fixed warnings
This commit is contained in:
parent
3f5d3b2d40
commit
8c4b8cc0b4
@ -13,9 +13,15 @@
|
||||
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
|
||||
/* Functions headers */
|
||||
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2);
|
||||
double DOT(cv::Point3f v1, cv::Point3f v2);
|
||||
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
|
||||
cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Point3f origin);
|
||||
|
||||
|
||||
/* Functions for Möller–Trumbore intersection algorithm */
|
||||
|
||||
/* Functions for Möller–Trumbore intersection algorithm
|
||||
* */
|
||||
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
|
||||
{
|
||||
cv::Point3f tmp_p;
|
||||
|
@ -50,4 +50,9 @@ private:
|
||||
cv::Mat _P_matrix;
|
||||
};
|
||||
|
||||
// Functions for Möller–Trumbore intersection algorithm
|
||||
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2);
|
||||
double DOT(cv::Point3f v1, cv::Point3f v2);
|
||||
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
|
||||
|
||||
#endif /* PNPPROBLEM_H_ */
|
||||
|
@ -113,9 +113,9 @@ void RobustMatcher::robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>&
|
||||
|
||||
// 3. Remove matches for which NN ratio is > than threshold
|
||||
// clean image 1 -> image 2 matches
|
||||
int removed1 = ratioTest(matches12);
|
||||
ratioTest(matches12);
|
||||
// clean image 2 -> image 1 matches
|
||||
int removed2 = ratioTest(matches21);
|
||||
ratioTest(matches21);
|
||||
|
||||
// 4. Remove non-symmetrical matches
|
||||
symmetryTest(matches12, matches21, good_matches);
|
||||
@ -140,7 +140,7 @@ void RobustMatcher::fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatc
|
||||
matcher_->knnMatch(descriptors_frame, descriptors_model, matches, 2);
|
||||
|
||||
// 3. Remove matches for which NN ratio is > than threshold
|
||||
int removed = ratioTest(matches);
|
||||
ratioTest(matches);
|
||||
|
||||
// 4. Fill good matches container
|
||||
for ( std::vector<std::vector<cv::DMatch> >::iterator
|
||||
|
@ -114,7 +114,7 @@ void drawArrow(cv::Mat image, cv::Point2i p, cv::Point2i q, cv::Scalar color, in
|
||||
{
|
||||
//Draw the principle line
|
||||
cv::line(image, p, q, color, thickness, line_type, shift);
|
||||
const double PI = 3.141592653;
|
||||
const double PI = CV_PI;
|
||||
//compute the angle alpha
|
||||
double angle = atan2((double)p.y-q.y, (double)p.x-q.x);
|
||||
//compute the coordinates of the first segment
|
||||
@ -137,9 +137,6 @@ void draw3DCoordinateAxes(cv::Mat image, const std::vector<cv::Point2f> &list_po
|
||||
cv::Scalar blue(255,0,0);
|
||||
cv::Scalar black(0,0,0);
|
||||
|
||||
const double PI = 3.141592653;
|
||||
int length = 50;
|
||||
|
||||
cv::Point2i origin = list_points2d[0];
|
||||
cv::Point2i pointX = list_points2d[1];
|
||||
cv::Point2i pointY = list_points2d[2];
|
||||
@ -196,13 +193,11 @@ cv::Mat rot2euler(const cv::Mat & rotationMatrix)
|
||||
cv::Mat euler(3,1,CV_64F);
|
||||
|
||||
double m00 = rotationMatrix.at<double>(0,0);
|
||||
double m01 = rotationMatrix.at<double>(0,1);
|
||||
double m02 = rotationMatrix.at<double>(0,2);
|
||||
double m10 = rotationMatrix.at<double>(1,0);
|
||||
double m11 = rotationMatrix.at<double>(1,1);
|
||||
double m12 = rotationMatrix.at<double>(1,2);
|
||||
double m20 = rotationMatrix.at<double>(2,0);
|
||||
double m21 = rotationMatrix.at<double>(2,1);
|
||||
double m22 = rotationMatrix.at<double>(2,2);
|
||||
|
||||
double x, y, z;
|
||||
|
@ -1,12 +1,14 @@
|
||||
// C++
|
||||
#include <iostream>
|
||||
#include <time.h>
|
||||
|
||||
// OpenCV
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <opencv2/video/tracking.hpp>
|
||||
|
||||
// PnP Tutorial
|
||||
#include "Mesh.h"
|
||||
#include "Model.h"
|
||||
#include "PnPProblem.h"
|
||||
@ -14,35 +16,15 @@
|
||||
#include "ModelRegistration.h"
|
||||
#include "Utils.h"
|
||||
|
||||
std::string tutorial_path = "../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/";
|
||||
/** GLOBAL VARIABLES **/
|
||||
|
||||
// COOKIES VIDEO
|
||||
std::string video_read_path = tutorial_path + "Data/box.mp4"; // mesh
|
||||
std::string tutorial_path = "../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/"; // path to tutorial
|
||||
|
||||
// COOKIES BOX - ORB
|
||||
std::string video_read_path = tutorial_path + "Data/box.mp4"; // recorded video
|
||||
std::string yml_read_path = tutorial_path + "Data/cookies_ORB.yml"; // 3dpts + descriptors
|
||||
std::string ply_read_path = tutorial_path + "Data/box.ply"; // mesh
|
||||
|
||||
// COOKIES BOX MESH
|
||||
std::string ply_read_path = tutorial_path + "Data/box.ply"; // mesh
|
||||
|
||||
void help()
|
||||
{
|
||||
std::cout
|
||||
<< "--------------------------------------------------------------------------" << std::endl
|
||||
<< "This program shows how to detect an object given its 3D textured model. You can choose to "
|
||||
<< "use a recorded video or the webcam." << std::endl
|
||||
<< "Usage:" << std::endl
|
||||
<< "./pnp_detection ~/path_to_video/box.mp4" << std::endl
|
||||
<< "./pnp_detection " << std::endl
|
||||
<< "--------------------------------------------------------------------------" << std::endl
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set up the intrinsic camera parameters: UVC WEBCAM
|
||||
*/
|
||||
|
||||
// Intrinsic camera parameters: UVC WEBCAM
|
||||
double f = 55; // focal length in mm
|
||||
double sx = 22.3, sy = 14.9; // sensor size
|
||||
double width = 640, height = 480; // image size
|
||||
@ -52,10 +34,7 @@ double params_WEBCAM[] = { width*f/sx, // fx
|
||||
width/2, // cx
|
||||
height/2}; // cy
|
||||
|
||||
|
||||
/*
|
||||
* Set up some basic colors
|
||||
*/
|
||||
// Some basic colors
|
||||
cv::Scalar red(0, 0, 255);
|
||||
cv::Scalar green(0,255,0);
|
||||
cv::Scalar blue(255,0,0);
|
||||
@ -63,59 +42,82 @@ cv::Scalar yellow(0,255,255);
|
||||
|
||||
|
||||
// Robust Matcher parameters
|
||||
|
||||
int numKeyPoints = 2000; // number of detected keypoints
|
||||
float ratio = 0.70f; // ratio test
|
||||
bool fast_match = true; // fastRobustMatch() or robustMatch()
|
||||
|
||||
|
||||
// RANSAC parameters
|
||||
|
||||
int iterationsCount = 500; // number of Ransac iterations.
|
||||
float reprojectionError = 2.0; // maximum allowed distance to consider it an inlier.
|
||||
float confidence = 0.95; // ransac successful confidence.
|
||||
|
||||
|
||||
// Kalman Filter parameters
|
||||
|
||||
int minInliersKalman = 30; // Kalman threshold updating
|
||||
|
||||
// PnP parameters
|
||||
int pnpMethod = cv::ITERATIVE;
|
||||
|
||||
/**********************************************************************************************************/
|
||||
|
||||
/** Functions headers **/
|
||||
void help();
|
||||
void initKalmanFilter( cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt);
|
||||
|
||||
|
||||
/**********************************************************************************************************/
|
||||
|
||||
|
||||
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurements,
|
||||
cv::Mat &translation_estimated, cv::Mat &rotation_estimated );
|
||||
|
||||
/**********************************************************************************************************/
|
||||
|
||||
|
||||
void fillMeasurements( cv::Mat &measurements,
|
||||
const cv::Mat &translation_measured, const cv::Mat &rotation_measured);
|
||||
|
||||
|
||||
/**********************************************************************************************************/
|
||||
|
||||
|
||||
/** Main program **/
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
help();
|
||||
|
||||
const cv::String keys =
|
||||
"{help h | | print this message }"
|
||||
"{camera c | | use real time camera }"
|
||||
"{video v | | path to recorded video }"
|
||||
"{model | | path to yml model }"
|
||||
"{mesh | | path to ply mesh }"
|
||||
"{keypoints k |2000 | number of keypoints to detect }"
|
||||
"{ratio r |0.7 | threshold for ratio test }"
|
||||
"{iterations it |500 | RANSAC maximum iterations count }"
|
||||
"{error e |2.0 | RANSAC reprojection errror }"
|
||||
"{confidence c |0.95 | RANSAC confidence }"
|
||||
"{inliers in |30 | minimum inliers for Kalman update }"
|
||||
"{method pnp |0 | PnP method: (0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS}"
|
||||
"{fast f |true | use of robust fast match }"
|
||||
;
|
||||
cv::CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
if (parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
video_read_path = parser.has("video") ? parser.get<std::string>(0) : video_read_path;
|
||||
yml_read_path = parser.has("model") ? parser.get<std::string>(1) : yml_read_path;
|
||||
ply_read_path = parser.has("mesh") ? parser.get<std::string>(2) : ply_read_path;
|
||||
numKeyPoints = !parser.has("keypoints") ? parser.get<int>("keypoints") : numKeyPoints;
|
||||
ratio = !parser.has("ratio") ? parser.get<float>("ratio") : ratio;
|
||||
fast_match = !parser.has("fast") ? parser.get<bool>("fast") : fast_match;
|
||||
iterationsCount = !parser.has("iterations") ? parser.get<int>("iterations") : iterationsCount;
|
||||
reprojectionError = !parser.has("error") ? parser.get<float>("error") : reprojectionError;
|
||||
confidence = !parser.has("confidence") ? parser.get<float>("confidence") : confidence;
|
||||
minInliersKalman = !parser.has("inliers") ? parser.get<int>("inliers") : minInliersKalman;
|
||||
pnpMethod = !parser.has("method") ? parser.get<int>("method") : pnpMethod;
|
||||
}
|
||||
|
||||
PnPProblem pnp_detection(params_WEBCAM);
|
||||
PnPProblem pnp_detection_est(params_WEBCAM);
|
||||
|
||||
Model model; // instantiate Model object
|
||||
model.load(yml_read_path); // load a 3D textured object model
|
||||
|
||||
Mesh mesh; // instantiate Mesh object
|
||||
mesh.load(ply_read_path); // load an object mesh
|
||||
|
||||
Mesh mesh; // instantiate Mesh object
|
||||
mesh.load(ply_read_path); // load an object mesh
|
||||
|
||||
RobustMatcher rmatcher; // instantiate RobustMatcher
|
||||
|
||||
@ -125,33 +127,25 @@ int main(int argc, char *argv[])
|
||||
rmatcher.setFeatureDetector(detector); // set feature detector
|
||||
rmatcher.setDescriptorExtractor(extractor); // set descriptor extractor
|
||||
|
||||
|
||||
cv::Ptr<cv::flann::IndexParams> indexParams = cv::makePtr<cv::flann::LshIndexParams>(6, 12, 1); // instantiate LSH index parameters
|
||||
cv::Ptr<cv::flann::SearchParams> searchParams = cv::makePtr<cv::flann::SearchParams>(50); // instantiate flann search parameters
|
||||
|
||||
cv::DescriptorMatcher * matcher = new cv::FlannBasedMatcher(indexParams, searchParams); // instantiate FlannBased matcher
|
||||
rmatcher.setDescriptorMatcher(matcher); // set matcher
|
||||
|
||||
|
||||
rmatcher.setRatio(ratio); // set ratio test parameter
|
||||
|
||||
|
||||
cv::KalmanFilter KF; // instantiate Kalman Filter
|
||||
|
||||
int nStates = 18; // the number of states
|
||||
int nMeasurements = 6; // the number of measured states
|
||||
int nInputs = 0; // the number of action control
|
||||
|
||||
int nInputs = 0; // the number of control actions
|
||||
double dt = 0.125; // time between measurements (1/FPS)
|
||||
|
||||
initKalmanFilter(KF, nStates, nMeasurements, nInputs, dt); // init function
|
||||
|
||||
cv::Mat measurements(nMeasurements, 1, CV_64F); measurements.setTo(cv::Scalar(0));
|
||||
bool good_measurement = false;
|
||||
|
||||
|
||||
// Get the MODEL INFO
|
||||
|
||||
std::vector<cv::Point3f> list_points3d_model = model.get_points3d(); // list with model 3D coordinates
|
||||
cv::Mat descriptors_model = model.get_descriptors(); // list with descriptors of each 3D coordinate
|
||||
|
||||
@ -161,8 +155,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
|
||||
cv::VideoCapture cap; // instantiate VideoCapture
|
||||
(argc < 2) ? cap.open(video_read_path) : cap.open(argv[1]); // open the default camera device
|
||||
// or a recorder video
|
||||
cap.open(video_read_path); // open a recorded video
|
||||
|
||||
if(!cap.isOpened()) // check if we succeeded
|
||||
{
|
||||
@ -170,25 +163,23 @@ int main(int argc, char *argv[])
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Input parameters
|
||||
if(argc > 2) pnpMethod = 0;
|
||||
|
||||
|
||||
// start and end times
|
||||
time_t start, end;
|
||||
|
||||
// fps calculated using number of frames / seconds
|
||||
double fps;
|
||||
// floating point seconds elapsed since start
|
||||
double fps, sec;
|
||||
|
||||
// frame counter
|
||||
int counter = 0;
|
||||
|
||||
// floating point seconds elapsed since start
|
||||
double sec;
|
||||
|
||||
// start the clock
|
||||
time(&start);
|
||||
|
||||
double tstart2, tstop2, ttime2; // algorithm metrics
|
||||
double tstart, tstop, ttime; // algorithm metrics
|
||||
|
||||
cv::Mat frame, frame_vis;
|
||||
|
||||
while(cap.read(frame) && cv::waitKey(30) != 27) // capture frame until ESC is pressed
|
||||
@ -236,10 +227,9 @@ int main(int argc, char *argv[])
|
||||
if(good_matches.size() > 0) // None matches, then RANSAC crashes
|
||||
{
|
||||
|
||||
|
||||
// -- Step 3: Estimate the pose using RANSAC approach
|
||||
pnp_detection.estimatePoseRANSAC( list_points3d_model_match, list_points2d_scene_match,
|
||||
cv::ITERATIVE, inliers_idx,
|
||||
pnpMethod, inliers_idx,
|
||||
iterationsCount, reprojectionError, confidence );
|
||||
|
||||
// -- Step 4: Catch the inliers keypoints to draw
|
||||
@ -322,8 +312,8 @@ int main(int argc, char *argv[])
|
||||
fps = counter / sec;
|
||||
|
||||
drawFPS(frame_vis, fps, yellow); // frame ratio
|
||||
double ratio = ((double)inliers_idx.rows/(double)good_matches.size())*100;
|
||||
drawConfidence(frame_vis, ratio, yellow);
|
||||
double detection_ratio = ((double)inliers_idx.rows/(double)good_matches.size())*100;
|
||||
drawConfidence(frame_vis, detection_ratio, yellow);
|
||||
|
||||
|
||||
// -- Step X: Draw some debugging text
|
||||
@ -341,9 +331,6 @@ int main(int argc, char *argv[])
|
||||
drawText2(frame_vis, text2, red);
|
||||
|
||||
cv::imshow("REAL TIME DEMO", frame_vis);
|
||||
|
||||
//cv::waitKey(0);
|
||||
|
||||
}
|
||||
|
||||
// Close and Destroy Window
|
||||
@ -353,6 +340,21 @@ int main(int argc, char *argv[])
|
||||
|
||||
}
|
||||
|
||||
/**********************************************************************************************************/
|
||||
void help()
|
||||
{
|
||||
std::cout
|
||||
<< "--------------------------------------------------------------------------" << std::endl
|
||||
<< "This program shows how to detect an object given its 3D textured model. You can choose to "
|
||||
<< "use a recorded video or the webcam." << std::endl
|
||||
<< "Usage:" << std::endl
|
||||
<< "./cpp-tutorial-pnp_detection [<pnpMethod>]" << std::endl
|
||||
<< "Keys:" << std::endl
|
||||
<< "(0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS" << std::endl
|
||||
<< "--------------------------------------------------------------------------" << std::endl
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
/**********************************************************************************************************/
|
||||
void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt)
|
||||
{
|
||||
@ -424,9 +426,6 @@ void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int
|
||||
KF.measurementMatrix.at<double>(4,10) = 1; // pitch
|
||||
KF.measurementMatrix.at<double>(5,11) = 1; // yaw
|
||||
|
||||
//std::cout << "A " << std::endl << KF.transitionMatrix << std::endl;
|
||||
//std::cout << "C " << std::endl << KF.measurementMatrix << std::endl;
|
||||
|
||||
}
|
||||
|
||||
/**********************************************************************************************************/
|
||||
|
@ -17,16 +17,14 @@
|
||||
* Set up the images paths
|
||||
*/
|
||||
|
||||
std::string tutorial_path = "../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/";
|
||||
|
||||
// COOKIES BOX [718x480]
|
||||
std::string img_path = tutorial_path + "Data/resized_IMG_3875.JPG"; // f 55
|
||||
std::string img_path = "../Data/resized_IMG_3875.JPG"; // f 55
|
||||
|
||||
// COOKIES BOX MESH
|
||||
std::string ply_read_path = tutorial_path + "Data/box.ply";
|
||||
std::string ply_read_path = "../Data/box.ply";
|
||||
|
||||
// YAML writting path
|
||||
std::string write_path = tutorial_path + "Data/cookies_ORB.yml";
|
||||
std::string write_path = "../Data/cookies_ORB.yml";
|
||||
|
||||
void help()
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user