fixed warnings

This commit is contained in:
edgarriba 2014-08-09 17:14:24 +02:00
parent 3f5d3b2d40
commit 8c4b8cc0b4
6 changed files with 99 additions and 96 deletions

View File

@ -13,9 +13,15 @@
#include <opencv2/calib3d/calib3d.hpp>
/* Functions headers */
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2);
double DOT(cv::Point3f v1, cv::Point3f v2);
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Point3f origin);
/* Functions for MöllerTrumbore intersection algorithm */
/* Functions for MöllerTrumbore intersection algorithm
* */
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
{
cv::Point3f tmp_p;

View File

@ -50,4 +50,9 @@ private:
cv::Mat _P_matrix;
};
// Functions for MöllerTrumbore intersection algorithm
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2);
double DOT(cv::Point3f v1, cv::Point3f v2);
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
#endif /* PNPPROBLEM_H_ */

View File

@ -113,9 +113,9 @@ void RobustMatcher::robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>&
// 3. Remove matches for which NN ratio is > than threshold
// clean image 1 -> image 2 matches
int removed1 = ratioTest(matches12);
ratioTest(matches12);
// clean image 2 -> image 1 matches
int removed2 = ratioTest(matches21);
ratioTest(matches21);
// 4. Remove non-symmetrical matches
symmetryTest(matches12, matches21, good_matches);
@ -140,7 +140,7 @@ void RobustMatcher::fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatc
matcher_->knnMatch(descriptors_frame, descriptors_model, matches, 2);
// 3. Remove matches for which NN ratio is > than threshold
int removed = ratioTest(matches);
ratioTest(matches);
// 4. Fill good matches container
for ( std::vector<std::vector<cv::DMatch> >::iterator

View File

@ -114,7 +114,7 @@ void drawArrow(cv::Mat image, cv::Point2i p, cv::Point2i q, cv::Scalar color, in
{
//Draw the principle line
cv::line(image, p, q, color, thickness, line_type, shift);
const double PI = 3.141592653;
const double PI = CV_PI;
//compute the angle alpha
double angle = atan2((double)p.y-q.y, (double)p.x-q.x);
//compute the coordinates of the first segment
@ -137,9 +137,6 @@ void draw3DCoordinateAxes(cv::Mat image, const std::vector<cv::Point2f> &list_po
cv::Scalar blue(255,0,0);
cv::Scalar black(0,0,0);
const double PI = 3.141592653;
int length = 50;
cv::Point2i origin = list_points2d[0];
cv::Point2i pointX = list_points2d[1];
cv::Point2i pointY = list_points2d[2];
@ -196,13 +193,11 @@ cv::Mat rot2euler(const cv::Mat & rotationMatrix)
cv::Mat euler(3,1,CV_64F);
double m00 = rotationMatrix.at<double>(0,0);
double m01 = rotationMatrix.at<double>(0,1);
double m02 = rotationMatrix.at<double>(0,2);
double m10 = rotationMatrix.at<double>(1,0);
double m11 = rotationMatrix.at<double>(1,1);
double m12 = rotationMatrix.at<double>(1,2);
double m20 = rotationMatrix.at<double>(2,0);
double m21 = rotationMatrix.at<double>(2,1);
double m22 = rotationMatrix.at<double>(2,2);
double x, y, z;

View File

@ -1,12 +1,14 @@
// C++
#include <iostream>
#include <time.h>
// OpenCV
#include <opencv2/core/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/video/tracking.hpp>
// PnP Tutorial
#include "Mesh.h"
#include "Model.h"
#include "PnPProblem.h"
@ -14,35 +16,15 @@
#include "ModelRegistration.h"
#include "Utils.h"
std::string tutorial_path = "../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/";
/** GLOBAL VARIABLES **/
// COOKIES VIDEO
std::string video_read_path = tutorial_path + "Data/box.mp4"; // mesh
std::string tutorial_path = "../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/"; // path to tutorial
// COOKIES BOX - ORB
std::string video_read_path = tutorial_path + "Data/box.mp4"; // recorded video
std::string yml_read_path = tutorial_path + "Data/cookies_ORB.yml"; // 3dpts + descriptors
std::string ply_read_path = tutorial_path + "Data/box.ply"; // mesh
// COOKIES BOX MESH
std::string ply_read_path = tutorial_path + "Data/box.ply"; // mesh
void help()
{
std::cout
<< "--------------------------------------------------------------------------" << std::endl
<< "This program shows how to detect an object given its 3D textured model. You can choose to "
<< "use a recorded video or the webcam." << std::endl
<< "Usage:" << std::endl
<< "./pnp_detection ~/path_to_video/box.mp4" << std::endl
<< "./pnp_detection " << std::endl
<< "--------------------------------------------------------------------------" << std::endl
<< std::endl;
}
/*
* Set up the intrinsic camera parameters: UVC WEBCAM
*/
// Intrinsic camera parameters: UVC WEBCAM
double f = 55; // focal length in mm
double sx = 22.3, sy = 14.9; // sensor size
double width = 640, height = 480; // image size
@ -52,10 +34,7 @@ double params_WEBCAM[] = { width*f/sx, // fx
width/2, // cx
height/2}; // cy
/*
* Set up some basic colors
*/
// Some basic colors
cv::Scalar red(0, 0, 255);
cv::Scalar green(0,255,0);
cv::Scalar blue(255,0,0);
@ -63,59 +42,82 @@ cv::Scalar yellow(0,255,255);
// Robust Matcher parameters
int numKeyPoints = 2000; // number of detected keypoints
float ratio = 0.70f; // ratio test
bool fast_match = true; // fastRobustMatch() or robustMatch()
// RANSAC parameters
int iterationsCount = 500; // number of Ransac iterations.
float reprojectionError = 2.0; // maximum allowed distance to consider it an inlier.
float confidence = 0.95; // ransac successful confidence.
// Kalman Filter parameters
int minInliersKalman = 30; // Kalman threshold updating
// PnP parameters
int pnpMethod = cv::ITERATIVE;
/**********************************************************************************************************/
/** Functions headers **/
void help();
void initKalmanFilter( cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt);
/**********************************************************************************************************/
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurements,
cv::Mat &translation_estimated, cv::Mat &rotation_estimated );
/**********************************************************************************************************/
void fillMeasurements( cv::Mat &measurements,
const cv::Mat &translation_measured, const cv::Mat &rotation_measured);
/**********************************************************************************************************/
/** Main program **/
int main(int argc, char *argv[])
{
help();
const cv::String keys =
"{help h | | print this message }"
"{camera c | | use real time camera }"
"{video v | | path to recorded video }"
"{model | | path to yml model }"
"{mesh | | path to ply mesh }"
"{keypoints k |2000 | number of keypoints to detect }"
"{ratio r |0.7 | threshold for ratio test }"
"{iterations it |500 | RANSAC maximum iterations count }"
"{error e |2.0 | RANSAC reprojection errror }"
"{confidence c |0.95 | RANSAC confidence }"
"{inliers in |30 | minimum inliers for Kalman update }"
"{method pnp |0 | PnP method: (0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS}"
"{fast f |true | use of robust fast match }"
;
cv::CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
else
{
video_read_path = parser.has("video") ? parser.get<std::string>(0) : video_read_path;
yml_read_path = parser.has("model") ? parser.get<std::string>(1) : yml_read_path;
ply_read_path = parser.has("mesh") ? parser.get<std::string>(2) : ply_read_path;
numKeyPoints = !parser.has("keypoints") ? parser.get<int>("keypoints") : numKeyPoints;
ratio = !parser.has("ratio") ? parser.get<float>("ratio") : ratio;
fast_match = !parser.has("fast") ? parser.get<bool>("fast") : fast_match;
iterationsCount = !parser.has("iterations") ? parser.get<int>("iterations") : iterationsCount;
reprojectionError = !parser.has("error") ? parser.get<float>("error") : reprojectionError;
confidence = !parser.has("confidence") ? parser.get<float>("confidence") : confidence;
minInliersKalman = !parser.has("inliers") ? parser.get<int>("inliers") : minInliersKalman;
pnpMethod = !parser.has("method") ? parser.get<int>("method") : pnpMethod;
}
PnPProblem pnp_detection(params_WEBCAM);
PnPProblem pnp_detection_est(params_WEBCAM);
Model model; // instantiate Model object
model.load(yml_read_path); // load a 3D textured object model
Mesh mesh; // instantiate Mesh object
mesh.load(ply_read_path); // load an object mesh
Mesh mesh; // instantiate Mesh object
mesh.load(ply_read_path); // load an object mesh
RobustMatcher rmatcher; // instantiate RobustMatcher
@ -125,33 +127,25 @@ int main(int argc, char *argv[])
rmatcher.setFeatureDetector(detector); // set feature detector
rmatcher.setDescriptorExtractor(extractor); // set descriptor extractor
cv::Ptr<cv::flann::IndexParams> indexParams = cv::makePtr<cv::flann::LshIndexParams>(6, 12, 1); // instantiate LSH index parameters
cv::Ptr<cv::flann::SearchParams> searchParams = cv::makePtr<cv::flann::SearchParams>(50); // instantiate flann search parameters
cv::DescriptorMatcher * matcher = new cv::FlannBasedMatcher(indexParams, searchParams); // instantiate FlannBased matcher
rmatcher.setDescriptorMatcher(matcher); // set matcher
rmatcher.setRatio(ratio); // set ratio test parameter
cv::KalmanFilter KF; // instantiate Kalman Filter
int nStates = 18; // the number of states
int nMeasurements = 6; // the number of measured states
int nInputs = 0; // the number of action control
int nInputs = 0; // the number of control actions
double dt = 0.125; // time between measurements (1/FPS)
initKalmanFilter(KF, nStates, nMeasurements, nInputs, dt); // init function
cv::Mat measurements(nMeasurements, 1, CV_64F); measurements.setTo(cv::Scalar(0));
bool good_measurement = false;
// Get the MODEL INFO
std::vector<cv::Point3f> list_points3d_model = model.get_points3d(); // list with model 3D coordinates
cv::Mat descriptors_model = model.get_descriptors(); // list with descriptors of each 3D coordinate
@ -161,8 +155,7 @@ int main(int argc, char *argv[])
cv::VideoCapture cap; // instantiate VideoCapture
(argc < 2) ? cap.open(video_read_path) : cap.open(argv[1]); // open the default camera device
// or a recorder video
cap.open(video_read_path); // open a recorded video
if(!cap.isOpened()) // check if we succeeded
{
@ -170,25 +163,23 @@ int main(int argc, char *argv[])
return -1;
}
// Input parameters
if(argc > 2) pnpMethod = 0;
// start and end times
time_t start, end;
// fps calculated using number of frames / seconds
double fps;
// floating point seconds elapsed since start
double fps, sec;
// frame counter
int counter = 0;
// floating point seconds elapsed since start
double sec;
// start the clock
time(&start);
double tstart2, tstop2, ttime2; // algorithm metrics
double tstart, tstop, ttime; // algorithm metrics
cv::Mat frame, frame_vis;
while(cap.read(frame) && cv::waitKey(30) != 27) // capture frame until ESC is pressed
@ -236,10 +227,9 @@ int main(int argc, char *argv[])
if(good_matches.size() > 0) // None matches, then RANSAC crashes
{
// -- Step 3: Estimate the pose using RANSAC approach
pnp_detection.estimatePoseRANSAC( list_points3d_model_match, list_points2d_scene_match,
cv::ITERATIVE, inliers_idx,
pnpMethod, inliers_idx,
iterationsCount, reprojectionError, confidence );
// -- Step 4: Catch the inliers keypoints to draw
@ -322,8 +312,8 @@ int main(int argc, char *argv[])
fps = counter / sec;
drawFPS(frame_vis, fps, yellow); // frame ratio
double ratio = ((double)inliers_idx.rows/(double)good_matches.size())*100;
drawConfidence(frame_vis, ratio, yellow);
double detection_ratio = ((double)inliers_idx.rows/(double)good_matches.size())*100;
drawConfidence(frame_vis, detection_ratio, yellow);
// -- Step X: Draw some debugging text
@ -341,9 +331,6 @@ int main(int argc, char *argv[])
drawText2(frame_vis, text2, red);
cv::imshow("REAL TIME DEMO", frame_vis);
//cv::waitKey(0);
}
// Close and Destroy Window
@ -353,6 +340,21 @@ int main(int argc, char *argv[])
}
/**********************************************************************************************************/
void help()
{
std::cout
<< "--------------------------------------------------------------------------" << std::endl
<< "This program shows how to detect an object given its 3D textured model. You can choose to "
<< "use a recorded video or the webcam." << std::endl
<< "Usage:" << std::endl
<< "./cpp-tutorial-pnp_detection [<pnpMethod>]" << std::endl
<< "Keys:" << std::endl
<< "(0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS" << std::endl
<< "--------------------------------------------------------------------------" << std::endl
<< std::endl;
}
/**********************************************************************************************************/
void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt)
{
@ -424,9 +426,6 @@ void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int
KF.measurementMatrix.at<double>(4,10) = 1; // pitch
KF.measurementMatrix.at<double>(5,11) = 1; // yaw
//std::cout << "A " << std::endl << KF.transitionMatrix << std::endl;
//std::cout << "C " << std::endl << KF.measurementMatrix << std::endl;
}
/**********************************************************************************************************/

View File

@ -17,16 +17,14 @@
* Set up the images paths
*/
std::string tutorial_path = "../../samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/";
// COOKIES BOX [718x480]
std::string img_path = tutorial_path + "Data/resized_IMG_3875.JPG"; // f 55
std::string img_path = "../Data/resized_IMG_3875.JPG"; // f 55
// COOKIES BOX MESH
std::string ply_read_path = tutorial_path + "Data/box.ply";
std::string ply_read_path = "../Data/box.ply";
// YAML writting path
std::string write_path = tutorial_path + "Data/cookies_ORB.yml";
std::string write_path = "../Data/cookies_ORB.yml";
void help()
{