Fix new blank line at EOF.
This commit is contained in:
parent
422396ef6a
commit
315c054379
@ -121,4 +121,180 @@ TEST_P(KNN, Accuracy)
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
|
||||
Values(4, 3), Values(false, true)));
|
||||
#endif // HAVE_OPENCL
|
||||
|
||||
////////////////////////////////SVM/////////////////////////////////////////////////
|
||||
PARAM_TEST_CASE(SVM_OCL, int, int, int)
|
||||
{
|
||||
cv::Size size;
|
||||
int kernel_type;
|
||||
int svm_type;
|
||||
Mat src, labels, samples, labels_predict;
|
||||
int K;
|
||||
cv::RNG rng ;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
|
||||
kernel_type = GET_PARAM(0);
|
||||
svm_type = GET_PARAM(1);
|
||||
K = GET_PARAM(2);
|
||||
rng = TS::ptr()->get_rng();
|
||||
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
|
||||
src.create(size, CV_32FC1);
|
||||
labels.create(1, size.height, CV_32SC1);
|
||||
int row_idx = 0;
|
||||
const int max_number = size.height / K - 1;
|
||||
CV_Assert(K <= size.height);
|
||||
for(int i = 0; i < K; i++ )
|
||||
{
|
||||
Mat center_row_header = src.row(row_idx);
|
||||
center_row_header.setTo(0);
|
||||
int nchannel = center_row_header.channels();
|
||||
for(int j = 0; j < nchannel; j++)
|
||||
{
|
||||
center_row_header.at<float>(0, i * nchannel + j) = 500.0;
|
||||
}
|
||||
labels.at<int>(0, row_idx) = i;
|
||||
for(int j = 0; (j < max_number) ||
|
||||
(i == K - 1 && j < max_number + size.height % K); j ++)
|
||||
{
|
||||
Mat cur_row_header = src.row(row_idx + 1 + j);
|
||||
center_row_header.copyTo(cur_row_header);
|
||||
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
|
||||
cur_row_header += tmpmat;
|
||||
labels.at<int>(0, row_idx + 1 + j) = i;
|
||||
}
|
||||
row_idx += 1 + max_number;
|
||||
}
|
||||
labels.convertTo(labels, CV_32FC1);
|
||||
cv::Size test_size = cv::Size(MWIDTH, 100);
|
||||
samples.create(test_size, CV_32FC1);
|
||||
labels_predict.create(1, test_size.height, CV_32SC1);
|
||||
const int max_number_test = test_size.height / K - 1;
|
||||
row_idx = 0;
|
||||
for(int i = 0; i < K; i++ )
|
||||
{
|
||||
Mat center_row_header = samples.row(row_idx);
|
||||
center_row_header.setTo(0);
|
||||
int nchannel = center_row_header.channels();
|
||||
for(int j = 0; j < nchannel; j++)
|
||||
{
|
||||
center_row_header.at<float>(0, i * nchannel + j) = 500.0;
|
||||
}
|
||||
labels_predict.at<int>(0, row_idx) = i;
|
||||
for(int j = 0; (j < max_number_test) ||
|
||||
(i == K - 1 && j < max_number_test + test_size.height % K); j ++)
|
||||
{
|
||||
Mat cur_row_header = samples.row(row_idx + 1 + j);
|
||||
center_row_header.copyTo(cur_row_header);
|
||||
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
|
||||
cur_row_header += tmpmat;
|
||||
labels_predict.at<int>(0, row_idx + 1 + j) = i;
|
||||
}
|
||||
row_idx += 1 + max_number_test;
|
||||
}
|
||||
labels_predict.convertTo(labels_predict, CV_32FC1);
|
||||
}
|
||||
};
|
||||
TEST_P(SVM_OCL, Accuracy)
|
||||
{
|
||||
CvSVMParams params;
|
||||
params.degree = 0.4;
|
||||
params.gamma = 1;
|
||||
params.coef0 = 1;
|
||||
params.C = 1;
|
||||
params.nu = 0.5;
|
||||
params.p = 1;
|
||||
params.svm_type = svm_type;
|
||||
params.kernel_type = kernel_type;
|
||||
|
||||
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001);
|
||||
|
||||
CvSVM SVM;
|
||||
SVM.train(src, labels, Mat(), Mat(), params);
|
||||
|
||||
cv::ocl::CvSVM_OCL SVM_OCL;
|
||||
SVM_OCL.train(src, labels, Mat(), Mat(), params);
|
||||
|
||||
int c = SVM.get_support_vector_count();
|
||||
int c1 = SVM_OCL.get_support_vector_count();
|
||||
|
||||
Mat sv(c, MHEIGHT, CV_32FC1);
|
||||
Mat sv_ocl(c1, MHEIGHT, CV_32FC1);
|
||||
for(int i = 0; i < c; i++)
|
||||
{
|
||||
const float* v = SVM.get_support_vector(i);
|
||||
|
||||
for(int j = 0; j < MHEIGHT; j++)
|
||||
{
|
||||
sv.at<float>(i, j) = v[j];
|
||||
}
|
||||
}
|
||||
for(int i = 0; i < c1; i++)
|
||||
{
|
||||
const float* v_ocl = SVM_OCL.get_support_vector(i);
|
||||
|
||||
for(int j = 0; j < MHEIGHT; j++)
|
||||
{
|
||||
sv_ocl.at<float>(i, j) = v_ocl[j];
|
||||
}
|
||||
}
|
||||
cv::BFMatcher matcher(cv::NORM_L2);
|
||||
std::vector<cv::DMatch> matches;
|
||||
matcher.match(sv, sv_ocl, matches);
|
||||
int count = 0;
|
||||
|
||||
for(std::vector<cv::DMatch>::iterator itr = matches.begin(); itr != matches.end(); itr++)
|
||||
{
|
||||
if((*itr).distance < 0.1)
|
||||
{
|
||||
count ++;
|
||||
}
|
||||
}
|
||||
if(c != 0)
|
||||
{
|
||||
float matchedRatio = (float)count / c;
|
||||
EXPECT_GT(matchedRatio, 0.95);
|
||||
}
|
||||
if(c != 0)
|
||||
{
|
||||
CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1);
|
||||
CvMat test_samples = samples;
|
||||
|
||||
CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1);
|
||||
|
||||
SVM.predict(&test_samples, result);
|
||||
|
||||
SVM_OCL.predict(&test_samples, result_ocl);
|
||||
|
||||
int true_resp = 0, true_resp_ocl = 0;
|
||||
for (int i = 0; i < samples.rows; i++)
|
||||
{
|
||||
if (result->data.fl[i] == labels_predict.at<float>(0, i))
|
||||
{
|
||||
true_resp++;
|
||||
}
|
||||
}
|
||||
float matchedRatio = (float)true_resp / samples.rows;
|
||||
|
||||
for (int i = 0; i < samples.rows; i++)
|
||||
{
|
||||
if (result_ocl->data.fl[i] == labels_predict.at<float>(0, i))
|
||||
{
|
||||
true_resp_ocl++;
|
||||
}
|
||||
}
|
||||
float matchedRatio_ocl = (float)true_resp_ocl / samples.rows;
|
||||
|
||||
if(matchedRatio != 0 && true_resp_ocl < true_resp)
|
||||
{
|
||||
EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03);
|
||||
}
|
||||
}
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
|
||||
Values(CvSVM::LINEAR, CvSVM::POLY, CvSVM::RBF, CvSVM::SIGMOID),
|
||||
Values(CvSVM::C_SVC, CvSVM::NU_SVC, CvSVM::ONE_CLASS, CvSVM::EPS_SVR, CvSVM::NU_SVR),
|
||||
Values(2, 3, 4)
|
||||
));
|
||||
#endif // HAVE_OPENCL
|
||||
|
Loading…
x
Reference in New Issue
Block a user