removed rarely used fixed_size parameter from AutoBuffer type, added optional AutoBuffer* but to cvarrToMat in order to speedup CvSeq->Mat conversion; finished conversion of convex hull and related functions to C++

This commit is contained in:
Vadim Pisarevsky 2013-01-20 00:58:51 +04:00
parent 457fa52111
commit c197a46e7e
9 changed files with 206 additions and 654 deletions

View File

@ -109,6 +109,8 @@ template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
template<typename _Tp> class CV_EXPORTS AutoBuffer;
CV_EXPORTS string format( const char* fmt, ... );
CV_EXPORTS string tempfile( const char* suffix CV_DEFAULT(0));
@ -2061,7 +2063,8 @@ CV_EXPORTS void swap(Mat& a, Mat& b);
//! converts array (CvMat or IplImage) to cv::Mat
CV_EXPORTS Mat cvarrToMat(const CvArr* arr, bool copyData=false,
bool allowND=true, int coiMode=0);
bool allowND=true, int coiMode=0,
AutoBuffer<double>* buf=0);
//! extracts Channel of Interest from CvMat or IplImage and makes cv::Mat out of it.
CV_EXPORTS void extractImageCOI(const CvArr* arr, OutputArray coiimg, int coi=-1);
//! inserts single-channel cv::Mat into a multi-channel CvMat or IplImage
@ -3081,7 +3084,7 @@ public:
\code
void my_func(const cv::Mat& m)
{
cv::AutoBuffer<float, 1000> buf; // create automatic buffer containing 1000 floats
cv::AutoBuffer<float> buf; // create automatic buffer containing 1000 floats
buf.allocate(m.rows); // if m.rows <= 1000, the pre-allocated buffer is used,
// otherwise the buffer of "m.rows" floats will be allocated
@ -3090,16 +3093,22 @@ public:
}
\endcode
*/
template<typename _Tp, size_t fixed_size=4096/sizeof(_Tp)+8> class CV_EXPORTS AutoBuffer
template<typename _Tp> class CV_EXPORTS AutoBuffer
{
public:
typedef _Tp value_type;
enum { buffer_padding = (int)((16 + sizeof(_Tp) - 1)/sizeof(_Tp)) };
enum { fixed_size = 1024/sizeof(_Tp)+8, buffer_padding = (int)((16 + sizeof(_Tp) - 1)/sizeof(_Tp)) };
//! the default contructor
AutoBuffer();
//! constructor taking the real buffer size
AutoBuffer(size_t _size);
//! the copy constructor
AutoBuffer(const AutoBuffer<_Tp>& buf);
//! the assignment operator
AutoBuffer<_Tp>& operator = (const AutoBuffer<_Tp>& buf);
//! destructor. calls deallocate()
~AutoBuffer();
@ -4318,7 +4327,6 @@ public:
int index;
};
class CV_EXPORTS Algorithm;
class CV_EXPORTS AlgorithmInfo;
struct CV_EXPORTS AlgorithmInfoData;

View File

@ -2534,23 +2534,46 @@ inline Point LineIterator::pos() const
/////////////////////////////// AutoBuffer ////////////////////////////////////////
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::AutoBuffer()
template<typename _Tp> inline AutoBuffer<_Tp>::AutoBuffer()
{
ptr = buf;
sz = fixed_size;
}
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size)
template<typename _Tp> inline AutoBuffer<_Tp>::AutoBuffer(size_t _size)
{
ptr = buf;
sz = fixed_size;
allocate(_size);
}
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::~AutoBuffer()
template<typename _Tp>
inline AutoBuffer<_Tp>::AutoBuffer(const AutoBuffer<_Tp>& abuf )
{
ptr = buf;
sz = fixed_size;
allocate(abuf.size);
for( size_t i = 0; i < sz; i++ )
ptr[i] = abuf.ptr[i];
}
template<typename _Tp>
inline AutoBuffer<_Tp>& AutoBuffer<_Tp>::operator = (const AutoBuffer<_Tp>& abuf )
{
if( this != &abuf )
{
deallocate();
allocate(abuf.size);
for( size_t i = 0; i < sz; i++ )
ptr[i] = abuf.ptr[i];
}
return *this;
}
template<typename _Tp> inline AutoBuffer<_Tp>::~AutoBuffer()
{ deallocate(); }
template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size>::allocate(size_t _size)
template<typename _Tp> inline void AutoBuffer<_Tp>::allocate(size_t _size)
{
if(_size <= sz)
{
@ -2565,17 +2588,17 @@ template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size
}
}
template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size>::deallocate()
template<typename _Tp> inline void AutoBuffer<_Tp>::deallocate()
{
if( ptr != buf )
{
delete[] ptr;
ptr = buf;
sz = 0;
sz = fixed_size;
}
}
template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size>::resize(size_t _size)
template<typename _Tp> inline void AutoBuffer<_Tp>::resize(size_t _size)
{
if(_size <= sz)
{
@ -2598,13 +2621,13 @@ template<typename _Tp, size_t fixed_size> inline void AutoBuffer<_Tp, fixed_size
delete[] prevptr;
}
template<typename _Tp, size_t fixed_size> inline size_t AutoBuffer<_Tp, fixed_size>::size() const
template<typename _Tp> inline size_t AutoBuffer<_Tp>::size() const
{ return sz; }
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::operator _Tp* ()
template<typename _Tp> inline AutoBuffer<_Tp>::operator _Tp* ()
{ return ptr; }
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const
template<typename _Tp> inline AutoBuffer<_Tp>::operator const _Tp* () const
{ return ptr; }

View File

@ -1314,7 +1314,7 @@ cvMixChannels( const CvArr** src, int src_count,
CvArr** dst, int dst_count,
const int* from_to, int pair_count )
{
cv::AutoBuffer<cv::Mat, 32> buf(src_count + dst_count);
cv::AutoBuffer<cv::Mat> buf(src_count + dst_count);
int i;
for( i = 0; i < src_count; i++ )

View File

@ -669,7 +669,7 @@ void Mat::push_back(const Mat& elems)
Mat cvarrToMat(const CvArr* arr, bool copyData,
bool /*allowND*/, int coiMode)
bool /*allowND*/, int coiMode, AutoBuffer<double>* abuf )
{
if( !arr )
return Mat();
@ -687,10 +687,21 @@ Mat cvarrToMat(const CvArr* arr, bool copyData,
if( CV_IS_SEQ(arr) )
{
CvSeq* seq = (CvSeq*)arr;
CV_Assert(seq->total > 0 && CV_ELEM_SIZE(seq->flags) == seq->elem_size);
int total = seq->total, type = CV_MAT_TYPE(seq->flags), esz = seq->elem_size;
if( total == 0 )
return Mat();
CV_Assert(total > 0 && CV_ELEM_SIZE(seq->flags) == esz);
if(!copyData && seq->first->next == seq->first)
return Mat(seq->total, 1, CV_MAT_TYPE(seq->flags), seq->first->data);
Mat buf(seq->total, 1, CV_MAT_TYPE(seq->flags));
return Mat(total, 1, type, seq->first->data);
if( abuf )
{
abuf->allocate(((size_t)total*esz + sizeof(double)-1)/sizeof(double));
double* bufdata = *abuf;
cvCvtSeqToArray(seq, bufdata, CV_WHOLE_SEQ);
return Mat(total, 1, type, bufdata);
}
Mat buf(total, 1, type);
cvCvtSeqToArray(seq, buf.data, CV_WHOLE_SEQ);
return buf;
}

View File

@ -92,7 +92,7 @@ namespace
}
void download(double** hptrs)
{
AutoBuffer<double, 2 * sizeof(double)> hbuf(count);
AutoBuffer<double> hbuf(count);
cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) );
for (int i = 0; i < count; ++i)
*hptrs[i] = hbuf[i];

View File

@ -202,9 +202,9 @@ bool PxMDecoder::readData( Mat& img )
if( m_offset < 0 || !m_strm.isOpened())
return false;
AutoBuffer<uchar,1024> _src(src_pitch + 32);
AutoBuffer<uchar> _src(src_pitch + 32);
uchar* src = _src;
AutoBuffer<uchar,1024> _gray_palette;
AutoBuffer<uchar> _gray_palette;
uchar* gray_palette = _gray_palette;
// create LUT for converting colors

View File

@ -469,7 +469,7 @@ bool TiffEncoder::writeLibTiff( const Mat& img, const vector<int>& /*params*/)
// row buffer, because TIFFWriteScanline modifies the original data!
size_t scanlineSize = TIFFScanlineSize(pTiffHandle);
AutoBuffer<uchar,1024> _buffer(scanlineSize+32);
AutoBuffer<uchar> _buffer(scanlineSize+32);
uchar* buffer = _buffer;
if (!buffer)
{
@ -577,9 +577,9 @@ bool TiffEncoder::write( const Mat& img, const vector<int>& /*params*/)
#endif*/
int directoryOffset = 0;
AutoBuffer<int,1024> stripOffsets(stripCount);
AutoBuffer<short,1024> stripCounts(stripCount);
AutoBuffer<uchar,1024> _buffer(fileStep+32);
AutoBuffer<int> stripOffsets(stripCount);
AutoBuffer<short> stripCounts(stripCount);
AutoBuffer<uchar> _buffer(fileStep+32);
uchar* buffer = _buffer;
int stripOffsetsOffset = 0;
int stripCountsOffset = 0;

View File

@ -43,459 +43,6 @@
#include <iostream>
#if 0
static int
icvSklansky_32s( CvPoint** array, int start, int end, int* stack, int nsign, int sign2 )
{
int incr = end > start ? 1 : -1;
/* prepare first triangle */
int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
int stacksize = 3;
if( start == end ||
(array[start]->x == array[end]->x &&
array[start]->y == array[end]->y) )
{
stack[0] = start;
return 1;
}
stack[0] = pprev;
stack[1] = pcur;
stack[2] = pnext;
end += incr; /* make end = afterend */
while( pnext != end )
{
/* check the angle p1,p2,p3 */
int cury = array[pcur]->y;
int nexty = array[pnext]->y;
int by = nexty - cury;
if( CV_SIGN(by) != nsign )
{
int ax = array[pcur]->x - array[pprev]->x;
int bx = array[pnext]->x - array[pcur]->x;
int ay = cury - array[pprev]->y;
int convexity = ay*bx - ax*by;/* if >0 then convex angle */
if( CV_SIGN(convexity) == sign2 && (ax != 0 || ay != 0) )
{
pprev = pcur;
pcur = pnext;
pnext += incr;
stack[stacksize] = pnext;
stacksize++;
}
else
{
if( pprev == start )
{
pcur = pnext;
stack[1] = pcur;
pnext += incr;
stack[2] = pnext;
}
else
{
stack[stacksize-2] = pnext;
pcur = pprev;
pprev = stack[stacksize-4];
stacksize--;
}
}
}
else
{
pnext += incr;
stack[stacksize-1] = pnext;
}
}
return --stacksize;
}
static int
icvSklansky_32f( CvPoint2D32f** array, int start, int end, int* stack, int nsign, int sign2 )
{
int incr = end > start ? 1 : -1;
/* prepare first triangle */
int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
int stacksize = 3;
if( start == end ||
(array[start]->x == array[end]->x &&
array[start]->y == array[end]->y) )
{
stack[0] = start;
return 1;
}
stack[0] = pprev;
stack[1] = pcur;
stack[2] = pnext;
end += incr; /* make end = afterend */
while( pnext != end )
{
/* check the angle p1,p2,p3 */
float cury = array[pcur]->y;
float nexty = array[pnext]->y;
float by = nexty - cury;
if( CV_SIGN( by ) != nsign )
{
float ax = array[pcur]->x - array[pprev]->x;
float bx = array[pnext]->x - array[pcur]->x;
float ay = cury - array[pprev]->y;
float convexity = ay*bx - ax*by;/* if >0 then convex angle */
if( CV_SIGN( convexity ) == sign2 && (ax != 0 || ay != 0) )
{
pprev = pcur;
pcur = pnext;
pnext += incr;
stack[stacksize] = pnext;
stacksize++;
}
else
{
if( pprev == start )
{
pcur = pnext;
stack[1] = pcur;
pnext += incr;
stack[2] = pnext;
}
else
{
stack[stacksize-2] = pnext;
pcur = pprev;
pprev = stack[stacksize-4];
stacksize--;
}
}
}
else
{
pnext += incr;
stack[stacksize-1] = pnext;
}
}
return --stacksize;
}
typedef int (*sklansky_func)( CvPoint** points, int start, int end,
int* stack, int sign, int sign2 );
#define cmp_pts( pt1, pt2 ) \
((pt1)->x < (pt2)->x || ((pt1)->x <= (pt2)->x && (pt1)->y < (pt2)->y))
static CV_IMPLEMENT_QSORT( icvSortPointsByPointers_32s, CvPoint*, cmp_pts )
static CV_IMPLEMENT_QSORT( icvSortPointsByPointers_32f, CvPoint2D32f*, cmp_pts )
static void
icvCalcAndWritePtIndices( CvPoint** pointer, int* stack, int start, int end,
CvSeq* ptseq, CvSeqWriter* writer )
{
int i, incr = start < end ? 1 : -1;
int idx, first_idx = ptseq->first->start_index;
for( i = start; i != end; i += incr )
{
CvPoint* ptr = (CvPoint*)pointer[stack[i]];
CvSeqBlock* block = ptseq->first;
while( (unsigned)(idx = (int)(ptr - (CvPoint*)block->data)) >= (unsigned)block->count )
{
block = block->next;
if( block == ptseq->first )
CV_Error( CV_StsError, "Internal error" );
}
idx += block->start_index - first_idx;
CV_WRITE_SEQ_ELEM( idx, *writer );
}
}
CV_IMPL CvSeq*
cvConvexHull2( const CvArr* array, void* hull_storage,
int orientation, int return_points )
{
union { CvContour* c; CvSeq* s; } hull;
cv::AutoBuffer<CvPoint*> _pointer;
CvPoint** pointer;
CvPoint2D32f** pointerf = 0;
cv::AutoBuffer<int> _stack;
int* stack;
hull.s = 0;
CvMat* mat = 0;
CvSeqReader reader;
CvSeqWriter writer;
CvContour contour_header;
union { CvContour c; CvSeq s; } hull_header;
CvSeqBlock block, hullblock;
CvSeq* ptseq = 0;
CvSeq* hullseq = 0;
int is_float;
int* t_stack;
int t_count;
int i, miny_ind = 0, maxy_ind = 0, total;
int hulltype;
int stop_idx;
sklansky_func sklansky;
if( CV_IS_SEQ( array ))
{
ptseq = (CvSeq*)array;
if( !CV_IS_SEQ_POINT_SET( ptseq ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
if( hull_storage == 0 )
hull_storage = ptseq->storage;
}
else
{
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
}
if( CV_IS_STORAGE( hull_storage ))
{
if( return_points )
{
hullseq = cvCreateSeq(
CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage );
}
else
{
hullseq = cvCreateSeq(
CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage );
}
}
else
{
if( !CV_IS_MAT( hull_storage ))
CV_Error(CV_StsBadArg, "Destination must be valid memory storage or matrix");
mat = (CvMat*)hull_storage;
if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
CV_Error( CV_StsBadArg,
"The hull matrix should be continuous and have a single row or a single column" );
if( mat->cols + mat->rows - 1 < ptseq->total )
CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
CV_MAT_TYPE(mat->type) != CV_32SC1 )
CV_Error( CV_StsUnsupportedFormat,
"The hull matrix must have the same type as input or 32sC1 (integers)" );
hullseq = cvMakeSeqHeaderForArray(
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
sizeof(contour_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
mat->cols + mat->rows - 1, &hull_header.s, &hullblock );
cvClearSeq( hullseq );
}
total = ptseq->total;
if( total == 0 )
{
if( mat )
CV_Error( CV_StsBadSize,
"Point sequence can not be empty if the output is matrix" );
return hull.s;
}
cvStartAppendToSeq( hullseq, &writer );
is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;
hulltype = CV_SEQ_ELTYPE(hullseq);
sklansky = !is_float ? (sklansky_func)icvSklansky_32s :
(sklansky_func)icvSklansky_32f;
_pointer.allocate( ptseq->total );
_stack.allocate( ptseq->total + 2);
pointer = _pointer;
pointerf = (CvPoint2D32f**)pointer;
stack = _stack;
cvStartReadSeq( ptseq, &reader );
for( i = 0; i < total; i++ )
{
pointer[i] = (CvPoint*)reader.ptr;
CV_NEXT_SEQ_ELEM( ptseq->elem_size, reader );
}
// sort the point set by x-coordinate, find min and max y
if( !is_float )
{
icvSortPointsByPointers_32s( pointer, total, 0 );
for( i = 1; i < total; i++ )
{
int y = pointer[i]->y;
if( pointer[miny_ind]->y > y )
miny_ind = i;
if( pointer[maxy_ind]->y < y )
maxy_ind = i;
}
}
else
{
icvSortPointsByPointers_32f( pointerf, total, 0 );
for( i = 1; i < total; i++ )
{
float y = pointerf[i]->y;
if( pointerf[miny_ind]->y > y )
miny_ind = i;
if( pointerf[maxy_ind]->y < y )
maxy_ind = i;
}
}
if( pointer[0]->x == pointer[total-1]->x &&
pointer[0]->y == pointer[total-1]->y )
{
if( hulltype == CV_SEQ_ELTYPE_PPOINT )
{
CV_WRITE_SEQ_ELEM( pointer[0], writer );
}
else if( hulltype == CV_SEQ_ELTYPE_INDEX )
{
int index = 0;
CV_WRITE_SEQ_ELEM( index, writer );
}
else
{
CvPoint pt = pointer[0][0];
CV_WRITE_SEQ_ELEM( pt, writer );
}
goto finish_hull;
}
/*upper half */
{
int *tl_stack = stack;
int tl_count = sklansky( pointer, 0, maxy_ind, tl_stack, -1, 1 );
int *tr_stack = tl_stack + tl_count;
int tr_count = sklansky( pointer, ptseq->total - 1, maxy_ind, tr_stack, -1, -1 );
/* gather upper part of convex hull to output */
if( orientation == CV_COUNTER_CLOCKWISE )
{
CV_SWAP( tl_stack, tr_stack, t_stack );
CV_SWAP( tl_count, tr_count, t_count );
}
if( hulltype == CV_SEQ_ELTYPE_PPOINT )
{
for( i = 0; i < tl_count - 1; i++ )
CV_WRITE_SEQ_ELEM( pointer[tl_stack[i]], writer );
for( i = tr_count - 1; i > 0; i-- )
CV_WRITE_SEQ_ELEM( pointer[tr_stack[i]], writer );
}
else if( hulltype == CV_SEQ_ELTYPE_INDEX )
{
icvCalcAndWritePtIndices( pointer, tl_stack, 0, tl_count-1, ptseq, &writer );
icvCalcAndWritePtIndices( pointer, tr_stack, tr_count-1, 0, ptseq, &writer );
}
else
{
for( i = 0; i < tl_count - 1; i++ )
CV_WRITE_SEQ_ELEM( pointer[tl_stack[i]][0], writer );
for( i = tr_count - 1; i > 0; i-- )
CV_WRITE_SEQ_ELEM( pointer[tr_stack[i]][0], writer );
}
stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
}
/* lower half */
{
int *bl_stack = stack;
int bl_count = sklansky( pointer, 0, miny_ind, bl_stack, 1, -1 );
int *br_stack = stack + bl_count;
int br_count = sklansky( pointer, ptseq->total - 1, miny_ind, br_stack, 1, 1 );
if( orientation != CV_COUNTER_CLOCKWISE )
{
CV_SWAP( bl_stack, br_stack, t_stack );
CV_SWAP( bl_count, br_count, t_count );
}
if( stop_idx >= 0 )
{
int check_idx = bl_count > 2 ? bl_stack[1] :
bl_count + br_count > 2 ? br_stack[2-bl_count] : -1;
if( check_idx == stop_idx || (check_idx >= 0 &&
pointer[check_idx]->x == pointer[stop_idx]->x &&
pointer[check_idx]->y == pointer[stop_idx]->y) )
{
/* if all the points lie on the same line, then
the bottom part of the convex hull is the mirrored top part
(except the exteme points).*/
bl_count = MIN( bl_count, 2 );
br_count = MIN( br_count, 2 );
}
}
if( hulltype == CV_SEQ_ELTYPE_PPOINT )
{
for( i = 0; i < bl_count - 1; i++ )
CV_WRITE_SEQ_ELEM( pointer[bl_stack[i]], writer );
for( i = br_count - 1; i > 0; i-- )
CV_WRITE_SEQ_ELEM( pointer[br_stack[i]], writer );
}
else if( hulltype == CV_SEQ_ELTYPE_INDEX )
{
icvCalcAndWritePtIndices( pointer, bl_stack, 0, bl_count-1, ptseq, &writer );
icvCalcAndWritePtIndices( pointer, br_stack, br_count-1, 0, ptseq, &writer );
}
else
{
for( i = 0; i < bl_count - 1; i++ )
CV_WRITE_SEQ_ELEM( pointer[bl_stack[i]][0], writer );
for( i = br_count - 1; i > 0; i-- )
CV_WRITE_SEQ_ELEM( pointer[br_stack[i]][0], writer );
}
}
finish_hull:
cvEndWriteSeq( &writer );
if( mat )
{
if( mat->rows > mat->cols )
mat->rows = hullseq->total;
else
mat->cols = hullseq->total;
}
else
{
hull.s = hullseq;
hull.c->rect = cvBoundingRect( ptseq,
ptseq->header_size < (int)sizeof(CvContour) ||
&ptseq->flags == &contour_header.flags );
/*if( ptseq != (CvSeq*)&contour_header )
hullseq->v_prev = ptseq;*/
}
return hull.s;
}
/* contour must be a simple polygon */
/* it must have more than 3 points */
CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
@ -812,29 +359,7 @@ cvCheckContourConvexity( const CvArr* array )
return flag;
}
void cv::convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
{
Mat points = _points.getMat();
int nelems = points.checkVector(2), depth = points.depth();
CV_Assert(nelems >= 0 && (depth == CV_32F || depth == CV_32S));
if( nelems == 0 )
{
_hull.release();
return;
}
returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
Mat hull(nelems, 1, returnPoints ? CV_MAKETYPE(depth, 2) : CV_32S);
CvMat _cpoints = points, _chull = hull;
cvConvexHull2(&_cpoints, &_chull, clockwise ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, returnPoints);
_hull.create(_chull.rows, 1, hull.type(), -1, true);
Mat dhull = _hull.getMat(), shull(dhull.size(), dhull.type(), hull.data);
shull.copyTo(dhull);
std::cout << "convex hull: " << dhull;
}
#else
#endif
namespace cv
{
@ -920,57 +445,6 @@ struct CHullCmpPoints
};
void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
{
Mat points = _points.getMat();
int ptnum = points.checkVector(2, CV_32S);
CV_Assert( ptnum > 3 );
Mat hull = _hull.getMat();
CV_Assert( hull.checkVector(1, CV_32S) > 2 );
Ptr<CvMemStorage> storage = cvCreateMemStorage();
CvMat c_points = points, c_hull = hull;
CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage);
int i, n = seq->total;
if( n == 0 )
{
_defects.release();
return;
}
_defects.create(n, 1, CV_32SC4);
Mat defects = _defects.getMat();
SeqIterator<CvConvexityDefect> it = Seq<CvConvexityDefect>(seq).begin();
CvPoint* ptorg = (CvPoint*)points.data;
for( i = 0; i < n; i++, ++it )
{
CvConvexityDefect& d = *it;
int idx0 = (int)(d.start - ptorg);
int idx1 = (int)(d.end - ptorg);
int idx2 = (int)(d.depth_point - ptorg);
CV_Assert( 0 <= idx0 && idx0 < ptnum );
CV_Assert( 0 <= idx1 && idx1 < ptnum );
CV_Assert( 0 <= idx2 && idx2 < ptnum );
CV_Assert( d.depth >= 0 );
int idepth = cvRound(d.depth*256);
defects.at<Vec4i>(i) = Vec4i(idx0, idx1, idx2, idepth);
}
}
bool isContourConvex( InputArray _contour )
{
Mat contour = _contour.getMat();
CV_Assert(contour.checkVector(2) >= 0 &&
(contour.depth() == CV_32F || contour.depth() == CV_32S));
CvMat c = Mat(contour);
return cvCheckContourConvexity(&c) > 0;
}
void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
{
Mat points = _points.getMat();
@ -1106,6 +580,134 @@ void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool ret
}
}
void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
{
Mat points = _points.getMat();
int i, j = 0, index, npoints = points.checkVector(2, CV_32S);
CV_Assert( npoints >= 0 );
if( npoints <= 3 )
{
_defects.release();
return;
}
Mat hull = _hull.getMat();
int hpoints = hull.checkVector(1, CV_32S);
CV_Assert( hpoints > 2 );
const Point* ptr = (const Point*)points.data;
const int* hptr = hull.ptr<int>();
vector<Vec4i> defects;
// 1. recognize co-orientation of the contour and its hull
bool rev_orientation = ((hptr[1] > hptr[0]) + (hptr[2] > hptr[1]) + (hptr[0] > hptr[2])) != 2;
// 2. cycle through points and hull, compute defects
int hcurr = hptr[rev_orientation ? 0 : hpoints-1];
CV_Assert( 0 <= hcurr && hcurr < npoints );
for( i = 0; i < hpoints; i++ )
{
int hnext = hptr[rev_orientation ? hpoints - i - 1 : i];
CV_Assert( 0 <= hnext && hnext < npoints );
Point pt0 = ptr[hcurr], pt1 = ptr[hnext];
double dx0 = pt1.x - pt0.x;
double dy0 = pt1.y - pt0.y;
double scale = dx0 == 0 && dy0 == 0 ? 0. : 1./sqrt(dx0*dx0 + dy0*dy0);
int defect_deepest_point = -1;
double defect_depth = 0;
bool is_defect = false;
for(;;)
{
// go through points to achieve next hull point
j++;
j &= j >= npoints ? 0 : -1;
if( j == hnext )
break;
// compute distance from current point to hull edge
double dx = ptr[j].x - pt0.x;
double dy = ptr[j].y - pt0.y;
double dist = fabs(-dy0*dx + dx0*dy) * scale;
if( dist > defect_depth )
{
defect_depth = dist;
defect_deepest_point = j;
is_defect = true;
}
}
if( is_defect )
{
int idepth = cvRound(defect_depth*256);
defects.push_back(Vec4i(hcurr, hnext, defect_deepest_point, idepth));
}
hcurr = hnext;
}
Mat(defects).copyTo(_defects);
}
template<typename _Tp>
static bool isContourConvex_( const Point_<_Tp>* p, int n )
{
Point_<_Tp> prev_pt = p[(n-2+n) % n];
Point_<_Tp> cur_pt = p[n-1];
_Tp dx0 = cur_pt.x - prev_pt.x;
_Tp dy0 = cur_pt.y - prev_pt.y;
int orientation = 0;
for( int i = 0; i < n-1; i++ )
{
_Tp dxdy0, dydx0;
_Tp dx, dy;
prev_pt = cur_pt;
cur_pt = p[i];
dx = cur_pt.x - prev_pt.x;
dy = cur_pt.y - prev_pt.y;
dxdy0 = dx * dy0;
dydx0 = dy * dx0;
// find orientation
// orient = -dy0 * dx + dx0 * dy;
// orientation |= (orient > 0) ? 1 : 2;
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
if( orientation == 3 )
return false;
dx0 = dx;
dy0 = dy;
}
return true;
}
bool isContourConvex( InputArray _contour )
{
Mat contour = _contour.getMat();
int total = contour.checkVector(2), depth = contour.depth();
CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S));
if( total == 0 )
return false;
return depth == CV_32S ?
isContourConvex_((const Point*)contour.data, total ) :
isContourConvex_((const Point2f*)contour.data, total );
}
}
CV_IMPL CvSeq*
@ -1187,12 +789,9 @@ cvConvexHull2( const CvArr* array, void* hull_storage,
return hull.s;
}
cv::AutoBuffer<cv::Point> _ptbuf(total);
cv::Point* ptbuf = _ptbuf;
cv::AutoBuffer<double> _ptbuf;
cv::Mat h0;
cvCvtSeqToArray(ptseq, ptbuf);
cv::convexHull(cv::Mat(total, 1, CV_SEQ_ELTYPE(ptseq), ptbuf), h0,
cv::convexHull(cv::cvarrToMat(ptseq, false, false, 0, &_ptbuf), h0,
orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2);
if( hulltype == CV_SEQ_ELTYPE_PPOINT )
@ -1433,11 +1032,6 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
CV_IMPL int
cvCheckContourConvexity( const CvArr* array )
{
int flag = -1;
int i;
int orientation = 0;
CvSeqReader reader;
CvContour contour_header;
CvSeqBlock block;
CvSeq* contour = (CvSeq*)array;
@ -1450,99 +1044,15 @@ cvCheckContourConvexity( const CvArr* array )
}
else
{
contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|
CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
}
if( contour->total == 0 )
return -1;
cvStartReadSeq( contour, &reader, 0 );
flag = 1;
if( CV_SEQ_ELTYPE( contour ) == CV_32SC2 )
{
CvPoint *prev_pt = (CvPoint*)reader.prev_elem;
CvPoint *cur_pt = (CvPoint*)reader.ptr;
int dx0 = cur_pt->x - prev_pt->x;
int dy0 = cur_pt->y - prev_pt->y;
for( i = 0; i < contour->total; i++ )
{
int dxdy0, dydx0;
int dx, dy;
/*int orient; */
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
prev_pt = cur_pt;
cur_pt = (CvPoint *) reader.ptr;
dx = cur_pt->x - prev_pt->x;
dy = cur_pt->y - prev_pt->y;
dxdy0 = dx * dy0;
dydx0 = dy * dx0;
/* find orientation */
/* orient = -dy0 * dx + dx0 * dy;
orientation |= (orient > 0) ? 1 : 2;
*/
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
if( orientation == 3 )
{
flag = 0;
break;
}
dx0 = dx;
dy0 = dy;
}
}
else
{
CV_Assert( CV_SEQ_ELTYPE(contour) == CV_32FC2 );
CvPoint2D32f *prev_pt = (CvPoint2D32f*)reader.prev_elem;
CvPoint2D32f *cur_pt = (CvPoint2D32f*)reader.ptr;
float dx0 = cur_pt->x - prev_pt->x;
float dy0 = cur_pt->y - prev_pt->y;
for( i = 0; i < contour->total; i++ )
{
float dxdy0, dydx0;
float dx, dy;
/*int orient; */
CV_NEXT_SEQ_ELEM( sizeof(CvPoint2D32f), reader );
prev_pt = cur_pt;
cur_pt = (CvPoint2D32f*) reader.ptr;
dx = cur_pt->x - prev_pt->x;
dy = cur_pt->y - prev_pt->y;
dxdy0 = dx * dy0;
dydx0 = dy * dx0;
/* find orientation */
/* orient = -dy0 * dx + dx0 * dy;
orientation |= (orient > 0) ? 1 : 2;
*/
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
if( orientation == 3 )
{
flag = 0;
break;
}
dx0 = dx;
dy0 = dy;
}
}
return flag;
cv::AutoBuffer<double> _buf;
return cv::isContourConvex(cv::cvarrToMat(contour, false, false, 0, &_buf)) ? 1 : 0;
}
#endif
/* End of file. */

View File

@ -395,8 +395,8 @@ FarnebackUpdateFlow_GaussianBlur( const Mat& _R0, const Mat& _R1,
double sigma = m*0.3, s = 1;
AutoBuffer<float> _vsum((width+m*2+2)*5 + 16), _hsum(width*5 + 16);
AutoBuffer<float, 4096> _kernel((m+1)*5 + 16);
AutoBuffer<float*, 1024> _srow(m*2+1);
AutoBuffer<float> _kernel((m+1)*5 + 16);
AutoBuffer<float*> _srow(m*2+1);
float *vsum = alignPtr((float*)_vsum + (m+1)*5, 16), *hsum = alignPtr((float*)_hsum, 16);
float* kernel = (float*)_kernel;
const float** srow = (const float**)&_srow[0];