Merge pull request #1457 from pengx17:2.4_oclsvm
This commit is contained in:
		@@ -1900,6 +1900,26 @@ namespace cv
 | 
			
		||||
        private:
 | 
			
		||||
            oclMat samples_ocl;
 | 
			
		||||
        };
 | 
			
		||||
        /*!***************  SVM  *************!*/
 | 
			
		||||
        class CV_EXPORTS CvSVM_OCL : public CvSVM
 | 
			
		||||
        {
 | 
			
		||||
        public:
 | 
			
		||||
            CvSVM_OCL();
 | 
			
		||||
 | 
			
		||||
            CvSVM_OCL(const cv::Mat& trainData, const cv::Mat& responses,
 | 
			
		||||
                      const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | 
			
		||||
                      CvSVMParams params=CvSVMParams());
 | 
			
		||||
            CV_WRAP float predict( const int row_index, Mat& src, bool returnDFVal=false ) const;
 | 
			
		||||
            CV_WRAP void predict( cv::InputArray samples, cv::OutputArray results ) const;
 | 
			
		||||
            CV_WRAP float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
 | 
			
		||||
            float predict( const CvMat* samples, CV_OUT CvMat* results ) const;
 | 
			
		||||
 | 
			
		||||
        protected:
 | 
			
		||||
            float predict( const int row_index, int row_len, Mat& src, bool returnDFVal=false ) const;
 | 
			
		||||
            void create_kernel();
 | 
			
		||||
            void create_solver();
 | 
			
		||||
        };
 | 
			
		||||
        /*!***************  END  *************!*/
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
#if defined _MSC_VER && _MSC_VER >= 1200
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										209
									
								
								modules/ocl/src/opencl/svm.cl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										209
									
								
								modules/ocl/src/opencl/svm.cl
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,209 @@
 | 
			
		||||
//                           License Agreement
 | 
			
		||||
//                For Open Source Computer Vision Library
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2010-2013, Institute Of Software Chinese Academy Of Science, all rights reserved.
 | 
			
		||||
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
 | 
			
		||||
// Third party copyrights are property of their respective owners.
 | 
			
		||||
//
 | 
			
		||||
// @Authors
 | 
			
		||||
//    Erping Pang, erping@multicorewareinc.com
 | 
			
		||||
//
 | 
			
		||||
// Redistribution and use in source and binary forms, with or without modification,
 | 
			
		||||
// are permitted provided that the following conditions are met:
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's of source code must retain the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer.
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer in the documentation
 | 
			
		||||
//     and/or other oclMaterials provided with the distribution.
 | 
			
		||||
//
 | 
			
		||||
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
			
		||||
//     derived from this software without specific prior written permission.
 | 
			
		||||
//
 | 
			
		||||
// This software is provided by the copyright holders and contributors as is and
 | 
			
		||||
// any express or implied warranties, including, but not limited to, the implied
 | 
			
		||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
			
		||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
			
		||||
// indirect, incidental, special, exemplary, or consequential damages
 | 
			
		||||
// (including, but not limited to, procurement of substitute goods or services;
 | 
			
		||||
// loss of use, data, or profits; or business interruption) however caused
 | 
			
		||||
// and on any theory of liability, whether in contract, strict liability,
 | 
			
		||||
// or tort (including negligence or otherwise) arising in any way out of
 | 
			
		||||
// the use of this software, even if advised of the possibility of such damage.
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
#if defined (DOUBLE_SUPPORT)
 | 
			
		||||
#ifdef cl_khr_fp64
 | 
			
		||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
 | 
			
		||||
#elif defined (cl_amd_fp64)
 | 
			
		||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
 | 
			
		||||
#endif
 | 
			
		||||
#define TYPE double
 | 
			
		||||
#else
 | 
			
		||||
#define TYPE float
 | 
			
		||||
#endif
 | 
			
		||||
#if defined ADDEXP
 | 
			
		||||
#define EXP(X) exp(X)
 | 
			
		||||
#else
 | 
			
		||||
#define EXP(X) X
 | 
			
		||||
#endif
 | 
			
		||||
#if defined ADDPOW
 | 
			
		||||
#define POW(X,Y) pow(fabs(X),(Y))
 | 
			
		||||
#else
 | 
			
		||||
#define POW(X,Y) X
 | 
			
		||||
#endif
 | 
			
		||||
#define FLT_MAX   3.402823466e+38F
 | 
			
		||||
#define MAX_VAL   (FLT_MAX*1e-3)
 | 
			
		||||
 | 
			
		||||
__kernel void svm_linear(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
 | 
			
		||||
                         int width, TYPE alpha, TYPE beta)
 | 
			
		||||
{
 | 
			
		||||
    const int  col = get_global_id(0);
 | 
			
		||||
    const int  row = get_global_id(1);
 | 
			
		||||
 | 
			
		||||
    if(row < src_rows && col < src2_cols)
 | 
			
		||||
    {
 | 
			
		||||
        int t = 0;
 | 
			
		||||
        TYPE temp = 0.0;
 | 
			
		||||
        for(t = 0; t < width - 16; t += 16)
 | 
			
		||||
        {
 | 
			
		||||
            float16 t0 = vload16(0, src + row * src_step + t);
 | 
			
		||||
            float16 t1 = vload16(0, src2 + col * src2_step + t);
 | 
			
		||||
            t0 *= t1;
 | 
			
		||||
            temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
 | 
			
		||||
                    t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
 | 
			
		||||
        }
 | 
			
		||||
        for(; t < width; t++)
 | 
			
		||||
        {
 | 
			
		||||
            temp += src[row * src_step + t] * src2[col * src2_step + t];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        TYPE temp1 = (TYPE) (temp * alpha + beta);
 | 
			
		||||
 | 
			
		||||
        if( temp1 > MAX_VAL )
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = MAX_VAL;
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = temp1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
__kernel void svm_sigmod(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
 | 
			
		||||
                         int width, TYPE alpha, TYPE beta)
 | 
			
		||||
{
 | 
			
		||||
    const int  col = get_global_id(0);
 | 
			
		||||
    const int  row = get_global_id(1);
 | 
			
		||||
 | 
			
		||||
    if(row < src_rows && col < src2_cols)
 | 
			
		||||
    {
 | 
			
		||||
        int t = 0;
 | 
			
		||||
        TYPE temp = 0.0;
 | 
			
		||||
        for(t = 0; t < width - 16; t += 16)
 | 
			
		||||
        {
 | 
			
		||||
            float16 t0 = vload16(0, src + row * src_step + t);
 | 
			
		||||
            float16 t1 = vload16(0, src2 + col * src2_step + t);
 | 
			
		||||
            t0 *= t1;
 | 
			
		||||
            temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
 | 
			
		||||
                    t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
 | 
			
		||||
        }
 | 
			
		||||
        for(; t < width; t++)
 | 
			
		||||
        {
 | 
			
		||||
            temp += src[row * src_step + t] * src2[col * src2_step + t];
 | 
			
		||||
        }
 | 
			
		||||
        TYPE tp = (TYPE) (temp * alpha + beta);
 | 
			
		||||
        TYPE e = exp(-fabs(tp));
 | 
			
		||||
        TYPE temp1;
 | 
			
		||||
        if(tp > 0)
 | 
			
		||||
        {
 | 
			
		||||
            temp1 = (TYPE)((1. - e) / (1. + e));
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            temp1 = (TYPE)((e - 1.) / (e + 1.));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if( temp1 > MAX_VAL )
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = MAX_VAL;
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = temp1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
__kernel void svm_poly(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
 | 
			
		||||
                       int width, TYPE alpha, TYPE beta, TYPE degree)
 | 
			
		||||
{
 | 
			
		||||
    const int  col = get_global_id(0);
 | 
			
		||||
    const int  row = get_global_id(1);
 | 
			
		||||
 | 
			
		||||
    if(row < src_rows && col < src2_cols)
 | 
			
		||||
    {
 | 
			
		||||
        int t = 0;
 | 
			
		||||
        TYPE temp = 0.0;
 | 
			
		||||
        for(t = 0; t < width - 16; t += 16)
 | 
			
		||||
        {
 | 
			
		||||
            float16 t0 = vload16(0, src + row * src_step + t);
 | 
			
		||||
            float16 t1 = vload16(0, src2 + col * src2_step + t);
 | 
			
		||||
            t0 *= t1;
 | 
			
		||||
            temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
 | 
			
		||||
                    t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
 | 
			
		||||
        }
 | 
			
		||||
        for(; t < width; t++)
 | 
			
		||||
        {
 | 
			
		||||
            temp += src[row * src_step + t] * src2[col * src2_step + t];
 | 
			
		||||
        }
 | 
			
		||||
        TYPE temp1 = (TYPE)(POW((temp * alpha + beta), degree));
 | 
			
		||||
 | 
			
		||||
        if( temp1 > MAX_VAL )
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = MAX_VAL;
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = temp1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
__kernel void svm_rbf(__global float* src, int src_step, __global float* src2, int src2_step, __global TYPE* dst, int dst_step, int src_rows, int src2_cols,
 | 
			
		||||
                      int width, TYPE gamma)
 | 
			
		||||
{
 | 
			
		||||
    const int  col = get_global_id(0);
 | 
			
		||||
    const int  row = get_global_id(1);
 | 
			
		||||
 | 
			
		||||
    if(row < src_rows && col < src2_cols)
 | 
			
		||||
    {
 | 
			
		||||
        int t = 0;
 | 
			
		||||
        TYPE temp = 0.0;
 | 
			
		||||
        for(t = 0; t < width - 16; t += 16)
 | 
			
		||||
        {
 | 
			
		||||
            float16 t0 = vload16(0, src + row * src_step + t);
 | 
			
		||||
            float16 t1 = vload16(0, src2 + col * src2_step + t);
 | 
			
		||||
            t0 = (t0 - t1) * (t0 - t1);
 | 
			
		||||
            temp += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
 | 
			
		||||
                    t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
 | 
			
		||||
        }
 | 
			
		||||
        for(; t < width; t++)
 | 
			
		||||
        {
 | 
			
		||||
            temp += (src[row * src_step + t] - src2[col * src2_step + t]) * (src[row * src_step + t] - src2[col * src2_step + t]);
 | 
			
		||||
        }
 | 
			
		||||
        TYPE temp1 = EXP((TYPE)(temp * gamma));
 | 
			
		||||
 | 
			
		||||
        if( temp1 > MAX_VAL )
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = MAX_VAL;
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            dst[row * dst_step + col] = temp1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										1201
									
								
								modules/ocl/src/svm.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1201
									
								
								modules/ocl/src/svm.cpp
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -121,4 +121,180 @@ TEST_P(KNN, Accuracy)
 | 
			
		||||
}
 | 
			
		||||
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
 | 
			
		||||
    Values(4, 3), Values(false, true)));
 | 
			
		||||
#endif // HAVE_OPENCL
 | 
			
		||||
 | 
			
		||||
////////////////////////////////SVM/////////////////////////////////////////////////
 | 
			
		||||
PARAM_TEST_CASE(SVM_OCL, int, int, int)
 | 
			
		||||
{
 | 
			
		||||
    cv::Size size;
 | 
			
		||||
    int kernel_type;
 | 
			
		||||
    int svm_type;
 | 
			
		||||
    Mat src, labels, samples, labels_predict;
 | 
			
		||||
    int K;
 | 
			
		||||
    cv::RNG rng ;
 | 
			
		||||
 | 
			
		||||
    virtual void SetUp()
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
        kernel_type = GET_PARAM(0);
 | 
			
		||||
        svm_type = GET_PARAM(1);
 | 
			
		||||
        K = GET_PARAM(2);
 | 
			
		||||
        rng = TS::ptr()->get_rng();
 | 
			
		||||
        cv::Size size = cv::Size(MWIDTH, MHEIGHT);
 | 
			
		||||
        src.create(size, CV_32FC1);
 | 
			
		||||
        labels.create(1, size.height, CV_32SC1);
 | 
			
		||||
        int row_idx = 0;
 | 
			
		||||
        const int max_number = size.height / K - 1;
 | 
			
		||||
        CV_Assert(K <= size.height);
 | 
			
		||||
        for(int i = 0; i < K; i++ )
 | 
			
		||||
        {
 | 
			
		||||
            Mat center_row_header = src.row(row_idx);
 | 
			
		||||
            center_row_header.setTo(0);
 | 
			
		||||
            int nchannel = center_row_header.channels();
 | 
			
		||||
            for(int j = 0; j < nchannel; j++)
 | 
			
		||||
            {
 | 
			
		||||
                center_row_header.at<float>(0, i * nchannel + j) = 500.0;
 | 
			
		||||
            }
 | 
			
		||||
            labels.at<int>(0, row_idx) = i;
 | 
			
		||||
            for(int j = 0; (j < max_number) ||
 | 
			
		||||
                    (i == K - 1 && j < max_number + size.height % K); j ++)
 | 
			
		||||
            {
 | 
			
		||||
                Mat cur_row_header = src.row(row_idx + 1 + j);
 | 
			
		||||
                center_row_header.copyTo(cur_row_header);
 | 
			
		||||
                Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
 | 
			
		||||
                cur_row_header += tmpmat;
 | 
			
		||||
                labels.at<int>(0, row_idx + 1 + j) = i;
 | 
			
		||||
            }
 | 
			
		||||
            row_idx += 1 + max_number;
 | 
			
		||||
        }
 | 
			
		||||
        labels.convertTo(labels, CV_32FC1);
 | 
			
		||||
        cv::Size test_size = cv::Size(MWIDTH, 100);
 | 
			
		||||
        samples.create(test_size, CV_32FC1);
 | 
			
		||||
        labels_predict.create(1, test_size.height, CV_32SC1);
 | 
			
		||||
        const int max_number_test = test_size.height / K - 1;
 | 
			
		||||
        row_idx = 0;
 | 
			
		||||
        for(int i = 0; i < K; i++ )
 | 
			
		||||
        {
 | 
			
		||||
            Mat center_row_header = samples.row(row_idx);
 | 
			
		||||
            center_row_header.setTo(0);
 | 
			
		||||
            int nchannel = center_row_header.channels();
 | 
			
		||||
            for(int j = 0; j < nchannel; j++)
 | 
			
		||||
            {
 | 
			
		||||
                center_row_header.at<float>(0, i * nchannel + j) = 500.0;
 | 
			
		||||
            }
 | 
			
		||||
            labels_predict.at<int>(0, row_idx) = i;
 | 
			
		||||
            for(int j = 0; (j < max_number_test) ||
 | 
			
		||||
                    (i == K - 1 && j < max_number_test + test_size.height % K); j ++)
 | 
			
		||||
            {
 | 
			
		||||
                Mat cur_row_header = samples.row(row_idx + 1 + j);
 | 
			
		||||
                center_row_header.copyTo(cur_row_header);
 | 
			
		||||
                Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
 | 
			
		||||
                cur_row_header += tmpmat;
 | 
			
		||||
                labels_predict.at<int>(0, row_idx + 1 + j) = i;
 | 
			
		||||
            }
 | 
			
		||||
            row_idx += 1 + max_number_test;
 | 
			
		||||
        }
 | 
			
		||||
        labels_predict.convertTo(labels_predict, CV_32FC1);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
TEST_P(SVM_OCL, Accuracy)
 | 
			
		||||
{
 | 
			
		||||
    CvSVMParams params;
 | 
			
		||||
    params.degree = 0.4;
 | 
			
		||||
    params.gamma = 1;
 | 
			
		||||
    params.coef0 = 1;
 | 
			
		||||
    params.C = 1;
 | 
			
		||||
    params.nu = 0.5;
 | 
			
		||||
    params.p = 1;
 | 
			
		||||
    params.svm_type = svm_type;
 | 
			
		||||
    params.kernel_type = kernel_type;
 | 
			
		||||
 | 
			
		||||
    params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001);
 | 
			
		||||
 | 
			
		||||
    CvSVM SVM;
 | 
			
		||||
    SVM.train(src, labels, Mat(), Mat(), params);
 | 
			
		||||
 | 
			
		||||
    cv::ocl::CvSVM_OCL SVM_OCL;
 | 
			
		||||
    SVM_OCL.train(src, labels, Mat(), Mat(), params);
 | 
			
		||||
 | 
			
		||||
    int c = SVM.get_support_vector_count();
 | 
			
		||||
    int c1 = SVM_OCL.get_support_vector_count();
 | 
			
		||||
 | 
			
		||||
    Mat sv(c, MHEIGHT, CV_32FC1);
 | 
			
		||||
    Mat sv_ocl(c1, MHEIGHT, CV_32FC1);
 | 
			
		||||
    for(int i = 0; i < c; i++)
 | 
			
		||||
    {
 | 
			
		||||
        const float* v = SVM.get_support_vector(i);
 | 
			
		||||
 | 
			
		||||
        for(int j = 0; j < MHEIGHT; j++)
 | 
			
		||||
        {
 | 
			
		||||
            sv.at<float>(i, j) = v[j];
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    for(int i = 0; i < c1; i++)
 | 
			
		||||
    {
 | 
			
		||||
        const float* v_ocl = SVM_OCL.get_support_vector(i);
 | 
			
		||||
 | 
			
		||||
        for(int j = 0; j < MHEIGHT; j++)
 | 
			
		||||
        {
 | 
			
		||||
            sv_ocl.at<float>(i, j) = v_ocl[j];
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    cv::BFMatcher matcher(cv::NORM_L2);
 | 
			
		||||
    std::vector<cv::DMatch> matches;
 | 
			
		||||
    matcher.match(sv, sv_ocl, matches);
 | 
			
		||||
    int count = 0;
 | 
			
		||||
 | 
			
		||||
    for(std::vector<cv::DMatch>::iterator itr = matches.begin(); itr != matches.end(); itr++)
 | 
			
		||||
    {
 | 
			
		||||
        if((*itr).distance < 0.1)
 | 
			
		||||
        {
 | 
			
		||||
            count ++;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    if(c != 0)
 | 
			
		||||
    {
 | 
			
		||||
        float matchedRatio = (float)count / c;
 | 
			
		||||
        EXPECT_GT(matchedRatio, 0.95);
 | 
			
		||||
    }
 | 
			
		||||
    if(c != 0)
 | 
			
		||||
    {
 | 
			
		||||
        CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1);
 | 
			
		||||
        CvMat test_samples = samples;
 | 
			
		||||
 | 
			
		||||
        CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1);
 | 
			
		||||
 | 
			
		||||
        SVM.predict(&test_samples, result);
 | 
			
		||||
 | 
			
		||||
        SVM_OCL.predict(&test_samples, result_ocl);
 | 
			
		||||
 | 
			
		||||
        int true_resp = 0, true_resp_ocl = 0;
 | 
			
		||||
        for (int i = 0; i < samples.rows; i++)
 | 
			
		||||
        {
 | 
			
		||||
            if (result->data.fl[i] == labels_predict.at<float>(0, i))
 | 
			
		||||
            {
 | 
			
		||||
                true_resp++;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        float matchedRatio = (float)true_resp / samples.rows;
 | 
			
		||||
 | 
			
		||||
        for (int i = 0; i < samples.rows; i++)
 | 
			
		||||
        {
 | 
			
		||||
            if (result_ocl->data.fl[i] == labels_predict.at<float>(0, i))
 | 
			
		||||
            {
 | 
			
		||||
                true_resp_ocl++;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        float matchedRatio_ocl = (float)true_resp_ocl / samples.rows;
 | 
			
		||||
 | 
			
		||||
        if(matchedRatio != 0 && true_resp_ocl < true_resp)
 | 
			
		||||
        {
 | 
			
		||||
            EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
 | 
			
		||||
                            Values(CvSVM::LINEAR, CvSVM::POLY, CvSVM::RBF, CvSVM::SIGMOID),
 | 
			
		||||
                            Values(CvSVM::C_SVC, CvSVM::NU_SVC, CvSVM::ONE_CLASS, CvSVM::EPS_SVR, CvSVM::NU_SVR),
 | 
			
		||||
                            Values(2, 3, 4)
 | 
			
		||||
                        ));
 | 
			
		||||
#endif // HAVE_OPENCL
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user