Parallize building kmeans index in flann
This commit is contained in:
parent
ae4cb571ab
commit
123ca7e1c5
@ -69,7 +69,6 @@ struct KMeansIndexParams : public IndexParams
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Hierarchical kmeans index
|
||||
*
|
||||
@ -271,6 +270,68 @@ public:
|
||||
return FLANN_INDEX_KMEANS;
|
||||
}
|
||||
|
||||
class KMeansDistanceComputer : public cv::ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
|
||||
const int _branching, const int* _indices, const Matrix<double>& _dcenters, const int _veclen,
|
||||
int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool* _updated)
|
||||
: distance(_distance)
|
||||
, dataset(_dataset)
|
||||
, branching(_branching)
|
||||
, indices(_indices)
|
||||
, dcenters(_dcenters)
|
||||
, veclen(_veclen)
|
||||
, count(_count)
|
||||
, belongs_to(_belongs_to)
|
||||
, radiuses(_radiuses)
|
||||
, updated(_updated)
|
||||
{
|
||||
}
|
||||
|
||||
void operator()(const cv::Range& range) const
|
||||
{
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
for( int i = begin; i<end; ++i)
|
||||
{
|
||||
DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen);
|
||||
int new_centroid = 0;
|
||||
for (int j=1; j<branching; ++j) {
|
||||
DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
|
||||
if (sq_dist>new_sq_dist) {
|
||||
new_centroid = j;
|
||||
sq_dist = new_sq_dist;
|
||||
}
|
||||
}
|
||||
if (sq_dist > radiuses[new_centroid]) {
|
||||
radiuses[new_centroid] = sq_dist;
|
||||
}
|
||||
if (new_centroid != belongs_to[i]) {
|
||||
count[belongs_to[i]]--;
|
||||
count[new_centroid]++;
|
||||
belongs_to[i] = new_centroid;
|
||||
updated[i] = true;
|
||||
} else {
|
||||
updated[i] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Distance distance;
|
||||
const Matrix<ElementType>& dataset;
|
||||
const int branching;
|
||||
const int* indices;
|
||||
const Matrix<double>& dcenters;
|
||||
int veclen;
|
||||
int* count;
|
||||
int* belongs_to;
|
||||
std::vector<DistanceType>& radiuses;
|
||||
bool* updated;
|
||||
};
|
||||
|
||||
/**
|
||||
* Index constructor
|
||||
*
|
||||
@ -708,6 +769,7 @@ private:
|
||||
|
||||
bool converged = false;
|
||||
int iteration = 0;
|
||||
bool* updated = new bool[indices_length];
|
||||
while (!converged && iteration<iterations_) {
|
||||
converged = true;
|
||||
iteration++;
|
||||
@ -732,25 +794,11 @@ private:
|
||||
}
|
||||
|
||||
// reassign points to clusters
|
||||
parallel_for_(cv::Range(0, indices_length), KMeansDistanceComputer(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, updated));
|
||||
for (int i=0; i<indices_length; ++i) {
|
||||
DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
|
||||
int new_centroid = 0;
|
||||
for (int j=1; j<branching; ++j) {
|
||||
DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
|
||||
if (sq_dist>new_sq_dist) {
|
||||
new_centroid = j;
|
||||
sq_dist = new_sq_dist;
|
||||
}
|
||||
}
|
||||
if (sq_dist>radiuses[new_centroid]) {
|
||||
radiuses[new_centroid] = sq_dist;
|
||||
}
|
||||
if (new_centroid != belongs_to[i]) {
|
||||
count[belongs_to[i]]--;
|
||||
count[new_centroid]++;
|
||||
belongs_to[i] = new_centroid;
|
||||
|
||||
if (updated[i]) {
|
||||
converged = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@ -828,6 +876,7 @@ private:
|
||||
delete[] centers;
|
||||
delete[] count;
|
||||
delete[] belongs_to;
|
||||
delete[] updated;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user