- Use cv::Mutex to safely update converged flag
- Use cv::AutoBuffer rather than new allocation - Fix "assignment operator could not be generated" warning
This commit is contained in:
parent
123ca7e1c5
commit
180e54d09d
@ -69,6 +69,7 @@ struct KMeansIndexParams : public IndexParams
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Hierarchical kmeans index
|
||||
*
|
||||
@ -275,7 +276,7 @@ public:
|
||||
public:
|
||||
KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
|
||||
const int _branching, const int* _indices, const Matrix<double>& _dcenters, const int _veclen,
|
||||
int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool* _updated)
|
||||
int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx)
|
||||
: distance(_distance)
|
||||
, dataset(_dataset)
|
||||
, branching(_branching)
|
||||
@ -285,7 +286,8 @@ public:
|
||||
, count(_count)
|
||||
, belongs_to(_belongs_to)
|
||||
, radiuses(_radiuses)
|
||||
, updated(_updated)
|
||||
, converged(_converged)
|
||||
, mtx(_mtx)
|
||||
{
|
||||
}
|
||||
|
||||
@ -312,9 +314,9 @@ public:
|
||||
count[belongs_to[i]]--;
|
||||
count[new_centroid]++;
|
||||
belongs_to[i] = new_centroid;
|
||||
updated[i] = true;
|
||||
} else {
|
||||
updated[i] = false;
|
||||
mtx.lock();
|
||||
converged = false;
|
||||
mtx.unlock();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -322,14 +324,15 @@ public:
|
||||
private:
|
||||
Distance distance;
|
||||
const Matrix<ElementType>& dataset;
|
||||
const int branching;
|
||||
int branching;
|
||||
const int* indices;
|
||||
const Matrix<double>& dcenters;
|
||||
int veclen;
|
||||
int* count;
|
||||
int* belongs_to;
|
||||
std::vector<DistanceType>& radiuses;
|
||||
bool* updated;
|
||||
bool& converged;
|
||||
cv::Mutex& mtx;
|
||||
};
|
||||
|
||||
/**
|
||||
@ -719,7 +722,8 @@ private:
|
||||
return;
|
||||
}
|
||||
|
||||
int* centers_idx = new int[branching];
|
||||
cv::AutoBuffer<int> centers_idx_buf(branching);
|
||||
int* centers_idx = (int*)centers_idx_buf;
|
||||
int centers_length;
|
||||
(this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
|
||||
|
||||
@ -727,29 +731,30 @@ private:
|
||||
node->indices = indices;
|
||||
std::sort(node->indices,node->indices+indices_length);
|
||||
node->childs = NULL;
|
||||
delete [] centers_idx;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
|
||||
cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
|
||||
Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_);
|
||||
for (int i=0; i<centers_length; ++i) {
|
||||
ElementType* vec = dataset_[centers_idx[i]];
|
||||
for (size_t k=0; k<veclen_; ++k) {
|
||||
dcenters[i][k] = double(vec[k]);
|
||||
}
|
||||
}
|
||||
delete[] centers_idx;
|
||||
|
||||
std::vector<DistanceType> radiuses(branching);
|
||||
int* count = new int[branching];
|
||||
cv::AutoBuffer<int> count_buf(branching);
|
||||
int* count = (int*)count_buf;
|
||||
for (int i=0; i<branching; ++i) {
|
||||
radiuses[i] = 0;
|
||||
count[i] = 0;
|
||||
}
|
||||
|
||||
// assign points to clusters
|
||||
int* belongs_to = new int[indices_length];
|
||||
cv::AutoBuffer<int> belongs_to_buf(indices_length);
|
||||
int* belongs_to = (int*)belongs_to_buf;
|
||||
for (int i=0; i<indices_length; ++i) {
|
||||
|
||||
DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
|
||||
@ -769,7 +774,6 @@ private:
|
||||
|
||||
bool converged = false;
|
||||
int iteration = 0;
|
||||
bool* updated = new bool[indices_length];
|
||||
while (!converged && iteration<iterations_) {
|
||||
converged = true;
|
||||
iteration++;
|
||||
@ -794,13 +798,9 @@ private:
|
||||
}
|
||||
|
||||
// reassign points to clusters
|
||||
parallel_for_(cv::Range(0, indices_length), KMeansDistanceComputer(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, updated));
|
||||
for (int i=0; i<indices_length; ++i) {
|
||||
if (updated[i]) {
|
||||
converged = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
cv::Mutex mtx;
|
||||
KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx);
|
||||
parallel_for_(cv::Range(0, (int)indices_length), invoker);
|
||||
|
||||
for (int i=0; i<branching; ++i) {
|
||||
// if one cluster converges to an empty cluster,
|
||||
@ -871,12 +871,6 @@ private:
|
||||
computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
|
||||
start=end;
|
||||
}
|
||||
|
||||
delete[] dcenters.data;
|
||||
delete[] centers;
|
||||
delete[] count;
|
||||
delete[] belongs_to;
|
||||
delete[] updated;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user