Added knearest neighbor of OpenCL version.
It includes the accuracy/performance test and the implementation of KNN.
This commit is contained in:
163
modules/ocl/src/knearest.cpp
Normal file
163
modules/ocl/src/knearest.cpp
Normal file
@@ -0,0 +1,163 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
extern const char* knearest;//knearest
|
||||
}
|
||||
}
|
||||
|
||||
KNearestNeighbour::KNearestNeighbour()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
KNearestNeighbour::~KNearestNeighbour()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
KNearestNeighbour::KNearestNeighbour(const Mat& train_data, const Mat& responses,
|
||||
const Mat& sample_idx, bool is_regression, int max_k)
|
||||
{
|
||||
max_k = max_k;
|
||||
CvKNearest::train(train_data, responses, sample_idx, is_regression, max_k);
|
||||
}
|
||||
|
||||
void KNearestNeighbour::clear()
|
||||
{
|
||||
CvKNearest::clear();
|
||||
}
|
||||
|
||||
bool KNearestNeighbour::train(const Mat& trainData, Mat& labels, Mat& sampleIdx,
|
||||
bool isRegression, int _max_k, bool updateBase)
|
||||
{
|
||||
max_k = _max_k;
|
||||
bool cv_knn_train = CvKNearest::train(trainData, labels, sampleIdx, isRegression, max_k, updateBase);
|
||||
|
||||
CvVectors* s = CvKNearest::samples;
|
||||
|
||||
cv::Mat samples_mat(s->count, CvKNearest::var_count + 1, s->type);
|
||||
|
||||
float* s1 = (float*)(s + 1);
|
||||
for(int i = 0; i < s->count; i++)
|
||||
{
|
||||
float* t1 = s->data.fl[i];
|
||||
for(int j = 0; j < CvKNearest::var_count; j++)
|
||||
{
|
||||
Point pos(j, i);
|
||||
samples_mat.at<float>(pos) = t1[j];
|
||||
}
|
||||
|
||||
Point pos_label(CvKNearest::var_count, i);
|
||||
samples_mat.at<float>(pos_label) = s1[i];
|
||||
}
|
||||
|
||||
samples_ocl = samples_mat;
|
||||
return cv_knn_train;
|
||||
}
|
||||
|
||||
void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lables)
|
||||
{
|
||||
CV_Assert(!samples_ocl.empty());
|
||||
lables.create(samples.rows, 1, CV_32FC1);
|
||||
|
||||
CV_Assert(samples.cols == CvKNearest::var_count);
|
||||
CV_Assert(samples.type() == CV_32FC1);
|
||||
CV_Assert(k >= 1 && k <= max_k);
|
||||
|
||||
int k1 = KNearest::get_sample_count();
|
||||
k1 = MIN( k1, k );
|
||||
|
||||
String kernel_name = "knn_find_nearest";
|
||||
cl_ulong local_memory_size = queryLocalMemInfo();
|
||||
int nThreads = local_memory_size / (2 * k * 4);
|
||||
if(nThreads >= 256)
|
||||
nThreads = 256;
|
||||
|
||||
int smem_size = nThreads * k * 4 * 2;
|
||||
size_t local_thread[] = {1, nThreads, 1};
|
||||
size_t global_thread[] = {1, samples.rows, 1};
|
||||
|
||||
char build_option[50];
|
||||
if(!Context::getContext()->supportsFeature(Context::CL_DOUBLE))
|
||||
{
|
||||
sprintf(build_option, " ");
|
||||
}else
|
||||
sprintf(build_option, "-D DOUBLE_SUPPORT");
|
||||
|
||||
std::vector< std::pair<size_t, const void*> > args;
|
||||
|
||||
int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize();
|
||||
int samples_step = samples.step/samples.elemSize();
|
||||
int lables_step = lables.step/lables.elemSize();
|
||||
|
||||
int _regression = 0;
|
||||
if(CvKNearest::regression)
|
||||
_regression = 1;
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&k));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples_ocl.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl_step));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&lables.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&lables_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&_regression));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&k1));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&nThreads));
|
||||
args.push_back(make_pair(smem_size, (void*)NULL));
|
||||
openCLExecuteKernel(Context::getContext(), &knearest, kernel_name, global_thread, local_thread, args, -1, -1, build_option);
|
||||
}
|
||||
Reference in New Issue
Block a user