convex hull converted to C++; other 2 functions in convhull.cpp are yet to be finished.
This commit is contained in:
parent
e3941d0965
commit
457fa52111
@ -1813,77 +1813,6 @@ double cv::matchShapes( InputArray _contour1,
|
||||
}
|
||||
|
||||
|
||||
void cv::convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
|
||||
{
|
||||
Mat points = _points.getMat();
|
||||
int nelems = points.checkVector(2), depth = points.depth();
|
||||
CV_Assert(nelems >= 0 && (depth == CV_32F || depth == CV_32S));
|
||||
|
||||
if( nelems == 0 )
|
||||
{
|
||||
_hull.release();
|
||||
return;
|
||||
}
|
||||
|
||||
returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
|
||||
Mat hull(nelems, 1, returnPoints ? CV_MAKETYPE(depth, 2) : CV_32S);
|
||||
CvMat _cpoints = points, _chull = hull;
|
||||
cvConvexHull2(&_cpoints, &_chull, clockwise ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, returnPoints);
|
||||
_hull.create(_chull.rows, 1, hull.type(), -1, true);
|
||||
Mat dhull = _hull.getMat(), shull(dhull.size(), dhull.type(), hull.data);
|
||||
shull.copyTo(dhull);
|
||||
}
|
||||
|
||||
|
||||
void cv::convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
|
||||
{
|
||||
Mat points = _points.getMat();
|
||||
int ptnum = points.checkVector(2, CV_32S);
|
||||
CV_Assert( ptnum > 3 );
|
||||
Mat hull = _hull.getMat();
|
||||
CV_Assert( hull.checkVector(1, CV_32S) > 2 );
|
||||
Ptr<CvMemStorage> storage = cvCreateMemStorage();
|
||||
|
||||
CvMat c_points = points, c_hull = hull;
|
||||
CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage);
|
||||
int i, n = seq->total;
|
||||
|
||||
if( n == 0 )
|
||||
{
|
||||
_defects.release();
|
||||
return;
|
||||
}
|
||||
|
||||
_defects.create(n, 1, CV_32SC4);
|
||||
Mat defects = _defects.getMat();
|
||||
|
||||
SeqIterator<CvConvexityDefect> it = Seq<CvConvexityDefect>(seq).begin();
|
||||
CvPoint* ptorg = (CvPoint*)points.data;
|
||||
|
||||
for( i = 0; i < n; i++, ++it )
|
||||
{
|
||||
CvConvexityDefect& d = *it;
|
||||
int idx0 = (int)(d.start - ptorg);
|
||||
int idx1 = (int)(d.end - ptorg);
|
||||
int idx2 = (int)(d.depth_point - ptorg);
|
||||
CV_Assert( 0 <= idx0 && idx0 < ptnum );
|
||||
CV_Assert( 0 <= idx1 && idx1 < ptnum );
|
||||
CV_Assert( 0 <= idx2 && idx2 < ptnum );
|
||||
CV_Assert( d.depth >= 0 );
|
||||
int idepth = cvRound(d.depth*256);
|
||||
defects.at<Vec4i>(i) = Vec4i(idx0, idx1, idx2, idepth);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool cv::isContourConvex( InputArray _contour )
|
||||
{
|
||||
Mat contour = _contour.getMat();
|
||||
CV_Assert(contour.checkVector(2) >= 0 &&
|
||||
(contour.depth() == CV_32F || contour.depth() == CV_32S));
|
||||
CvMat c = Mat(contour);
|
||||
return cvCheckContourConvexity(&c) > 0;
|
||||
}
|
||||
|
||||
cv::RotatedRect cv::fitEllipse( InputArray _points )
|
||||
{
|
||||
|
@ -40,7 +40,9 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <iostream>
|
||||
|
||||
#if 0
|
||||
static int
|
||||
icvSklansky_32s( CvPoint** array, int start, int end, int* stack, int nsign, int sign2 )
|
||||
{
|
||||
@ -113,7 +115,6 @@ icvSklansky_32s( CvPoint** array, int start, int end, int* stack, int nsign, int
|
||||
return --stacksize;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
icvSklansky_32f( CvPoint2D32f** array, int start, int end, int* stack, int nsign, int sign2 )
|
||||
{
|
||||
@ -751,7 +752,7 @@ cvCheckContourConvexity( const CvArr* array )
|
||||
dydx0 = dy * dx0;
|
||||
|
||||
/* find orientation */
|
||||
/*orient = -dy0 * dx + dx0 * dy;
|
||||
/* orient = -dy0 * dx + dx0 * dy;
|
||||
orientation |= (orient > 0) ? 1 : 2;
|
||||
*/
|
||||
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
|
||||
@ -792,7 +793,7 @@ cvCheckContourConvexity( const CvArr* array )
|
||||
dydx0 = dy * dx0;
|
||||
|
||||
/* find orientation */
|
||||
/*orient = -dy0 * dx + dx0 * dy;
|
||||
/* orient = -dy0 * dx + dx0 * dy;
|
||||
orientation |= (orient > 0) ? 1 : 2;
|
||||
*/
|
||||
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
|
||||
@ -811,5 +812,737 @@ cvCheckContourConvexity( const CvArr* array )
|
||||
return flag;
|
||||
}
|
||||
|
||||
void cv::convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
|
||||
{
|
||||
Mat points = _points.getMat();
|
||||
int nelems = points.checkVector(2), depth = points.depth();
|
||||
CV_Assert(nelems >= 0 && (depth == CV_32F || depth == CV_32S));
|
||||
|
||||
if( nelems == 0 )
|
||||
{
|
||||
_hull.release();
|
||||
return;
|
||||
}
|
||||
|
||||
returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
|
||||
Mat hull(nelems, 1, returnPoints ? CV_MAKETYPE(depth, 2) : CV_32S);
|
||||
CvMat _cpoints = points, _chull = hull;
|
||||
cvConvexHull2(&_cpoints, &_chull, clockwise ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, returnPoints);
|
||||
_hull.create(_chull.rows, 1, hull.type(), -1, true);
|
||||
Mat dhull = _hull.getMat(), shull(dhull.size(), dhull.type(), hull.data);
|
||||
shull.copyTo(dhull);
|
||||
std::cout << "convex hull: " << dhull;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
template<typename _Tp>
|
||||
static int Sklansky_( Point_<_Tp>** array, int start, int end, int* stack, int nsign, int sign2 )
|
||||
{
|
||||
int incr = end > start ? 1 : -1;
|
||||
// prepare first triangle
|
||||
int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
|
||||
int stacksize = 3;
|
||||
|
||||
if( start == end ||
|
||||
(array[start]->x == array[end]->x &&
|
||||
array[start]->y == array[end]->y) )
|
||||
{
|
||||
stack[0] = start;
|
||||
return 1;
|
||||
}
|
||||
|
||||
stack[0] = pprev;
|
||||
stack[1] = pcur;
|
||||
stack[2] = pnext;
|
||||
|
||||
end += incr; // make end = afterend
|
||||
|
||||
while( pnext != end )
|
||||
{
|
||||
// check the angle p1,p2,p3
|
||||
_Tp cury = array[pcur]->y;
|
||||
_Tp nexty = array[pnext]->y;
|
||||
_Tp by = nexty - cury;
|
||||
|
||||
if( CV_SIGN( by ) != nsign )
|
||||
{
|
||||
_Tp ax = array[pcur]->x - array[pprev]->x;
|
||||
_Tp bx = array[pnext]->x - array[pcur]->x;
|
||||
_Tp ay = cury - array[pprev]->y;
|
||||
_Tp convexity = ay*bx - ax*by; // if >0 then convex angle
|
||||
|
||||
if( CV_SIGN( convexity ) == sign2 && (ax != 0 || ay != 0) )
|
||||
{
|
||||
pprev = pcur;
|
||||
pcur = pnext;
|
||||
pnext += incr;
|
||||
stack[stacksize] = pnext;
|
||||
stacksize++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( pprev == start )
|
||||
{
|
||||
pcur = pnext;
|
||||
stack[1] = pcur;
|
||||
pnext += incr;
|
||||
stack[2] = pnext;
|
||||
}
|
||||
else
|
||||
{
|
||||
stack[stacksize-2] = pnext;
|
||||
pcur = pprev;
|
||||
pprev = stack[stacksize-4];
|
||||
stacksize--;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
pnext += incr;
|
||||
stack[stacksize-1] = pnext;
|
||||
}
|
||||
}
|
||||
|
||||
return --stacksize;
|
||||
}
|
||||
|
||||
|
||||
template<typename _Tp>
|
||||
struct CHullCmpPoints
|
||||
{
|
||||
bool operator()(const Point_<_Tp>* p1, const Point_<_Tp>* p2) const
|
||||
{ return p1->x < p2->x || (p1->x == p2->x && p1->y < p2->y); }
|
||||
};
|
||||
|
||||
|
||||
void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
|
||||
{
|
||||
Mat points = _points.getMat();
|
||||
int ptnum = points.checkVector(2, CV_32S);
|
||||
CV_Assert( ptnum > 3 );
|
||||
Mat hull = _hull.getMat();
|
||||
CV_Assert( hull.checkVector(1, CV_32S) > 2 );
|
||||
Ptr<CvMemStorage> storage = cvCreateMemStorage();
|
||||
|
||||
CvMat c_points = points, c_hull = hull;
|
||||
CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage);
|
||||
int i, n = seq->total;
|
||||
|
||||
if( n == 0 )
|
||||
{
|
||||
_defects.release();
|
||||
return;
|
||||
}
|
||||
|
||||
_defects.create(n, 1, CV_32SC4);
|
||||
Mat defects = _defects.getMat();
|
||||
|
||||
SeqIterator<CvConvexityDefect> it = Seq<CvConvexityDefect>(seq).begin();
|
||||
CvPoint* ptorg = (CvPoint*)points.data;
|
||||
|
||||
for( i = 0; i < n; i++, ++it )
|
||||
{
|
||||
CvConvexityDefect& d = *it;
|
||||
int idx0 = (int)(d.start - ptorg);
|
||||
int idx1 = (int)(d.end - ptorg);
|
||||
int idx2 = (int)(d.depth_point - ptorg);
|
||||
CV_Assert( 0 <= idx0 && idx0 < ptnum );
|
||||
CV_Assert( 0 <= idx1 && idx1 < ptnum );
|
||||
CV_Assert( 0 <= idx2 && idx2 < ptnum );
|
||||
CV_Assert( d.depth >= 0 );
|
||||
int idepth = cvRound(d.depth*256);
|
||||
defects.at<Vec4i>(i) = Vec4i(idx0, idx1, idx2, idepth);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool isContourConvex( InputArray _contour )
|
||||
{
|
||||
Mat contour = _contour.getMat();
|
||||
CV_Assert(contour.checkVector(2) >= 0 &&
|
||||
(contour.depth() == CV_32F || contour.depth() == CV_32S));
|
||||
CvMat c = Mat(contour);
|
||||
return cvCheckContourConvexity(&c) > 0;
|
||||
}
|
||||
|
||||
|
||||
void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
|
||||
{
|
||||
Mat points = _points.getMat();
|
||||
int i, total = points.checkVector(2), depth = points.depth(), nout = 0;
|
||||
int miny_ind = 0, maxy_ind = 0;
|
||||
CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S));
|
||||
|
||||
if( total == 0 )
|
||||
{
|
||||
_hull.release();
|
||||
return;
|
||||
}
|
||||
|
||||
returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
|
||||
|
||||
bool is_float = depth == CV_32F;
|
||||
AutoBuffer<Point*> _pointer(total);
|
||||
AutoBuffer<int> _stack(total + 2), _hullbuf(total);
|
||||
Point** pointer = _pointer;
|
||||
Point2f** pointerf = (Point2f**)pointer;
|
||||
Point* data0 = (Point*)points.data;
|
||||
int* stack = _stack;
|
||||
int* hullbuf = _hullbuf;
|
||||
|
||||
CV_Assert(points.isContinuous());
|
||||
|
||||
for( i = 0; i < total; i++ )
|
||||
pointer[i] = &data0[i];
|
||||
|
||||
// sort the point set by x-coordinate, find min and max y
|
||||
if( !is_float )
|
||||
{
|
||||
std::sort(pointer, pointer + total, CHullCmpPoints<int>());
|
||||
for( i = 1; i < total; i++ )
|
||||
{
|
||||
int y = pointer[i]->y;
|
||||
if( pointer[miny_ind]->y > y )
|
||||
miny_ind = i;
|
||||
if( pointer[maxy_ind]->y < y )
|
||||
maxy_ind = i;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::sort(pointerf, pointerf + total, CHullCmpPoints<float>());
|
||||
for( i = 1; i < total; i++ )
|
||||
{
|
||||
float y = pointerf[i]->y;
|
||||
if( pointerf[miny_ind]->y > y )
|
||||
miny_ind = i;
|
||||
if( pointerf[maxy_ind]->y < y )
|
||||
maxy_ind = i;
|
||||
}
|
||||
}
|
||||
|
||||
if( pointer[0]->x == pointer[total-1]->x &&
|
||||
pointer[0]->y == pointer[total-1]->y )
|
||||
{
|
||||
hullbuf[nout++] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// upper half
|
||||
int *tl_stack = stack;
|
||||
int tl_count = !is_float ?
|
||||
Sklansky_( pointer, 0, maxy_ind, tl_stack, -1, 1) :
|
||||
Sklansky_( pointerf, 0, maxy_ind, tl_stack, -1, 1);
|
||||
int *tr_stack = stack + tl_count;
|
||||
int tr_count = !is_float ?
|
||||
Sklansky_( pointer, total-1, maxy_ind, tr_stack, -1, -1) :
|
||||
Sklansky_( pointerf, total-1, maxy_ind, tr_stack, -1, -1);
|
||||
|
||||
// gather upper part of convex hull to output
|
||||
if( !clockwise )
|
||||
{
|
||||
std::swap( tl_stack, tr_stack );
|
||||
std::swap( tl_count, tr_count );
|
||||
}
|
||||
|
||||
for( i = 0; i < tl_count-1; i++ )
|
||||
hullbuf[nout++] = pointer[tl_stack[i]] - data0;
|
||||
for( i = tr_count - 1; i > 0; i-- )
|
||||
hullbuf[nout++] = pointer[tr_stack[i]] - data0;
|
||||
int stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
|
||||
|
||||
// lower half
|
||||
int *bl_stack = stack;
|
||||
int bl_count = !is_float ?
|
||||
Sklansky_( pointer, 0, miny_ind, bl_stack, 1, -1) :
|
||||
Sklansky_( pointerf, 0, miny_ind, bl_stack, 1, -1);
|
||||
int *br_stack = stack + bl_count;
|
||||
int br_count = !is_float ?
|
||||
Sklansky_( pointer, total-1, miny_ind, br_stack, 1, 1) :
|
||||
Sklansky_( pointerf, total-1, miny_ind, br_stack, 1, 1);
|
||||
|
||||
if( clockwise )
|
||||
{
|
||||
std::swap( bl_stack, br_stack );
|
||||
std::swap( bl_count, br_count );
|
||||
}
|
||||
|
||||
if( stop_idx >= 0 )
|
||||
{
|
||||
int check_idx = bl_count > 2 ? bl_stack[1] :
|
||||
bl_count + br_count > 2 ? br_stack[2-bl_count] : -1;
|
||||
if( check_idx == stop_idx || (check_idx >= 0 &&
|
||||
pointer[check_idx]->x == pointer[stop_idx]->x &&
|
||||
pointer[check_idx]->y == pointer[stop_idx]->y) )
|
||||
{
|
||||
// if all the points lie on the same line, then
|
||||
// the bottom part of the convex hull is the mirrored top part
|
||||
// (except the exteme points).
|
||||
bl_count = MIN( bl_count, 2 );
|
||||
br_count = MIN( br_count, 2 );
|
||||
}
|
||||
}
|
||||
|
||||
for( i = 0; i < bl_count-1; i++ )
|
||||
hullbuf[nout++] = pointer[bl_stack[i]] - data0;
|
||||
for( i = br_count-1; i > 0; i-- )
|
||||
hullbuf[nout++] = pointer[br_stack[i]] - data0;
|
||||
}
|
||||
|
||||
if( !returnPoints )
|
||||
Mat(nout, 1, CV_32S, hullbuf).copyTo(_hull);
|
||||
else
|
||||
{
|
||||
_hull.create(nout, 1, CV_MAKETYPE(depth, 2));
|
||||
Mat hull = _hull.getMat();
|
||||
size_t step = !hull.isContinuous() ? hull.step[0] : sizeof(Point);
|
||||
for( i = 0; i < nout; i++ )
|
||||
*(Point*)(hull.data + i*step) = data0[hullbuf[i]];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
CV_IMPL CvSeq*
|
||||
cvConvexHull2( const CvArr* array, void* hull_storage,
|
||||
int orientation, int return_points )
|
||||
{
|
||||
union { CvContour* c; CvSeq* s; } hull;
|
||||
hull.s = 0;
|
||||
|
||||
CvMat* mat = 0;
|
||||
CvContour contour_header;
|
||||
union { CvContour c; CvSeq s; } hull_header;
|
||||
CvSeqBlock block, hullblock;
|
||||
CvSeq* ptseq = 0;
|
||||
CvSeq* hullseq = 0;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
ptseq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
if( hull_storage == 0 )
|
||||
hull_storage = ptseq->storage;
|
||||
}
|
||||
else
|
||||
{
|
||||
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( CV_IS_STORAGE( hull_storage ))
|
||||
{
|
||||
if( return_points )
|
||||
{
|
||||
hullseq = cvCreateSeq(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
|
||||
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
|
||||
sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage );
|
||||
}
|
||||
else
|
||||
{
|
||||
hullseq = cvCreateSeq(
|
||||
CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
|
||||
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
|
||||
sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( !CV_IS_MAT( hull_storage ))
|
||||
CV_Error(CV_StsBadArg, "Destination must be valid memory storage or matrix");
|
||||
|
||||
mat = (CvMat*)hull_storage;
|
||||
|
||||
if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The hull matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
if( mat->cols + mat->rows - 1 < ptseq->total )
|
||||
CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
|
||||
|
||||
if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
|
||||
CV_MAT_TYPE(mat->type) != CV_32SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"The hull matrix must have the same type as input or 32sC1 (integers)" );
|
||||
|
||||
hullseq = cvMakeSeqHeaderForArray(
|
||||
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
|
||||
sizeof(contour_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
|
||||
mat->cols + mat->rows - 1, &hull_header.s, &hullblock );
|
||||
cvClearSeq( hullseq );
|
||||
}
|
||||
|
||||
int hulltype = CV_SEQ_ELTYPE(hullseq);
|
||||
int total = ptseq->total;
|
||||
if( total == 0 )
|
||||
{
|
||||
if( mat )
|
||||
CV_Error( CV_StsBadSize,
|
||||
"Point sequence can not be empty if the output is matrix" );
|
||||
return hull.s;
|
||||
}
|
||||
|
||||
cv::AutoBuffer<cv::Point> _ptbuf(total);
|
||||
cv::Point* ptbuf = _ptbuf;
|
||||
cv::Mat h0;
|
||||
|
||||
cvCvtSeqToArray(ptseq, ptbuf);
|
||||
cv::convexHull(cv::Mat(total, 1, CV_SEQ_ELTYPE(ptseq), ptbuf), h0,
|
||||
orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2);
|
||||
|
||||
if( hulltype == CV_SEQ_ELTYPE_PPOINT )
|
||||
{
|
||||
const int* idx = h0.ptr<int>();
|
||||
int ctotal = (int)h0.total();
|
||||
for( int i = 0; i < ctotal; i++ )
|
||||
{
|
||||
void* ptr = cvGetSeqElem(ptseq, idx[i]);
|
||||
cvSeqPush( hullseq, &ptr );
|
||||
}
|
||||
}
|
||||
else
|
||||
cvSeqPushMulti(hullseq, h0.data, (int)h0.total());
|
||||
|
||||
if( mat )
|
||||
{
|
||||
if( mat->rows > mat->cols )
|
||||
mat->rows = hullseq->total;
|
||||
else
|
||||
mat->cols = hullseq->total;
|
||||
}
|
||||
else
|
||||
{
|
||||
hull.s = hullseq;
|
||||
hull.c->rect = cvBoundingRect( ptseq,
|
||||
ptseq->header_size < (int)sizeof(CvContour) ||
|
||||
&ptseq->flags == &contour_header.flags );
|
||||
}
|
||||
|
||||
return hull.s;
|
||||
}
|
||||
|
||||
|
||||
/* contour must be a simple polygon */
|
||||
/* it must have more than 3 points */
|
||||
CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
|
||||
const CvArr* hullarray,
|
||||
CvMemStorage* storage )
|
||||
{
|
||||
CvSeq* defects = 0;
|
||||
|
||||
int i, index;
|
||||
CvPoint* hull_cur;
|
||||
|
||||
/* is orientation of hull different from contour one */
|
||||
int rev_orientation;
|
||||
|
||||
CvContour contour_header;
|
||||
union { CvContour c; CvSeq s; } hull_header;
|
||||
CvSeqBlock block, hullblock;
|
||||
CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray;
|
||||
|
||||
CvSeqReader hull_reader;
|
||||
CvSeqReader ptseq_reader;
|
||||
CvSeqWriter writer;
|
||||
int is_index;
|
||||
|
||||
if( CV_IS_SEQ( ptseq ))
|
||||
{
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Input sequence is not a sequence of points" );
|
||||
if( !storage )
|
||||
storage = ptseq->storage;
|
||||
}
|
||||
else
|
||||
{
|
||||
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Floating-point coordinates are not supported here" );
|
||||
|
||||
if( CV_IS_SEQ( hull ))
|
||||
{
|
||||
int hulltype = CV_SEQ_ELTYPE( hull );
|
||||
if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Convex hull must represented as a sequence "
|
||||
"of indices or sequence of pointers" );
|
||||
if( !storage )
|
||||
storage = hull->storage;
|
||||
}
|
||||
else
|
||||
{
|
||||
CvMat* mat = (CvMat*)hull;
|
||||
|
||||
if( !CV_IS_MAT( hull ))
|
||||
CV_Error(CV_StsBadArg, "Convex hull is neither sequence nor matrix");
|
||||
|
||||
if( (mat->cols != 1 && mat->rows != 1) ||
|
||||
!CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The matrix should be 1-dimensional and continuous array of int's" );
|
||||
|
||||
if( mat->cols + mat->rows - 1 > ptseq->total )
|
||||
CV_Error( CV_StsBadSize, "Convex hull is larger than the point sequence" );
|
||||
|
||||
hull = cvMakeSeqHeaderForArray(
|
||||
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
|
||||
sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
|
||||
mat->cols + mat->rows - 1, &hull_header.s, &hullblock );
|
||||
}
|
||||
|
||||
is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
|
||||
defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq), sizeof(CvConvexityDefect), storage );
|
||||
|
||||
if( ptseq->total < 4 || hull->total < 3)
|
||||
{
|
||||
//CV_ERROR( CV_StsBadSize,
|
||||
// "point seq size must be >= 4, convex hull size must be >= 3" );
|
||||
return defects;
|
||||
}
|
||||
|
||||
/* recognize co-orientation of ptseq and its hull */
|
||||
{
|
||||
int sign = 0;
|
||||
int index1, index2, index3;
|
||||
|
||||
if( !is_index )
|
||||
{
|
||||
CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 );
|
||||
index1 = cvSeqElemIdx( ptseq, pos );
|
||||
|
||||
pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 );
|
||||
index2 = cvSeqElemIdx( ptseq, pos );
|
||||
|
||||
pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 );
|
||||
index3 = cvSeqElemIdx( ptseq, pos );
|
||||
}
|
||||
else
|
||||
{
|
||||
index1 = *CV_SEQ_ELEM( hull, int, 0 );
|
||||
index2 = *CV_SEQ_ELEM( hull, int, 1 );
|
||||
index3 = *CV_SEQ_ELEM( hull, int, 2 );
|
||||
}
|
||||
|
||||
sign += (index2 > index1) ? 1 : 0;
|
||||
sign += (index3 > index2) ? 1 : 0;
|
||||
sign += (index1 > index3) ? 1 : 0;
|
||||
|
||||
rev_orientation = (sign == 2) ? 0 : 1;
|
||||
}
|
||||
|
||||
cvStartReadSeq( ptseq, &ptseq_reader, 0 );
|
||||
cvStartReadSeq( hull, &hull_reader, rev_orientation );
|
||||
|
||||
if( !is_index )
|
||||
{
|
||||
hull_cur = *(CvPoint**)hull_reader.prev_elem;
|
||||
index = cvSeqElemIdx( ptseq, (char*)hull_cur, 0 );
|
||||
}
|
||||
else
|
||||
{
|
||||
index = *(int*)hull_reader.prev_elem;
|
||||
hull_cur = CV_GET_SEQ_ELEM( CvPoint, ptseq, index );
|
||||
}
|
||||
cvSetSeqReaderPos( &ptseq_reader, index );
|
||||
cvStartAppendToSeq( defects, &writer );
|
||||
|
||||
/* cycle through ptseq and hull with computing defects */
|
||||
for( i = 0; i < hull->total; i++ )
|
||||
{
|
||||
CvConvexityDefect defect;
|
||||
int is_defect = 0;
|
||||
double dx0, dy0;
|
||||
double depth = 0, scale;
|
||||
CvPoint* hull_next;
|
||||
|
||||
if( !is_index )
|
||||
hull_next = *(CvPoint**)hull_reader.ptr;
|
||||
else
|
||||
{
|
||||
int t = *(int*)hull_reader.ptr;
|
||||
hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t );
|
||||
}
|
||||
|
||||
dx0 = (double)hull_next->x - (double)hull_cur->x;
|
||||
dy0 = (double)hull_next->y - (double)hull_cur->y;
|
||||
assert( dx0 != 0 || dy0 != 0 );
|
||||
scale = 1./sqrt(dx0*dx0 + dy0*dy0);
|
||||
|
||||
defect.start = hull_cur;
|
||||
defect.end = hull_next;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
/* go through ptseq to achieve next hull point */
|
||||
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), ptseq_reader );
|
||||
|
||||
if( ptseq_reader.ptr == (schar*)hull_next )
|
||||
break;
|
||||
else
|
||||
{
|
||||
CvPoint* cur = (CvPoint*)ptseq_reader.ptr;
|
||||
|
||||
/* compute distance from current point to hull edge */
|
||||
double dx = (double)cur->x - (double)hull_cur->x;
|
||||
double dy = (double)cur->y - (double)hull_cur->y;
|
||||
|
||||
/* compute depth */
|
||||
double dist = fabs(-dy0*dx + dx0*dy) * scale;
|
||||
|
||||
if( dist > depth )
|
||||
{
|
||||
depth = dist;
|
||||
defect.depth_point = cur;
|
||||
defect.depth = (float)depth;
|
||||
is_defect = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if( is_defect )
|
||||
{
|
||||
CV_WRITE_SEQ_ELEM( defect, writer );
|
||||
}
|
||||
|
||||
hull_cur = hull_next;
|
||||
if( rev_orientation )
|
||||
{
|
||||
CV_PREV_SEQ_ELEM( hull->elem_size, hull_reader );
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_NEXT_SEQ_ELEM( hull->elem_size, hull_reader );
|
||||
}
|
||||
}
|
||||
|
||||
return cvEndWriteSeq( &writer );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int
|
||||
cvCheckContourConvexity( const CvArr* array )
|
||||
{
|
||||
int flag = -1;
|
||||
|
||||
int i;
|
||||
int orientation = 0;
|
||||
CvSeqReader reader;
|
||||
CvContour contour_header;
|
||||
CvSeqBlock block;
|
||||
CvSeq* contour = (CvSeq*)array;
|
||||
|
||||
if( CV_IS_SEQ(contour) )
|
||||
{
|
||||
if( !CV_IS_SEQ_POINT_SET(contour))
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Input sequence must be polygon (closed 2d curve)" );
|
||||
}
|
||||
else
|
||||
{
|
||||
contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( contour->total == 0 )
|
||||
return -1;
|
||||
|
||||
cvStartReadSeq( contour, &reader, 0 );
|
||||
flag = 1;
|
||||
|
||||
if( CV_SEQ_ELTYPE( contour ) == CV_32SC2 )
|
||||
{
|
||||
CvPoint *prev_pt = (CvPoint*)reader.prev_elem;
|
||||
CvPoint *cur_pt = (CvPoint*)reader.ptr;
|
||||
|
||||
int dx0 = cur_pt->x - prev_pt->x;
|
||||
int dy0 = cur_pt->y - prev_pt->y;
|
||||
|
||||
for( i = 0; i < contour->total; i++ )
|
||||
{
|
||||
int dxdy0, dydx0;
|
||||
int dx, dy;
|
||||
|
||||
/*int orient; */
|
||||
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
|
||||
prev_pt = cur_pt;
|
||||
cur_pt = (CvPoint *) reader.ptr;
|
||||
|
||||
dx = cur_pt->x - prev_pt->x;
|
||||
dy = cur_pt->y - prev_pt->y;
|
||||
dxdy0 = dx * dy0;
|
||||
dydx0 = dy * dx0;
|
||||
|
||||
/* find orientation */
|
||||
/* orient = -dy0 * dx + dx0 * dy;
|
||||
orientation |= (orient > 0) ? 1 : 2;
|
||||
*/
|
||||
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
|
||||
|
||||
if( orientation == 3 )
|
||||
{
|
||||
flag = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
dx0 = dx;
|
||||
dy0 = dy;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert( CV_SEQ_ELTYPE(contour) == CV_32FC2 );
|
||||
|
||||
CvPoint2D32f *prev_pt = (CvPoint2D32f*)reader.prev_elem;
|
||||
CvPoint2D32f *cur_pt = (CvPoint2D32f*)reader.ptr;
|
||||
|
||||
float dx0 = cur_pt->x - prev_pt->x;
|
||||
float dy0 = cur_pt->y - prev_pt->y;
|
||||
|
||||
for( i = 0; i < contour->total; i++ )
|
||||
{
|
||||
float dxdy0, dydx0;
|
||||
float dx, dy;
|
||||
|
||||
/*int orient; */
|
||||
CV_NEXT_SEQ_ELEM( sizeof(CvPoint2D32f), reader );
|
||||
prev_pt = cur_pt;
|
||||
cur_pt = (CvPoint2D32f*) reader.ptr;
|
||||
|
||||
dx = cur_pt->x - prev_pt->x;
|
||||
dy = cur_pt->y - prev_pt->y;
|
||||
dxdy0 = dx * dy0;
|
||||
dydx0 = dy * dx0;
|
||||
|
||||
/* find orientation */
|
||||
/* orient = -dy0 * dx + dx0 * dy;
|
||||
orientation |= (orient > 0) ? 1 : 2;
|
||||
*/
|
||||
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
|
||||
|
||||
if( orientation == 3 )
|
||||
{
|
||||
flag = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
dx0 = dx;
|
||||
dy0 = dy;
|
||||
}
|
||||
}
|
||||
|
||||
return flag;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* End of file. */
|
||||
|
Loading…
Reference in New Issue
Block a user