Added knearest neighbor of OpenCL version.
It includes the accuracy/performance test and the implementation of KNN.
This commit is contained in:
parent
06c33df307
commit
1bfe39f485
109
modules/ocl/perf/perf_ml.cpp
Normal file
109
modules/ocl/perf/perf_ml.cpp
Normal file
@ -0,0 +1,109 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "perf_precomp.hpp"
|
||||
using namespace perf;
|
||||
using namespace std;
|
||||
using namespace cv::ocl;
|
||||
using namespace cv;
|
||||
using std::tr1::tuple;
|
||||
using std::tr1::get;
|
||||
////////////////////////////////// K-NEAREST NEIGHBOR ////////////////////////////////////
|
||||
static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
|
||||
{
|
||||
trainData.create(size, CV_32FC1);
|
||||
randu(trainData, 1.0, 100.0);
|
||||
|
||||
if(nClasses != 0)
|
||||
{
|
||||
trainLabel.create(size.height, 1, CV_8UC1);
|
||||
randu(trainLabel, 0, nClasses - 1);
|
||||
trainLabel.convertTo(trainLabel, CV_32FC1);
|
||||
}
|
||||
}
|
||||
|
||||
typedef tuple<int> KNNParamType;
|
||||
typedef TestBaseWithParam<KNNParamType> KNNFixture;
|
||||
|
||||
PERF_TEST_P(KNNFixture, KNN,
|
||||
testing::Values(1000, 2000, 4000))
|
||||
{
|
||||
KNNParamType params = GetParam();
|
||||
const int rows = get<0>(params);
|
||||
int columns = 100;
|
||||
int k = rows/250;
|
||||
|
||||
Mat trainData, trainLabels;
|
||||
Size size(columns, rows);
|
||||
genData(trainData, size, trainLabels, 3);
|
||||
|
||||
Mat testData;
|
||||
genData(testData, size);
|
||||
Mat best_label;
|
||||
|
||||
if(RUN_PLAIN_IMPL)
|
||||
{
|
||||
TEST_CYCLE()
|
||||
{
|
||||
CvKNearest knn_cpu;
|
||||
knn_cpu.train(trainData, trainLabels);
|
||||
knn_cpu.find_nearest(testData, k, &best_label);
|
||||
}
|
||||
}else if(RUN_OCL_IMPL)
|
||||
{
|
||||
cv::ocl::oclMat best_label_ocl;
|
||||
cv::ocl::oclMat testdata;
|
||||
testdata.upload(testData);
|
||||
|
||||
OCL_TEST_CYCLE()
|
||||
{
|
||||
cv::ocl::KNearestNeighbour knn_ocl;
|
||||
knn_ocl.train(trainData, trainLabels);
|
||||
knn_ocl.find_nearest(testdata, k, best_label_ocl);
|
||||
}
|
||||
best_label_ocl.download(best_label);
|
||||
}else
|
||||
OCL_PERF_ELSE
|
||||
SANITY_CHECK(best_label);
|
||||
}
|
163
modules/ocl/src/knearest.cpp
Normal file
163
modules/ocl/src/knearest.cpp
Normal file
@ -0,0 +1,163 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
extern const char* knearest;//knearest
|
||||
}
|
||||
}
|
||||
|
||||
KNearestNeighbour::KNearestNeighbour()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
KNearestNeighbour::~KNearestNeighbour()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
KNearestNeighbour::KNearestNeighbour(const Mat& train_data, const Mat& responses,
|
||||
const Mat& sample_idx, bool is_regression, int max_k)
|
||||
{
|
||||
max_k = max_k;
|
||||
CvKNearest::train(train_data, responses, sample_idx, is_regression, max_k);
|
||||
}
|
||||
|
||||
void KNearestNeighbour::clear()
|
||||
{
|
||||
CvKNearest::clear();
|
||||
}
|
||||
|
||||
bool KNearestNeighbour::train(const Mat& trainData, Mat& labels, Mat& sampleIdx,
|
||||
bool isRegression, int _max_k, bool updateBase)
|
||||
{
|
||||
max_k = _max_k;
|
||||
bool cv_knn_train = CvKNearest::train(trainData, labels, sampleIdx, isRegression, max_k, updateBase);
|
||||
|
||||
CvVectors* s = CvKNearest::samples;
|
||||
|
||||
cv::Mat samples_mat(s->count, CvKNearest::var_count + 1, s->type);
|
||||
|
||||
float* s1 = (float*)(s + 1);
|
||||
for(int i = 0; i < s->count; i++)
|
||||
{
|
||||
float* t1 = s->data.fl[i];
|
||||
for(int j = 0; j < CvKNearest::var_count; j++)
|
||||
{
|
||||
Point pos(j, i);
|
||||
samples_mat.at<float>(pos) = t1[j];
|
||||
}
|
||||
|
||||
Point pos_label(CvKNearest::var_count, i);
|
||||
samples_mat.at<float>(pos_label) = s1[i];
|
||||
}
|
||||
|
||||
samples_ocl = samples_mat;
|
||||
return cv_knn_train;
|
||||
}
|
||||
|
||||
void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lables)
|
||||
{
|
||||
CV_Assert(!samples_ocl.empty());
|
||||
lables.create(samples.rows, 1, CV_32FC1);
|
||||
|
||||
CV_Assert(samples.cols == CvKNearest::var_count);
|
||||
CV_Assert(samples.type() == CV_32FC1);
|
||||
CV_Assert(k >= 1 && k <= max_k);
|
||||
|
||||
int k1 = KNearest::get_sample_count();
|
||||
k1 = MIN( k1, k );
|
||||
|
||||
String kernel_name = "knn_find_nearest";
|
||||
cl_ulong local_memory_size = queryLocalMemInfo();
|
||||
int nThreads = local_memory_size / (2 * k * 4);
|
||||
if(nThreads >= 256)
|
||||
nThreads = 256;
|
||||
|
||||
int smem_size = nThreads * k * 4 * 2;
|
||||
size_t local_thread[] = {1, nThreads, 1};
|
||||
size_t global_thread[] = {1, samples.rows, 1};
|
||||
|
||||
char build_option[50];
|
||||
if(!Context::getContext()->supportsFeature(Context::CL_DOUBLE))
|
||||
{
|
||||
sprintf(build_option, " ");
|
||||
}else
|
||||
sprintf(build_option, "-D DOUBLE_SUPPORT");
|
||||
|
||||
std::vector< std::pair<size_t, const void*> > args;
|
||||
|
||||
int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize();
|
||||
int samples_step = samples.step/samples.elemSize();
|
||||
int lables_step = lables.step/lables.elemSize();
|
||||
|
||||
int _regression = 0;
|
||||
if(CvKNearest::regression)
|
||||
_regression = 1;
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&k));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples_ocl.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl_step));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&lables.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&lables_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&_regression));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&k1));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_ocl.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&nThreads));
|
||||
args.push_back(make_pair(smem_size, (void*)NULL));
|
||||
openCLExecuteKernel(Context::getContext(), &knearest, kernel_name, global_thread, local_thread, args, -1, -1, build_option);
|
||||
}
|
186
modules/ocl/src/opencl/knearest.cl
Normal file
186
modules/ocl/src/opencl/knearest.cl
Normal file
@ -0,0 +1,186 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#if defined (DOUBLE_SUPPORT)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#define TYPE double
|
||||
#else
|
||||
#define TYPE float
|
||||
#endif
|
||||
|
||||
#define CV_SWAP(a,b,t) ((t) = (a), (a) = (b), (b) = (t))
|
||||
///////////////////////////////////// find_nearest //////////////////////////////////////
|
||||
__kernel void knn_find_nearest(__global float* sample, int sample_row, int sample_col, int sample_step,
|
||||
int k, __global float* samples_ocl, int sample_ocl_row, int sample_ocl_step,
|
||||
__global float* _results, int _results_step, int _regression, int K1,
|
||||
int sample_ocl_col, int nThreads, __local float* nr)
|
||||
{
|
||||
int k1 = 0;
|
||||
int k2 = 0;
|
||||
|
||||
bool regression = false;
|
||||
|
||||
if(_regression)
|
||||
regression = true;
|
||||
|
||||
TYPE inv_scale;
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
inv_scale = 1.0/K1;
|
||||
#else
|
||||
inv_scale = 1.0f/K1;
|
||||
#endif
|
||||
|
||||
int y = get_global_id(1);
|
||||
int j, j1;
|
||||
int threadY = (y % nThreads);
|
||||
__local float* dd = nr + nThreads * k;
|
||||
if(y >= sample_row)
|
||||
{
|
||||
return;
|
||||
}
|
||||
for(j = 0; j < sample_ocl_row; j++)
|
||||
{
|
||||
TYPE sum;
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
sum = 0.0;
|
||||
#else
|
||||
sum = 0.0f;
|
||||
#endif
|
||||
float si;
|
||||
int t, ii, ii1;
|
||||
for(t = 0; t < sample_col - 16; t += 16)
|
||||
{
|
||||
float16 t0 = vload16(0, sample + y * sample_step + t) - vload16(0, samples_ocl + j * sample_ocl_step + t);
|
||||
t0 *= t0;
|
||||
sum += t0.s0 + t0.s1 + t0.s2 + t0.s3 + t0.s4 + t0.s5 + t0.s6 + t0.s7 +
|
||||
t0.s8 + t0.s9 + t0.sa + t0.sb + t0.sc + t0.sd + t0.se + t0.sf;
|
||||
}
|
||||
|
||||
for(; t < sample_col; t++)
|
||||
{
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
double t0 = sample[y * sample_step + t] - samples_ocl[j * sample_ocl_step + t];
|
||||
#else
|
||||
float t0 = sample[y * sample_step + t] - samples_ocl[j * sample_ocl_step + t];
|
||||
#endif
|
||||
sum = sum + t0 * t0;
|
||||
}
|
||||
|
||||
si = (float)sum;
|
||||
for(ii = k1 - 1; ii >= 0; ii--)
|
||||
{
|
||||
if(as_int(si) > as_int(dd[ii * nThreads + threadY]))
|
||||
break;
|
||||
}
|
||||
if(ii < k - 1)
|
||||
{
|
||||
for(ii1 = k2 - 1; ii1 > ii; ii1--)
|
||||
{
|
||||
dd[(ii1 + 1) * nThreads + threadY] = dd[ii1 * nThreads + threadY];
|
||||
nr[(ii1 + 1) * nThreads + threadY] = nr[ii1 * nThreads + threadY];
|
||||
}
|
||||
|
||||
dd[(ii + 1) * nThreads + threadY] = si;
|
||||
nr[(ii + 1) * nThreads + threadY] = samples_ocl[sample_col + j * sample_ocl_step];
|
||||
}
|
||||
k1 = (k1 + 1) < k ? (k1 + 1) : k;
|
||||
k2 = k1 < (k - 1) ? k1 : (k - 1);
|
||||
}
|
||||
/*! find_nearest_neighbor done!*/
|
||||
/*! write_results start!*/
|
||||
switch (regression)
|
||||
{
|
||||
case true:
|
||||
{
|
||||
TYPE s;
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
s = 0.0;
|
||||
#else
|
||||
s = 0.0f;
|
||||
#endif
|
||||
for(j = 0; j < K1; j++)
|
||||
s += nr[j * nThreads + threadY];
|
||||
|
||||
_results[y * _results_step] = (float)(s * inv_scale);
|
||||
}
|
||||
break;
|
||||
case false:
|
||||
{
|
||||
int prev_start = 0, best_count = 0, cur_count;
|
||||
float best_val;
|
||||
|
||||
for(j = K1 - 1; j > 0; j--)
|
||||
{
|
||||
bool swap_f1 = false;
|
||||
for(j1 = 0; j1 < j; j1++)
|
||||
{
|
||||
if(nr[j1 * nThreads + threadY] > nr[(j1 + 1) * nThreads + threadY])
|
||||
{
|
||||
int t;
|
||||
CV_SWAP(nr[j1 * nThreads + threadY], nr[(j1 + 1) * nThreads + threadY], t);
|
||||
swap_f1 = true;
|
||||
}
|
||||
}
|
||||
if(!swap_f1)
|
||||
break;
|
||||
}
|
||||
|
||||
best_val = 0;
|
||||
for(j = 1; j <= K1; j++)
|
||||
if(j == K1 || nr[j * nThreads + threadY] != nr[(j - 1) * nThreads + threadY])
|
||||
{
|
||||
cur_count = j - prev_start;
|
||||
if(best_count < cur_count)
|
||||
{
|
||||
best_count = cur_count;
|
||||
best_val = nr[(j - 1) * nThreads + threadY];
|
||||
}
|
||||
prev_start = j;
|
||||
}
|
||||
_results[y * _results_step] = best_val;
|
||||
}
|
||||
break;
|
||||
}
|
||||
///*! write_results done!*/
|
||||
}
|
124
modules/ocl/test/test_ml.cpp
Normal file
124
modules/ocl/test/test_ml.cpp
Normal file
@ -0,0 +1,124 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
// Erping Pang, pang_er_ping@163.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#ifdef HAVE_OPENCL
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
///////K-NEAREST NEIGHBOR//////////////////////////
|
||||
static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol,
|
||||
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
|
||||
{
|
||||
cv::RNG &rng = TS::ptr()->get_rng();
|
||||
cv::Size size(trainDataCol, trainDataRow);
|
||||
trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false);
|
||||
if(nClasses != 0)
|
||||
{
|
||||
cv::Size size1(trainDataRow, 1);
|
||||
trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false);
|
||||
trainLabel.convertTo(trainLabel, CV_32FC1);
|
||||
}
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(KNN, int, Size, int, bool)
|
||||
{
|
||||
int k;
|
||||
int trainDataCol;
|
||||
int testDataRow;
|
||||
int nClass;
|
||||
bool regression;
|
||||
virtual void SetUp()
|
||||
{
|
||||
k = GET_PARAM(0);
|
||||
nClass = GET_PARAM(2);
|
||||
trainDataCol = GET_PARAM(1).width;
|
||||
testDataRow = GET_PARAM(1).height;
|
||||
regression = GET_PARAM(3);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(KNN, Accuracy)
|
||||
{
|
||||
Mat trainData, trainLabels;
|
||||
const int trainDataRow = 500;
|
||||
genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass);
|
||||
|
||||
Mat testData, testLabels;
|
||||
genTrainData(testData, testDataRow, trainDataCol);
|
||||
|
||||
KNearestNeighbour knn_ocl;
|
||||
CvKNearest knn_cpu;
|
||||
Mat best_label_cpu;
|
||||
oclMat best_label_ocl;
|
||||
|
||||
/*ocl k-Nearest_Neighbor start*/
|
||||
oclMat trainData_ocl;
|
||||
trainData_ocl.upload(trainData);
|
||||
Mat simpleIdx;
|
||||
knn_ocl.train(trainData, trainLabels, simpleIdx, regression);
|
||||
|
||||
oclMat testdata;
|
||||
testdata.upload(testData);
|
||||
knn_ocl.find_nearest(testdata, k, best_label_ocl);
|
||||
/*ocl k-Nearest_Neighbor end*/
|
||||
|
||||
/*cpu k-Nearest_Neighbor start*/
|
||||
knn_cpu.train(trainData, trainLabels, simpleIdx, regression);
|
||||
knn_cpu.find_nearest(testData, k, &best_label_cpu);
|
||||
/*cpu k-Nearest_Neighbor end*/
|
||||
if(regression)
|
||||
{
|
||||
EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5);
|
||||
}
|
||||
else
|
||||
{
|
||||
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0);
|
||||
}
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
|
||||
Values(4, 3), Values(false, true)));
|
||||
#endif // HAVE_OPENCL
|
Loading…
x
Reference in New Issue
Block a user