Merge pull request #3126 from avdmitry:move_KDTree_to_ml

This commit is contained in:
Vadim Pisarevsky 2014-09-14 18:57:23 +00:00
commit 4057e27539
9 changed files with 288 additions and 185 deletions

View File

@ -747,93 +747,6 @@ public:
int minusStep, plusStep;
};
/*!
Fast Nearest Neighbor Search Class.
The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last
approximate (or accurate) nearest neighbor search in multi-dimensional spaces.
First, a set of vectors is passed to KDTree::KDTree() constructor
or KDTree::build() method, where it is reordered.
Then arbitrary vectors can be passed to KDTree::findNearest() methods, which
find the K nearest neighbors among the vectors from the initial set.
The user can balance between the speed and accuracy of the search by varying Emax
parameter, which is the number of leaves that the algorithm checks.
The larger parameter values yield more accurate results at the expense of lower processing speed.
\code
KDTree T(points, false);
const int K = 3, Emax = INT_MAX;
int idx[K];
float dist[K];
T.findNearest(query_vec, K, Emax, idx, 0, dist);
CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]);
\endcode
*/
class CV_EXPORTS_W KDTree
{
public:
/*!
The node of the search tree.
*/
struct Node
{
Node() : idx(-1), left(-1), right(-1), boundary(0.f) {}
Node(int _idx, int _left, int _right, float _boundary)
: idx(_idx), left(_left), right(_right), boundary(_boundary) {}
//! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point)
int idx;
//! node indices of the left and the right branches
int left, right;
//! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right
float boundary;
};
//! the default constructor
CV_WRAP KDTree();
//! the full constructor that builds the search tree
CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false);
//! the full constructor that builds the search tree
CV_WRAP KDTree(InputArray points, InputArray _labels,
bool copyAndReorderPoints = false);
//! builds the search tree
CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false);
//! builds the search tree
CV_WRAP void build(InputArray points, InputArray labels,
bool copyAndReorderPoints = false);
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
CV_WRAP int findNearest(InputArray vec, int K, int Emax,
OutputArray neighborsIdx,
OutputArray neighbors = noArray(),
OutputArray dist = noArray(),
OutputArray labels = noArray()) const;
//! finds all the points from the initial set that belong to the specified box
CV_WRAP void findOrthoRange(InputArray minBounds,
InputArray maxBounds,
OutputArray neighborsIdx,
OutputArray neighbors = noArray(),
OutputArray labels = noArray()) const;
//! returns vectors with the specified indices
CV_WRAP void getPoints(InputArray idx, OutputArray pts,
OutputArray labels = noArray()) const;
//! return a vector with the specified index
const float* getPoint(int ptidx, int* label = 0) const;
//! returns the search space dimensionality
CV_WRAP int dims() const;
std::vector<Node> nodes; //!< all the tree nodes
CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
CV_PROP std::vector<int> labels; //!< the parallel array of labels.
CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
};
/*!
Random Number Generator

View File

@ -1,2 +1,2 @@
set(the_description "2D Features Framework")
ocv_define_module(features2d opencv_imgproc opencv_flann OPTIONAL opencv_highgui)
ocv_define_module(features2d opencv_imgproc opencv_ml opencv_flann OPTIONAL opencv_highgui)

View File

@ -12,6 +12,7 @@
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@ -156,91 +157,6 @@ void NearestNeighborTest::run( int /*start_from*/ ) {
ts->set_failed_test_info( code );
}
//--------------------------------------------------------------------------------
class CV_KDTreeTest_CPP : public NearestNeighborTest
{
public:
CV_KDTreeTest_CPP() {}
protected:
virtual void createModel( const Mat& data );
virtual int checkGetPoins( const Mat& data );
virtual int findNeighbors( Mat& points, Mat& neighbors );
virtual int checkFindBoxed();
virtual void releaseModel();
KDTree* tr;
};
void CV_KDTreeTest_CPP::createModel( const Mat& data )
{
tr = new KDTree( data, false );
}
int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data )
{
Mat res1( data.size(), data.type() ),
res3( data.size(), data.type() );
Mat idxs( 1, data.rows, CV_32SC1 );
for( int pi = 0; pi < data.rows; pi++ )
{
idxs.at<int>(0, pi) = pi;
// 1st way
const float* point = tr->getPoint(pi);
for( int di = 0; di < data.cols; di++ )
res1.at<float>(pi, di) = point[di];
}
// 3d way
tr->getPoints( idxs, res3 );
if( cvtest::norm( res1, data, NORM_L1) != 0 ||
cvtest::norm( res3, data, NORM_L1) != 0)
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
int CV_KDTreeTest_CPP::checkFindBoxed()
{
vector<float> min( dims, static_cast<float>(minValue)), max(dims, static_cast<float>(maxValue));
vector<int> indices;
tr->findOrthoRange( min, max, indices );
// TODO check indices
if( (int)indices.size() != featuresCount)
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors )
{
const int emax = 20;
Mat neighbors2( neighbors.size(), CV_32SC1 );
int j;
for( int pi = 0; pi < points.rows; pi++ )
{
// 1st way
Mat nrow = neighbors.row(pi);
tr->findNearest( points.row(pi), neighbors.cols, emax, nrow );
// 2nd way
vector<int> neighborsIdx2( neighbors2.cols, 0 );
tr->findNearest( points.row(pi), neighbors2.cols, emax, neighborsIdx2 );
vector<int>::const_iterator it2 = neighborsIdx2.begin();
for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ )
neighbors2.at<int>(pi,j) = *it2;
}
// compare results
if( cvtest::norm( neighbors, neighbors2, NORM_L1 ) != 0 )
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
void CV_KDTreeTest_CPP::releaseModel()
{
delete tr;
}
//--------------------------------------------------------------------------------
class CV_FlannTest : public NearestNeighborTest
{
@ -402,7 +318,6 @@ void CV_FlannSavedIndexTest::createModel(const cv::Mat &data)
remove( filename.c_str() );
}
TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); }
TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); }

View File

@ -13,6 +13,7 @@
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/ml.hpp"
#include <iostream>
#endif

View File

@ -12,6 +12,7 @@
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@ -228,10 +229,12 @@ public:
class CV_EXPORTS_W_MAP Params
{
public:
Params(int defaultK=10, bool isclassifier=true);
Params(int defaultK=10, bool isclassifier_=true, int Emax_=INT_MAX, int algorithmType_=BRUTE_FORCE);
CV_PROP_RW int defaultK;
CV_PROP_RW bool isclassifier;
CV_PROP_RW int Emax; // for implementation with KDTree
CV_PROP_RW int algorithmType;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
@ -239,6 +242,9 @@ public:
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const = 0;
enum { BRUTE_FORCE=1, KDTREE=2 };
static Ptr<KNearest> create(const Params& params=Params());
};

View File

@ -13,6 +13,7 @@
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@ -42,13 +43,14 @@
//M*/
#include "precomp.hpp"
#include "kdtree.hpp"
namespace cv
{
namespace ml
{
// This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and
// adopted to work with the new OpenCV data structures. It's in cxcore to be shared by
// both cv (CvFeatureTree) and ml (kNN).
// adopted to work with the new OpenCV data structures.
// The algorithm is taken from:
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
@ -529,3 +531,4 @@ int KDTree::dims() const
}
}
}

97
modules/ml/src/kdtree.hpp Normal file
View File

@ -0,0 +1,97 @@
#ifndef KDTREE_H
#define KDTREE_H
#include "precomp.hpp"
namespace cv
{
namespace ml
{
/*!
Fast Nearest Neighbor Search Class.
The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last
approximate (or accurate) nearest neighbor search in multi-dimensional spaces.
First, a set of vectors is passed to KDTree::KDTree() constructor
or KDTree::build() method, where it is reordered.
Then arbitrary vectors can be passed to KDTree::findNearest() methods, which
find the K nearest neighbors among the vectors from the initial set.
The user can balance between the speed and accuracy of the search by varying Emax
parameter, which is the number of leaves that the algorithm checks.
The larger parameter values yield more accurate results at the expense of lower processing speed.
\code
KDTree T(points, false);
const int K = 3, Emax = INT_MAX;
int idx[K];
float dist[K];
T.findNearest(query_vec, K, Emax, idx, 0, dist);
CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]);
\endcode
*/
class CV_EXPORTS_W KDTree
{
public:
/*!
The node of the search tree.
*/
struct Node
{
Node() : idx(-1), left(-1), right(-1), boundary(0.f) {}
Node(int _idx, int _left, int _right, float _boundary)
: idx(_idx), left(_left), right(_right), boundary(_boundary) {}
//! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point)
int idx;
//! node indices of the left and the right branches
int left, right;
//! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right
float boundary;
};
//! the default constructor
CV_WRAP KDTree();
//! the full constructor that builds the search tree
CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false);
//! the full constructor that builds the search tree
CV_WRAP KDTree(InputArray points, InputArray _labels,
bool copyAndReorderPoints = false);
//! builds the search tree
CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false);
//! builds the search tree
CV_WRAP void build(InputArray points, InputArray labels,
bool copyAndReorderPoints = false);
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
CV_WRAP int findNearest(InputArray vec, int K, int Emax,
OutputArray neighborsIdx,
OutputArray neighbors = noArray(),
OutputArray dist = noArray(),
OutputArray labels = noArray()) const;
//! finds all the points from the initial set that belong to the specified box
CV_WRAP void findOrthoRange(InputArray minBounds,
InputArray maxBounds,
OutputArray neighborsIdx,
OutputArray neighbors = noArray(),
OutputArray labels = noArray()) const;
//! returns vectors with the specified indices
CV_WRAP void getPoints(InputArray idx, OutputArray pts,
OutputArray labels = noArray()) const;
//! return a vector with the specified index
const float* getPoint(int ptidx, int* label = 0) const;
//! returns the search space dimensionality
CV_WRAP int dims() const;
std::vector<Node> nodes; //!< all the tree nodes
CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
CV_PROP std::vector<int> labels; //!< the parallel array of labels.
CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
};
}
}
#endif

View File

@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include "kdtree.hpp"
/****************************************************************************************\
* K-Nearest Neighbors Classifier *
@ -49,13 +50,14 @@
namespace cv {
namespace ml {
KNearest::Params::Params(int k, bool isclassifier_)
KNearest::Params::Params(int k, bool isclassifier_, int Emax_, int algorithmType_) :
defaultK(k),
isclassifier(isclassifier_),
Emax(Emax_),
algorithmType(algorithmType_)
{
defaultK = k;
isclassifier = isclassifier_;
}
class KNearestImpl : public KNearest
{
public:
@ -352,8 +354,156 @@ public:
Params params;
};
class KNearestKDTreeImpl : public KNearest
{
public:
KNearestKDTreeImpl(const Params& p)
{
params = p;
}
virtual ~KNearestKDTreeImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getDefaultModelName() const { return "opencv_ml_knn_kd"; }
void clear()
{
samples.release();
responses.release();
}
int getVarCount() const { return samples.cols; }
bool train( const Ptr<TrainData>& data, int flags )
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
if( !update )
{
clear();
}
else
{
CV_Assert( new_samples.cols == samples.cols &&
new_responses.cols == responses.cols );
}
samples.push_back(new_samples);
responses.push_back(new_responses);
tr.build(samples);
return true;
}
float findNearest( InputArray _samples, int k,
OutputArray _results,
OutputArray _neighborResponses,
OutputArray _dists ) const
{
float result = 0.f;
CV_Assert( 0 < k );
Mat test_samples = _samples.getMat();
CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols );
int testcount = test_samples.rows;
if( testcount == 0 )
{
_results.release();
_neighborResponses.release();
_dists.release();
return 0.f;
}
Mat res, nr, d;
if( _results.needed() )
{
_results.create(testcount, 1, CV_32F);
res = _results.getMat();
}
if( _neighborResponses.needed() )
{
_neighborResponses.create(testcount, k, CV_32F);
nr = _neighborResponses.getMat();
}
if( _dists.needed() )
{
_dists.create(testcount, k, CV_32F);
d = _dists.getMat();
}
for (int i=0; i<test_samples.rows; ++i)
{
Mat _res, _nr, _d;
if (res.rows>i)
{
_res = res.row(i);
}
if (nr.rows>i)
{
_nr = nr.row(i);
}
if (d.rows>i)
{
_d = d.row(i);
}
tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray());
}
return result; // currently always 0
}
float predict(InputArray inputs, OutputArray outputs, int) const
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
KDTree tr;
Mat samples;
Mat responses;
Params params;
};
Ptr<KNearest> KNearest::create(const Params& p)
{
if (KDTREE==p.algorithmType)
{
return makePtr<KNearestKDTreeImpl>(p);
}
return makePtr<KNearestImpl>(p);
}

View File

@ -312,9 +312,11 @@ void CV_KNearestTest::run( int /*start_from*/ )
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
int code = cvtest::TS::OK;
Ptr<KNearest> knearest = KNearest::create(true);
knearest->train(trainData, cv::ml::ROW_SAMPLE, trainLabels);
knearest->findNearest( testData, 4, bestLabels);
// KNearest default implementation
Ptr<KNearest> knearest = KNearest::create();
knearest->train(trainData, ml::ROW_SAMPLE, trainLabels);
knearest->findNearest(testData, 4, bestLabels);
float err;
if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
{
@ -326,6 +328,22 @@ void CV_KNearestTest::run( int /*start_from*/ )
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err );
code = cvtest::TS::FAIL_BAD_ACCURACY;
}
// KNearest KDTree implementation
Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE));
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
knearestKdt->findNearest(testData, 4, bestLabels);
if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
{
ts->printf( cvtest::TS::LOG, "Bad output labels.\n" );
code = cvtest::TS::FAIL_INVALID_OUTPUT;
}
else if( err > 0.01f )
{
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err );
code = cvtest::TS::FAIL_BAD_ACCURACY;
}
ts->set_failed_test_info( code );
}