we get a sinusoid. For instance, for :math:`x_{0} = 8` and :math:`y_{0} = 6` we get the following plot (in a plane :math:`\theta` - :math:`r`):
|
||||
|
||||
.. image:: images/Hough_Lines_Tutorial_Theory_1.jpg
|
||||
:alt: Polar plot of a the family of lines of a point
|
||||
:height: 200pt
|
||||
:align: center
|
||||
|
||||
We consider only points such that :math:`r > 0` and :math:`0< \theta < 2 \pi`.
|
||||
|
||||
#. We can do the same operation above for all the points in an image. If the curves of two different points intersect in the plane :math:`\theta` - :math:`r`, that means that both points belong to a same line. For instance, following with the example above and drawing the plot for two more points: :math:`x_{1} = 9`, :math:`y_{1} = 4` and :math:`x_{2} = 12`, :math:`y_{2} = 3`, we get:
|
||||
|
||||
.. image:: images/Hough_Lines_Tutorial_Theory_2.jpg
|
||||
:alt: Polar plot of the family of lines for three points
|
||||
:height: 200pt
|
||||
:align: center
|
||||
The three plots intersect in one single point :math:`(0.925, 9.6)`, these coordinates are the parameters (:math:`\theta, r`) or the line in which :math:`(x_{0}, y_{0})`, :math:`(x_{1}, y_{1})` and :math:`(x_{2}, y_{2})` lay.
|
||||
|
||||
#. What does all the stuff above mean? It means that in general, a line can be *detected* by finding the number of intersections between curves.The more curves intersecting means that the line represented by that intersection have more points. In general, we can define a *threshold* of the minimum number of intersections needed to *detect* a line.
|
||||
|
||||
#. This is what the Hough Line Transform does. It keeps track of the intersection between curves of every point in the image. If the number of intersections is above some *threshold*, then it declares it as a line with the parameters :math:`(\theta, r_{\theta})` of the intersection point.
|
||||
|
||||
Standard and Probabilistic Hough Line Transform
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
OpenCV implements two kind of Hough Line Transforms:
|
||||
|
||||
a. **The Standard Hough Transform**
|
||||
|
||||
* It consists in pretty much what we just explained in the previous section. It gives you as result a vector of couples :math:`(\theta, r_{\theta})`
|
||||
|
||||
* In OpenCV it is implemented with the function :hough_lines:`HoughLines <>`
|
||||
|
||||
b. **The Probabilistic Hough Line Transform**
|
||||
|
||||
* A more efficient implementation of the Hough Line Transform. It gives as output the extremes of the detected lines :math:`(x_{0}, y_{0}, x_{1}, y_{1})`
|
||||
|
||||
* In OpenCV it is implemented with the function :hough_lines_p:`HoughLinesP <>`
|
||||
|
||||
Code
|
||||
======
|
||||
|
||||
#. **What does this program do?**
|
||||
|
||||
* Loads an image
|
||||
* Applies either a *Standard Hough Line Transform* or a *Probabilistic Line Transform*.
|
||||
* Display the original image and the detected line in two windows.
|
||||
|
||||
#. The sample code that we will explain can be downloaded from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp>`_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates line finding with the Hough transform.\n"
|
||||
"Usage:\n"
|
||||
"./houghlines <image_name>, Default is pic1.png\n" << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const char* filename = argc >= 2 ? argv[1] : "pic1.png";
|
||||
|
||||
Mat src = imread(filename, 0);
|
||||
if(src.empty())
|
||||
{
|
||||
help();
|
||||
cout << "can not open " << filename << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat dst, cdst;
|
||||
Canny(src, dst, 50, 200, 3);
|
||||
cvtColor(dst, cdst, CV_GRAY2BGR);
|
||||
|
||||
#if 0
|
||||
vector<Vec2f> lines;
|
||||
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
|
||||
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
float rho = lines[i][0], theta = lines[i][1];
|
||||
Point pt1, pt2;
|
||||
double a = cos(theta), b = sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
pt1.x = cvRound(x0 + 1000*(-b));
|
||||
pt1.y = cvRound(y0 + 1000*(a));
|
||||
pt2.x = cvRound(x0 - 1000*(-b));
|
||||
pt2.y = cvRound(y0 - 1000*(a));
|
||||
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
|
||||
}
|
||||
#else
|
||||
vector<Vec4i> lines;
|
||||
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
Vec4i l = lines[i];
|
||||
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
|
||||
}
|
||||
#endif
|
||||
imshow("source", src);
|
||||
imshow("detected lines", cdst);
|
||||
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Explanation
|
||||
=============
|
||||
|
||||
#. Load an image
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Mat src = imread(filename, 0);
|
||||
if(src.empty())
|
||||
{
|
||||
help();
|
||||
cout << "can not open " << filename << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
#. Detect the edges of the image by using a Canny detector
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Canny(src, dst, 50, 200, 3);
|
||||
|
||||
Now we will apply the Hough Line Transform. We will explain how to use both OpenCV functions available for this purpose:
|
||||
|
||||
#. **Standard Hough Line Transform**
|
||||
|
||||
a. First, you apply the Transform:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<Vec2f> lines;
|
||||
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
|
||||
|
||||
with the following arguments:
|
||||
|
||||
* *dst*: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)
|
||||
* *lines*: A vector that will store the parameters :math:`(r,\theta)` of the detected lines
|
||||
* *rho* : The resolution of the parameter :math:`r` in pixels. We use **1** pixel.
|
||||
* *theta*: The resolution of the parameter :math:`\theta` in radians. We use **1 degree** (CV_PI/180)
|
||||
* *threshold*: The minimum number of intersections to "*detect*" a line
|
||||
* *srn* and *stn*: Default parameters to zero. Check OpenCV reference for more info.
|
||||
|
||||
b. And then you display the result by drawing the lines.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
float rho = lines[i][0], theta = lines[i][1];
|
||||
Point pt1, pt2;
|
||||
double a = cos(theta), b = sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
pt1.x = cvRound(x0 + 1000*(-b));
|
||||
pt1.y = cvRound(y0 + 1000*(a));
|
||||
pt2.x = cvRound(x0 - 1000*(-b));
|
||||
pt2.y = cvRound(y0 - 1000*(a));
|
||||
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
|
||||
}
|
||||
|
||||
#. **Probabilistic Hough Line Transform**
|
||||
|
||||
a. First you apply the transform:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<Vec4i> lines;
|
||||
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
|
||||
|
||||
with the arguments:
|
||||
|
||||
* *dst*: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)
|
||||
* *lines*: A vector that will store the parameters :math:`(x_{start}, y_{start}, x_{end}, y_{end})` of the detected lines
|
||||
* *rho* : The resolution of the parameter :math:`r` in pixels. We use **1** pixel.
|
||||
* *theta*: The resolution of the parameter :math:`\theta` in radians. We use **1 degree** (CV_PI/180)
|
||||
* *threshold*: The minimum number of intersections to "*detect*" a line
|
||||
* *minLinLength*: The minimum number of points that can form a line. Lines with less than this number of points are disregarded.
|
||||
* *maxLineGap*: The maximum gap between two points to be considered in the same line.
|
||||
|
||||
b. And then you display the result by drawing the lines.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
Vec4i l = lines[i];
|
||||
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
|
||||
}
|
||||
|
||||
|
||||
#. Display the original image and the detected lines:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
imshow("source", src);
|
||||
imshow("detected lines", cdst);
|
||||
|
||||
#. Wait until the user exits the program
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
waitKey();
|
||||
|
||||
|
||||
Result
|
||||
=======
|
||||
|
||||
.. note::
|
||||
|
||||
The results below are obtained using the slightly fancier version we mentioned in the *Code* section. It still implements the same stuff as above, only adding the Trackbar for the Threshold.
|
||||
|
||||
Using an input image such as:
|
||||
|
||||
.. image:: images/Hough_Lines_Tutorial_Original_Image.jpg
|
||||
:alt: Result of detecting lines with Hough Transform
|
||||
:align: center
|
||||
|
||||
We get the following result by using the Probabilistic Hough Line Transform:
|
||||
|
||||
.. image:: images/Hough_Lines_Tutorial_Result.jpg
|
||||
:alt: Result of detecting lines with Hough Transform
|
||||
:align: center
|
||||
|
||||
You may observe that the number of lines detected vary while you change the *threshold*. The explanation is sort of evident: If you establish a higher threshold, fewer lines will be detected (since you will need more points to declare a line detected).
|
||||
|
After Width: | Height: | Size: 34 KiB |
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 17 KiB |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 71 KiB |
After Width: | Height: | Size: 77 KiB |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 15 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 15 KiB |
After Width: | Height: | Size: 15 KiB |
@ -10,8 +10,8 @@ In this tutorial you will learn how to:
|
||||
|
||||
* Use the OpenCV functions :pyr_up:`pyrUp <>` and :pyr_down:`pyrDown <>` to downsample or upsample a given image.
|
||||
|
||||
Cool Theory
|
||||
============
|
||||
Theory
|
||||
=======
|
||||
|
||||
.. note::
|
||||
The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.
|
||||
|
After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 62 KiB |
@ -196,3 +196,39 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
:height: 100pt
|
||||
:width: 100pt
|
||||
|
||||
|
||||
* :ref:`hough_lines`
|
||||
|
||||
===================== ==============================================
|
||||
|HoughLines| *Title:* **Hough Line Transform**
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
Where we learn how to detect lines
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |HoughLines| image:: images/imgtrans/Hough_Lines_Tutorial_Cover.jpg
|
||||
:height: 100pt
|
||||
:width: 100pt
|
||||
|
||||
|
||||
* :ref:`hough_circle`
|
||||
|
||||
===================== ==============================================
|
||||
|HoughCircle| *Title:* **Hough Circle Transform**
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
Where we learn how to detect circles
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |HoughCircle| image:: images/imgtrans/Hough_Circle_Tutorial_Cover.jpg
|
||||
:height: 100pt
|
||||
:width: 100pt
|
||||
|
||||
|