diff --git a/modules/core/include/opencv2/core.hpp b/modules/core/include/opencv2/core.hpp index 6d3d0255c..a258e8c4d 100644 --- a/modules/core/include/opencv2/core.hpp +++ b/modules/core/include/opencv2/core.hpp @@ -747,93 +747,6 @@ public: int minusStep, plusStep; }; - - -/*! - Fast Nearest Neighbor Search Class. - - The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last - approximate (or accurate) nearest neighbor search in multi-dimensional spaces. - - First, a set of vectors is passed to KDTree::KDTree() constructor - or KDTree::build() method, where it is reordered. - - Then arbitrary vectors can be passed to KDTree::findNearest() methods, which - find the K nearest neighbors among the vectors from the initial set. - The user can balance between the speed and accuracy of the search by varying Emax - parameter, which is the number of leaves that the algorithm checks. - The larger parameter values yield more accurate results at the expense of lower processing speed. - - \code - KDTree T(points, false); - const int K = 3, Emax = INT_MAX; - int idx[K]; - float dist[K]; - T.findNearest(query_vec, K, Emax, idx, 0, dist); - CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]); - \endcode -*/ -class CV_EXPORTS_W KDTree -{ -public: - /*! - The node of the search tree. - */ - struct Node - { - Node() : idx(-1), left(-1), right(-1), boundary(0.f) {} - Node(int _idx, int _left, int _right, float _boundary) - : idx(_idx), left(_left), right(_right), boundary(_boundary) {} - - //! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point) - int idx; - //! node indices of the left and the right branches - int left, right; - //! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right - float boundary; - }; - - //! the default constructor - CV_WRAP KDTree(); - //! the full constructor that builds the search tree - CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false); - //! the full constructor that builds the search tree - CV_WRAP KDTree(InputArray points, InputArray _labels, - bool copyAndReorderPoints = false); - //! builds the search tree - CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false); - //! builds the search tree - CV_WRAP void build(InputArray points, InputArray labels, - bool copyAndReorderPoints = false); - //! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves - CV_WRAP int findNearest(InputArray vec, int K, int Emax, - OutputArray neighborsIdx, - OutputArray neighbors = noArray(), - OutputArray dist = noArray(), - OutputArray labels = noArray()) const; - //! finds all the points from the initial set that belong to the specified box - CV_WRAP void findOrthoRange(InputArray minBounds, - InputArray maxBounds, - OutputArray neighborsIdx, - OutputArray neighbors = noArray(), - OutputArray labels = noArray()) const; - //! returns vectors with the specified indices - CV_WRAP void getPoints(InputArray idx, OutputArray pts, - OutputArray labels = noArray()) const; - //! return a vector with the specified index - const float* getPoint(int ptidx, int* label = 0) const; - //! returns the search space dimensionality - CV_WRAP int dims() const; - - std::vector nodes; //!< all the tree nodes - CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set. - CV_PROP std::vector labels; //!< the parallel array of labels. - CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it - CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it -}; - - - /*! Random Number Generator diff --git a/modules/features2d/CMakeLists.txt b/modules/features2d/CMakeLists.txt index 0b080cfb9..ad6df9414 100644 --- a/modules/features2d/CMakeLists.txt +++ b/modules/features2d/CMakeLists.txt @@ -1,2 +1,2 @@ set(the_description "2D Features Framework") -ocv_define_module(features2d opencv_imgproc opencv_flann OPTIONAL opencv_highgui) +ocv_define_module(features2d opencv_imgproc opencv_ml opencv_flann OPTIONAL opencv_highgui) diff --git a/modules/features2d/test/test_nearestneighbors.cpp b/modules/features2d/test/test_nearestneighbors.cpp index 0c2c70b7d..df5602520 100644 --- a/modules/features2d/test/test_nearestneighbors.cpp +++ b/modules/features2d/test/test_nearestneighbors.cpp @@ -12,6 +12,7 @@ // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, @@ -156,91 +157,6 @@ void NearestNeighborTest::run( int /*start_from*/ ) { ts->set_failed_test_info( code ); } -//-------------------------------------------------------------------------------- -class CV_KDTreeTest_CPP : public NearestNeighborTest -{ -public: - CV_KDTreeTest_CPP() {} -protected: - virtual void createModel( const Mat& data ); - virtual int checkGetPoins( const Mat& data ); - virtual int findNeighbors( Mat& points, Mat& neighbors ); - virtual int checkFindBoxed(); - virtual void releaseModel(); - KDTree* tr; -}; - - -void CV_KDTreeTest_CPP::createModel( const Mat& data ) -{ - tr = new KDTree( data, false ); -} - -int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data ) -{ - Mat res1( data.size(), data.type() ), - res3( data.size(), data.type() ); - Mat idxs( 1, data.rows, CV_32SC1 ); - for( int pi = 0; pi < data.rows; pi++ ) - { - idxs.at(0, pi) = pi; - // 1st way - const float* point = tr->getPoint(pi); - for( int di = 0; di < data.cols; di++ ) - res1.at(pi, di) = point[di]; - } - - // 3d way - tr->getPoints( idxs, res3 ); - - if( cvtest::norm( res1, data, NORM_L1) != 0 || - cvtest::norm( res3, data, NORM_L1) != 0) - return cvtest::TS::FAIL_BAD_ACCURACY; - return cvtest::TS::OK; -} - -int CV_KDTreeTest_CPP::checkFindBoxed() -{ - vector min( dims, static_cast(minValue)), max(dims, static_cast(maxValue)); - vector indices; - tr->findOrthoRange( min, max, indices ); - // TODO check indices - if( (int)indices.size() != featuresCount) - return cvtest::TS::FAIL_BAD_ACCURACY; - return cvtest::TS::OK; -} - -int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors ) -{ - const int emax = 20; - Mat neighbors2( neighbors.size(), CV_32SC1 ); - int j; - for( int pi = 0; pi < points.rows; pi++ ) - { - // 1st way - Mat nrow = neighbors.row(pi); - tr->findNearest( points.row(pi), neighbors.cols, emax, nrow ); - - // 2nd way - vector neighborsIdx2( neighbors2.cols, 0 ); - tr->findNearest( points.row(pi), neighbors2.cols, emax, neighborsIdx2 ); - vector::const_iterator it2 = neighborsIdx2.begin(); - for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ ) - neighbors2.at(pi,j) = *it2; - } - - // compare results - if( cvtest::norm( neighbors, neighbors2, NORM_L1 ) != 0 ) - return cvtest::TS::FAIL_BAD_ACCURACY; - - return cvtest::TS::OK; -} - -void CV_KDTreeTest_CPP::releaseModel() -{ - delete tr; -} - //-------------------------------------------------------------------------------- class CV_FlannTest : public NearestNeighborTest { @@ -402,7 +318,6 @@ void CV_FlannSavedIndexTest::createModel(const cv::Mat &data) remove( filename.c_str() ); } -TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); } TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); } diff --git a/modules/features2d/test/test_precomp.hpp b/modules/features2d/test/test_precomp.hpp index bce72f729..893b29b69 100644 --- a/modules/features2d/test/test_precomp.hpp +++ b/modules/features2d/test/test_precomp.hpp @@ -13,6 +13,7 @@ #include "opencv2/imgproc.hpp" #include "opencv2/features2d.hpp" #include "opencv2/imgcodecs.hpp" +#include "opencv2/ml.hpp" #include #endif diff --git a/modules/ml/include/opencv2/ml.hpp b/modules/ml/include/opencv2/ml.hpp index b223aa80c..07623cb86 100644 --- a/modules/ml/include/opencv2/ml.hpp +++ b/modules/ml/include/opencv2/ml.hpp @@ -12,6 +12,7 @@ // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, @@ -228,10 +229,12 @@ public: class CV_EXPORTS_W_MAP Params { public: - Params(int defaultK=10, bool isclassifier=true); + Params(int defaultK=10, bool isclassifier_=true, int Emax_=INT_MAX, int algorithmType_=BRUTE_FORCE); CV_PROP_RW int defaultK; CV_PROP_RW bool isclassifier; + CV_PROP_RW int Emax; // for implementation with KDTree + CV_PROP_RW int algorithmType; }; virtual void setParams(const Params& p) = 0; virtual Params getParams() const = 0; @@ -239,6 +242,9 @@ public: OutputArray results, OutputArray neighborResponses=noArray(), OutputArray dist=noArray() ) const = 0; + + enum { BRUTE_FORCE=1, KDTREE=2 }; + static Ptr create(const Params& params=Params()); }; diff --git a/modules/core/src/kdtree.cpp b/modules/ml/src/kdtree.cpp similarity index 99% rename from modules/core/src/kdtree.cpp rename to modules/ml/src/kdtree.cpp index fc5338dea..9ab61e4d6 100644 --- a/modules/core/src/kdtree.cpp +++ b/modules/ml/src/kdtree.cpp @@ -13,6 +13,7 @@ // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, @@ -42,13 +43,14 @@ //M*/ #include "precomp.hpp" +#include "kdtree.hpp" namespace cv { - +namespace ml +{ // This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and -// adopted to work with the new OpenCV data structures. It's in cxcore to be shared by -// both cv (CvFeatureTree) and ml (kNN). +// adopted to work with the new OpenCV data structures. // The algorithm is taken from: // J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search @@ -529,3 +531,4 @@ int KDTree::dims() const } } +} diff --git a/modules/ml/src/kdtree.hpp b/modules/ml/src/kdtree.hpp new file mode 100644 index 000000000..2975c7c75 --- /dev/null +++ b/modules/ml/src/kdtree.hpp @@ -0,0 +1,97 @@ +#ifndef KDTREE_H +#define KDTREE_H + +#include "precomp.hpp" + +namespace cv +{ +namespace ml +{ + +/*! + Fast Nearest Neighbor Search Class. + + The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last + approximate (or accurate) nearest neighbor search in multi-dimensional spaces. + + First, a set of vectors is passed to KDTree::KDTree() constructor + or KDTree::build() method, where it is reordered. + + Then arbitrary vectors can be passed to KDTree::findNearest() methods, which + find the K nearest neighbors among the vectors from the initial set. + The user can balance between the speed and accuracy of the search by varying Emax + parameter, which is the number of leaves that the algorithm checks. + The larger parameter values yield more accurate results at the expense of lower processing speed. + + \code + KDTree T(points, false); + const int K = 3, Emax = INT_MAX; + int idx[K]; + float dist[K]; + T.findNearest(query_vec, K, Emax, idx, 0, dist); + CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]); + \endcode +*/ +class CV_EXPORTS_W KDTree +{ +public: + /*! + The node of the search tree. + */ + struct Node + { + Node() : idx(-1), left(-1), right(-1), boundary(0.f) {} + Node(int _idx, int _left, int _right, float _boundary) + : idx(_idx), left(_left), right(_right), boundary(_boundary) {} + + //! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point) + int idx; + //! node indices of the left and the right branches + int left, right; + //! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right + float boundary; + }; + + //! the default constructor + CV_WRAP KDTree(); + //! the full constructor that builds the search tree + CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false); + //! the full constructor that builds the search tree + CV_WRAP KDTree(InputArray points, InputArray _labels, + bool copyAndReorderPoints = false); + //! builds the search tree + CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false); + //! builds the search tree + CV_WRAP void build(InputArray points, InputArray labels, + bool copyAndReorderPoints = false); + //! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves + CV_WRAP int findNearest(InputArray vec, int K, int Emax, + OutputArray neighborsIdx, + OutputArray neighbors = noArray(), + OutputArray dist = noArray(), + OutputArray labels = noArray()) const; + //! finds all the points from the initial set that belong to the specified box + CV_WRAP void findOrthoRange(InputArray minBounds, + InputArray maxBounds, + OutputArray neighborsIdx, + OutputArray neighbors = noArray(), + OutputArray labels = noArray()) const; + //! returns vectors with the specified indices + CV_WRAP void getPoints(InputArray idx, OutputArray pts, + OutputArray labels = noArray()) const; + //! return a vector with the specified index + const float* getPoint(int ptidx, int* label = 0) const; + //! returns the search space dimensionality + CV_WRAP int dims() const; + + std::vector nodes; //!< all the tree nodes + CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set. + CV_PROP std::vector labels; //!< the parallel array of labels. + CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it + CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it +}; + +} +} + +#endif diff --git a/modules/ml/src/knearest.cpp b/modules/ml/src/knearest.cpp index 3ead3228f..4bf40758f 100644 --- a/modules/ml/src/knearest.cpp +++ b/modules/ml/src/knearest.cpp @@ -41,6 +41,7 @@ //M*/ #include "precomp.hpp" +#include "kdtree.hpp" /****************************************************************************************\ * K-Nearest Neighbors Classifier * @@ -49,13 +50,14 @@ namespace cv { namespace ml { -KNearest::Params::Params(int k, bool isclassifier_) +KNearest::Params::Params(int k, bool isclassifier_, int Emax_, int algorithmType_) : + defaultK(k), + isclassifier(isclassifier_), + Emax(Emax_), + algorithmType(algorithmType_) { - defaultK = k; - isclassifier = isclassifier_; } - class KNearestImpl : public KNearest { public: @@ -352,8 +354,156 @@ public: Params params; }; + +class KNearestKDTreeImpl : public KNearest +{ +public: + KNearestKDTreeImpl(const Params& p) + { + params = p; + } + + virtual ~KNearestKDTreeImpl() {} + + Params getParams() const { return params; } + void setParams(const Params& p) { params = p; } + + bool isClassifier() const { return params.isclassifier; } + bool isTrained() const { return !samples.empty(); } + + String getDefaultModelName() const { return "opencv_ml_knn_kd"; } + + void clear() + { + samples.release(); + responses.release(); + } + + int getVarCount() const { return samples.cols; } + + bool train( const Ptr& data, int flags ) + { + Mat new_samples = data->getTrainSamples(ROW_SAMPLE); + Mat new_responses; + data->getTrainResponses().convertTo(new_responses, CV_32F); + bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty(); + + CV_Assert( new_samples.type() == CV_32F ); + + if( !update ) + { + clear(); + } + else + { + CV_Assert( new_samples.cols == samples.cols && + new_responses.cols == responses.cols ); + } + + samples.push_back(new_samples); + responses.push_back(new_responses); + + tr.build(samples); + + return true; + } + + float findNearest( InputArray _samples, int k, + OutputArray _results, + OutputArray _neighborResponses, + OutputArray _dists ) const + { + float result = 0.f; + CV_Assert( 0 < k ); + + Mat test_samples = _samples.getMat(); + CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols ); + int testcount = test_samples.rows; + + if( testcount == 0 ) + { + _results.release(); + _neighborResponses.release(); + _dists.release(); + return 0.f; + } + + Mat res, nr, d; + if( _results.needed() ) + { + _results.create(testcount, 1, CV_32F); + res = _results.getMat(); + } + if( _neighborResponses.needed() ) + { + _neighborResponses.create(testcount, k, CV_32F); + nr = _neighborResponses.getMat(); + } + if( _dists.needed() ) + { + _dists.create(testcount, k, CV_32F); + d = _dists.getMat(); + } + + for (int i=0; ii) + { + _res = res.row(i); + } + if (nr.rows>i) + { + _nr = nr.row(i); + } + if (d.rows>i) + { + _d = d.row(i); + } + tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray()); + } + + return result; // currently always 0 + } + + float predict(InputArray inputs, OutputArray outputs, int) const + { + return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() ); + } + + void write( FileStorage& fs ) const + { + fs << "is_classifier" << (int)params.isclassifier; + fs << "default_k" << params.defaultK; + + fs << "samples" << samples; + fs << "responses" << responses; + } + + void read( const FileNode& fn ) + { + clear(); + params.isclassifier = (int)fn["is_classifier"] != 0; + params.defaultK = (int)fn["default_k"]; + + fn["samples"] >> samples; + fn["responses"] >> responses; + } + + KDTree tr; + + Mat samples; + Mat responses; + Params params; +}; + Ptr KNearest::create(const Params& p) { + if (KDTREE==p.algorithmType) + { + return makePtr(p); + } + return makePtr(p); } diff --git a/modules/ml/test/test_emknearestkmeans.cpp b/modules/ml/test/test_emknearestkmeans.cpp index 98b88c701..121b34d18 100644 --- a/modules/ml/test/test_emknearestkmeans.cpp +++ b/modules/ml/test/test_emknearestkmeans.cpp @@ -312,9 +312,11 @@ void CV_KNearestTest::run( int /*start_from*/ ) generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); int code = cvtest::TS::OK; - Ptr knearest = KNearest::create(true); - knearest->train(trainData, cv::ml::ROW_SAMPLE, trainLabels); - knearest->findNearest( testData, 4, bestLabels); + + // KNearest default implementation + Ptr knearest = KNearest::create(); + knearest->train(trainData, ml::ROW_SAMPLE, trainLabels); + knearest->findNearest(testData, 4, bestLabels); float err; if( !calcErr( bestLabels, testLabels, sizes, err, true ) ) { @@ -326,6 +328,22 @@ void CV_KNearestTest::run( int /*start_from*/ ) ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } + + // KNearest KDTree implementation + Ptr knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE)); + knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); + knearestKdt->findNearest(testData, 4, bestLabels); + if( !calcErr( bestLabels, testLabels, sizes, err, true ) ) + { + ts->printf( cvtest::TS::LOG, "Bad output labels.\n" ); + code = cvtest::TS::FAIL_INVALID_OUTPUT; + } + else if( err > 0.01f ) + { + ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err ); + code = cvtest::TS::FAIL_BAD_ACCURACY; + } + ts->set_failed_test_info( code ); }