used new device layer for cv::gpu::integral

This commit is contained in:
Vladislav Vinogradov 2013-08-27 13:32:05 +04:00
parent 224f18b06c
commit 7839dbd2c4
6 changed files with 171 additions and 618 deletions

View File

@ -248,60 +248,3 @@ PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve,
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Integral
PERF_TEST_P(Sz, Integral,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src(src);
cv::cuda::GpuMat dst;
cv::cuda::GpuMat d_buf;
TEST_CYCLE() cv::cuda::integral(d_src, dst, d_buf);
CUDA_SANITY_CHECK(dst);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::integral(src, dst);
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// IntegralSqr
PERF_TEST_P(Sz, IntegralSqr,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src(src);
cv::cuda::GpuMat dst, buf;
TEST_CYCLE() cv::cuda::sqrIntegral(d_src, dst, buf);
CUDA_SANITY_CHECK(dst);
}
else
{
FAIL_NO_CPU();
}
}

View File

@ -465,3 +465,60 @@ PERF_TEST_P(Sz, MeanStdDev,
SANITY_CHECK(cpu_stddev);
}
}
//////////////////////////////////////////////////////////////////////
// Integral
PERF_TEST_P(Sz, Integral,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src(src);
cv::cuda::GpuMat dst;
cv::cuda::GpuMat d_buf;
TEST_CYCLE() cv::cuda::integral(d_src, dst, d_buf);
CUDA_SANITY_CHECK(dst);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::integral(src, dst);
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// IntegralSqr
PERF_TEST_P(Sz, IntegralSqr,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src(src);
cv::cuda::GpuMat dst, buf;
TEST_CYCLE() cv::cuda::sqrIntegral(d_src, dst, buf);
CUDA_SANITY_CHECK(dst);
}
else
{
FAIL_NO_CPU();
}
}

View File

@ -40,433 +40,61 @@
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/opencv_modules.hpp"
#include "opencv2/core/cuda/common.hpp"
#ifndef HAVE_OPENCV_CUDEV
namespace cv { namespace cuda { namespace device
#error "opencv_cudev is required"
#else
#include "opencv2/cudaarithm.hpp"
#include "opencv2/cudev.hpp"
using namespace cv::cudev;
////////////////////////////////////////////////////////////////////////
// integral
void cv::cuda::integral(InputArray _src, OutputArray _dst, GpuMat& buffer, Stream& stream)
{
namespace imgproc
{
// Utility function to extract unsigned chars from an unsigned integer
__device__ uchar4 int_to_uchar4(unsigned int in)
{
uchar4 bytes;
bytes.x = (in & 0x000000ff) >> 0;
bytes.y = (in & 0x0000ff00) >> 8;
bytes.z = (in & 0x00ff0000) >> 16;
bytes.w = (in & 0xff000000) >> 24;
return bytes;
}
GpuMat src = _src.getGpuMat();
__global__ void shfl_integral_horizontal(const PtrStep<uint4> img, PtrStep<uint4> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ int sums[128];
CV_Assert( src.type() == CV_8UC1 );
const int id = threadIdx.x;
const int lane_id = id % warpSize;
const int warp_id = id / warpSize;
GpuMat_<int>& res = (GpuMat_<int>&) buffer;
const uint4 data = img(blockIdx.x, id);
gridIntegral(globPtr<uchar>(src), res, stream);
const uchar4 a = int_to_uchar4(data.x);
const uchar4 b = int_to_uchar4(data.y);
const uchar4 c = int_to_uchar4(data.z);
const uchar4 d = int_to_uchar4(data.w);
_dst.create(src.rows + 1, src.cols + 1, CV_32SC1);
GpuMat dst = _dst.getGpuMat();
int result[16];
dst.setTo(Scalar::all(0), stream);
result[0] = a.x;
result[1] = result[0] + a.y;
result[2] = result[1] + a.z;
result[3] = result[2] + a.w;
GpuMat inner = dst(Rect(1, 1, src.cols, src.rows));
res.copyTo(inner, stream);
}
result[4] = result[3] + b.x;
result[5] = result[4] + b.y;
result[6] = result[5] + b.z;
result[7] = result[6] + b.w;
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral
result[8] = result[7] + c.x;
result[9] = result[8] + c.y;
result[10] = result[9] + c.z;
result[11] = result[10] + c.w;
void cv::cuda::sqrIntegral(InputArray _src, OutputArray _dst, GpuMat& buf, Stream& stream)
{
GpuMat src = _src.getGpuMat();
result[12] = result[11] + d.x;
result[13] = result[12] + d.y;
result[14] = result[13] + d.z;
result[15] = result[14] + d.w;
CV_Assert( src.type() == CV_8UC1 );
int sum = result[15];
GpuMat_<double>& res = (GpuMat_<double>&) buf;
// the prefix sum for each thread's 16 value is computed,
// now the final sums (result[15]) need to be shared
// with the other threads and add. To do this,
// the __shfl_up() instruction is used and a shuffle scan
// operation is performed to distribute the sums to the correct
// threads
#pragma unroll
for (int i = 1; i < 32; i *= 2)
{
const int n = __shfl_up(sum, i, 32);
gridIntegral(sqr_(cvt_<int>(globPtr<uchar>(src))), res, stream);
if (lane_id >= i)
{
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] += n;
_dst.create(src.rows + 1, src.cols + 1, CV_64FC1);
GpuMat dst = _dst.getGpuMat();
sum += n;
}
}
dst.setTo(Scalar::all(0), stream);
// Now the final sum for the warp must be shared
// between warps. This is done by each warp
// having a thread store to shared memory, then
// having some other warp load the values and
// compute a prefix sum, again by using __shfl_up.
// The results are uniformly added back to the warps.
// last thread in the warp holding sum of the warp
// places that in shared
if (threadIdx.x % warpSize == warpSize - 1)
sums[warp_id] = result[15];
GpuMat inner = dst(Rect(1, 1, src.cols, src.rows));
res.copyTo(inner, stream);
}
__syncthreads();
if (warp_id == 0)
{
int warp_sum = sums[lane_id];
#pragma unroll
for (int i = 1; i <= 32; i *= 2)
{
const int n = __shfl_up(warp_sum, i, 32);
if (lane_id >= i)
warp_sum += n;
}
sums[lane_id] = warp_sum;
}
__syncthreads();
int blockSum = 0;
// fold in unused warp
if (warp_id > 0)
{
blockSum = sums[warp_id - 1];
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] += blockSum;
}
// assemble result
// Each thread has 16 values to write, which are
// now integer data (to avoid overflow). Instead of
// each thread writing consecutive uint4s, the
// approach shown here experiments using
// the shuffle command to reformat the data
// inside the registers so that each thread holds
// consecutive data to be written so larger contiguous
// segments can be assembled for writing.
/*
For example data that needs to be written as
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3
but is stored in registers (r0..r3), in four threads (0..3) as:
threadId 0 1 2 3
r0 x0 y0 z0 w0
r1 x1 y1 z1 w1
r2 x2 y2 z2 w2
r3 x3 y3 z3 w3
after apply __shfl_xor operations to move data between registers r1..r3:
threadId 00 01 10 11
x0 y0 z0 w0
xor(01)->y1 x1 w1 z1
xor(10)->z2 w2 x2 y2
xor(11)->w3 z3 y3 x3
and now x0..x3, and z0..z3 can be written out in order by all threads.
In the current code, each register above is actually representing
four integers to be written as uint4's to GMEM.
*/
result[4] = __shfl_xor(result[4] , 1, 32);
result[5] = __shfl_xor(result[5] , 1, 32);
result[6] = __shfl_xor(result[6] , 1, 32);
result[7] = __shfl_xor(result[7] , 1, 32);
result[8] = __shfl_xor(result[8] , 2, 32);
result[9] = __shfl_xor(result[9] , 2, 32);
result[10] = __shfl_xor(result[10], 2, 32);
result[11] = __shfl_xor(result[11], 2, 32);
result[12] = __shfl_xor(result[12], 3, 32);
result[13] = __shfl_xor(result[13], 3, 32);
result[14] = __shfl_xor(result[14], 3, 32);
result[15] = __shfl_xor(result[15], 3, 32);
uint4* integral_row = integral.ptr(blockIdx.x);
uint4 output;
///////
if (threadIdx.x % 4 == 0)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 2)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output;
///////
if (threadIdx.x % 4 == 2)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output;
// continuning from the above example,
// this use of __shfl_xor() places the y0..y3 and w0..w3 data
// in order.
#pragma unroll
for (int i = 0; i < 16; ++i)
result[i] = __shfl_xor(result[i], 1, 32);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 2)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output;
///////
if (threadIdx.x % 4 == 2)
output = make_uint4(result[0], result[1], result[2], result[3]);
if (threadIdx.x % 4 == 3)
output = make_uint4(result[4], result[5], result[6], result[7]);
if (threadIdx.x % 4 == 0)
output = make_uint4(result[8], result[9], result[10], result[11]);
if (threadIdx.x % 4 == 1)
output = make_uint4(result[12], result[13], result[14], result[15]);
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output;
#endif
}
// This kernel computes columnwise prefix sums. When the data input is
// the row sums from above, this completes the integral image.
// The approach here is to have each block compute a local set of sums.
// First , the data covered by the block is loaded into shared memory,
// then instead of performing a sum in shared memory using __syncthreads
// between stages, the data is reformatted so that the necessary sums
// occur inside warps and the shuffle scan operation is used.
// The final set of sums from the block is then propgated, with the block
// computing "down" the image and adding the running sum to the local
// block sums.
__global__ void shfl_integral_vertical(PtrStepSz<unsigned int> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ unsigned int sums[32][9];
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
const int lane_id = tidx % 8;
if (tidx >= integral.cols)
return;
sums[threadIdx.x][threadIdx.y] = 0;
__syncthreads();
unsigned int stepSum = 0;
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
{
unsigned int* p = integral.ptr(y) + tidx;
unsigned int sum = *p;
sums[threadIdx.x][threadIdx.y] = sum;
__syncthreads();
// place into SMEM
// shfl scan reduce the SMEM, reformating so the column
// sums are computed in a warp
// then read out properly
const int j = threadIdx.x % 8;
const int k = threadIdx.x / 8 + threadIdx.y * 4;
int partial_sum = sums[k][j];
for (int i = 1; i <= 8; i *= 2)
{
int n = __shfl_up(partial_sum, i, 32);
if (lane_id >= i)
partial_sum += n;
}
sums[k][j] = partial_sum;
__syncthreads();
if (threadIdx.y > 0)
sum += sums[threadIdx.x][threadIdx.y - 1];
sum += stepSum;
stepSum += sums[threadIdx.x][blockDim.y - 1];
__syncthreads();
*p = sum;
}
#endif
}
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream)
{
{
// each thread handles 16 values, use 1 block/row
// save, becouse step is actually can't be less 512 bytes
int block = integral.cols / 16;
// launch 1 block / row
const int grid = img.rows;
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );
shfl_integral_horizontal<<<grid, block, 0, stream>>>((const PtrStepSz<uint4>) img, (PtrStepSz<uint4>) integral);
cudaSafeCall( cudaGetLastError() );
}
{
const dim3 block(32, 8);
const dim3 grid(divUp(integral.cols, block.x), 1);
shfl_integral_vertical<<<grid, block, 0, stream>>>(integral);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void shfl_integral_vertical(PtrStepSz<unsigned int> buffer, PtrStepSz<unsigned int> integral)
{
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
__shared__ unsigned int sums[32][9];
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
const int lane_id = tidx % 8;
if (tidx >= integral.cols)
return;
sums[threadIdx.x][threadIdx.y] = 0;
__syncthreads();
unsigned int stepSum = 0;
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
{
unsigned int* p = buffer.ptr(y) + tidx;
unsigned int* dst = integral.ptr(y + 1) + tidx + 1;
unsigned int sum = *p;
sums[threadIdx.x][threadIdx.y] = sum;
__syncthreads();
// place into SMEM
// shfl scan reduce the SMEM, reformating so the column
// sums are computed in a warp
// then read out properly
const int j = threadIdx.x % 8;
const int k = threadIdx.x / 8 + threadIdx.y * 4;
int partial_sum = sums[k][j];
for (int i = 1; i <= 8; i *= 2)
{
int n = __shfl_up(partial_sum, i, 32);
if (lane_id >= i)
partial_sum += n;
}
sums[k][j] = partial_sum;
__syncthreads();
if (threadIdx.y > 0)
sum += sums[threadIdx.x][threadIdx.y - 1];
sum += stepSum;
stepSum += sums[threadIdx.x][blockDim.y - 1];
__syncthreads();
*dst = sum;
}
#endif
}
// used for frame preprocessing before Soft Cascade evaluation: no synchronization needed
void shfl_integral_gpu_buffered(PtrStepSzb img, PtrStepSz<uint4> buffer, PtrStepSz<unsigned int> integral,
int blockStep, cudaStream_t stream)
{
{
const int block = blockStep;
const int grid = img.rows;
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );
shfl_integral_horizontal<<<grid, block, 0, stream>>>((PtrStepSz<uint4>) img, buffer);
cudaSafeCall( cudaGetLastError() );
}
{
const dim3 block(32, 8);
const dim3 grid(divUp(integral.cols, block.x), 1);
shfl_integral_vertical<<<grid, block, 0, stream>>>((PtrStepSz<uint>)buffer, integral);
cudaSafeCall( cudaGetLastError() );
}
}
}
}}}
#endif /* CUDA_DISABLER */
#endif

View File

@ -294,116 +294,4 @@ void cv::cuda::normalize(InputArray _src, OutputArray dst, double a, double b, i
}
}
////////////////////////////////////////////////////////////////////////
// integral
namespace cv { namespace cuda { namespace device
{
namespace imgproc
{
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream);
}
}}}
void cv::cuda::integral(InputArray _src, OutputArray _dst, GpuMat& buffer, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
cudaStream_t stream = StreamAccessor::getStream(_stream);
cv::Size whole;
cv::Point offset;
src.locateROI(whole, offset);
if (deviceSupports(WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048
&& offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x))
{
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer);
cv::cuda::device::imgproc::shfl_integral_gpu(src, buffer, stream);
_dst.create(src.rows + 1, src.cols + 1, CV_32SC1);
GpuMat dst = _dst.getGpuMat();
dst.setTo(Scalar::all(0), _stream);
GpuMat inner = dst(Rect(1, 1, src.cols, src.rows));
GpuMat res = buffer(Rect(0, 0, src.cols, src.rows));
res.copyTo(inner, _stream);
}
else
{
#ifndef HAVE_OPENCV_CUDALEGACY
throw_no_cuda();
#else
_dst.create(src.rows + 1, src.cols + 1, CV_32SC1);
GpuMat dst = _dst.getGpuMat();
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::cuda::getDevice()) );
Ncv32u bufSize;
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer);
NppStStreamHandler h(stream);
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step),
dst.ptr<Ncv32u>(), static_cast<int>(dst.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
#endif
}
}
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral
void cv::cuda::sqrIntegral(InputArray _src, OutputArray _dst, GpuMat& buf, Stream& _stream)
{
#ifndef HAVE_OPENCV_CUDALEGACY
(void) _src;
(void) _dst;
(void) _stream;
throw_no_cuda();
#else
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8U );
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::cuda::getDevice()) );
Ncv32u bufSize;
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
ensureSizeIsEnough(1, bufSize, CV_8U, buf);
cudaStream_t stream = StreamAccessor::getStream(_stream);
NppStStreamHandler h(stream);
_dst.create(src.rows + 1, src.cols + 1, CV_64F);
GpuMat dst = _dst.getGpuMat();
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step),
dst.ptr<Ncv64u>(0), static_cast<int>(dst.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
#endif
}
#endif

View File

@ -125,43 +125,6 @@ INSTANTIATE_TEST_CASE_P(CUDA_Arithm, GEMM, testing::Combine(
ALL_GEMM_FLAGS,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
PARAM_TEST_CASE(Integral, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Integral, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
cv::cuda::integral(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::integral(src, dst_gold, CV_32S);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Integral, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////
// MulSpectrums

View File

@ -816,4 +816,78 @@ INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MeanStdDev, testing::Combine(
DIFFERENT_SIZES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
PARAM_TEST_CASE(Integral, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Integral, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
cv::cuda::integral(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::integral(src, dst_gold, CV_32S);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Integral, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// IntegralSqr
PARAM_TEST_CASE(IntegralSqr, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(IntegralSqr, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_64FC1, useRoi);
cv::cuda::sqrIntegral(loadMat(src, useRoi), dst);
cv::Mat dst_gold, temp;
cv::integral(src, temp, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, IntegralSqr, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
#endif // HAVE_CUDA