compilation with no cuda re factored
This commit is contained in:
parent
20e2dc84b0
commit
07825bad1e
@ -1,6 +1,7 @@
|
||||
set(name "gpu")
|
||||
set(DEPS "opencv_core")
|
||||
|
||||
set(name "gpu")
|
||||
set(DEPS "opencv_core")
|
||||
|
||||
|
||||
set(the_target "opencv_${name}")
|
||||
|
||||
@ -9,25 +10,25 @@ project(${the_target})
|
||||
add_definitions(-DCVAPI_EXPORTS)
|
||||
|
||||
include_directories("${CMAKE_CURRENT_SOURCE_DIR}/include"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/cuda"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/src/cuda"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/src"
|
||||
"${CMAKE_CURRENT_BINARY_DIR}")
|
||||
|
||||
foreach(d ${DEPS})
|
||||
if(${d} MATCHES "opencv_")
|
||||
if(${d} MATCHES "opencv_")
|
||||
string(REPLACE "opencv_" "${CMAKE_CURRENT_SOURCE_DIR}/../" d_dir ${d})
|
||||
include_directories("${d_dir}/include")
|
||||
include_directories("${d_dir}/include")
|
||||
endif()
|
||||
endforeach()
|
||||
endforeach()
|
||||
|
||||
file(GLOB lib_srcs "src/*.cpp")
|
||||
file(GLOB lib_int_hdrs "src/*.h*")
|
||||
file(GLOB lib_cuda "cuda/*.cu")
|
||||
file(GLOB lib_cuda_hdrs "cuda/*.h*")
|
||||
file(GLOB lib_cuda "src/cuda/*.cu")
|
||||
file(GLOB lib_cuda_hdrs "src/cuda/*.h*")
|
||||
source_group("Src" FILES ${lib_srcs} ${lib_int_hdrs})
|
||||
source_group("Cuda" FILES ${lib_cuda} ${lib_cuda_hdrs})
|
||||
|
||||
file(GLOB lib_hdrs "include/opencv2/${name}/*.h*")
|
||||
file(GLOB lib_hdrs "include/opencv2/${name}/*.h*")
|
||||
source_group("Include" FILES ${lib_hdrs})
|
||||
|
||||
if (HAVE_CUDA)
|
||||
@ -35,13 +36,13 @@ if (HAVE_CUDA)
|
||||
link_directories(${CUDA_LIBRARIES})
|
||||
|
||||
if (UNIX OR APPLE)
|
||||
set (CUDA_NVCC_FLAGS "-Xcompiler;-fPIC")
|
||||
endif()
|
||||
|
||||
set (CUDA_NVCC_FLAGS "-Xcompiler;-fPIC;")
|
||||
endif()
|
||||
|
||||
CUDA_COMPILE(cuda_objs ${lib_cuda})
|
||||
#CUDA_BUILD_CLEAN_TARGET()
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
add_library(${the_target} ${lib_srcs} ${lib_hdrs} ${lib_int_hdrs} ${lib_cuda} ${lib_cuda_hdrs} ${cuda_objs})
|
||||
|
||||
@ -50,7 +51,7 @@ if(PCHSupport_FOUND)
|
||||
if(${CMAKE_GENERATOR} MATCHES "Visual*" OR ${CMAKE_GENERATOR} MATCHES "Xcode*")
|
||||
if(${CMAKE_GENERATOR} MATCHES "Visual*")
|
||||
set(${the_target}_pch "src/precomp.cpp")
|
||||
endif()
|
||||
endif()
|
||||
add_native_precompiled_header(${the_target} ${pch_header})
|
||||
elseif(CMAKE_COMPILER_IS_GNUCXX AND ${CMAKE_GENERATOR} MATCHES ".*Makefiles")
|
||||
add_precompiled_header(${the_target} ${pch_header})
|
||||
|
@ -1,151 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <stddef.h>
|
||||
#include "cuda_shared.hpp"
|
||||
#include "cuda_runtime.h"
|
||||
|
||||
__constant__ float scalar_d[4];
|
||||
|
||||
namespace mat_operators
|
||||
{
|
||||
|
||||
template <typename T, int channels, int count = channels>
|
||||
struct unroll
|
||||
{
|
||||
__device__ static void unroll_set(T * mat, size_t i)
|
||||
{
|
||||
mat[i] = static_cast<T>(scalar_d[i % channels]);
|
||||
unroll<T, channels, count - 1>::unroll_set(mat, i+1);
|
||||
}
|
||||
|
||||
__device__ static void unroll_set_with_mask(T * mat, float mask, size_t i)
|
||||
{
|
||||
mat[i] = mask * static_cast<T>(scalar_d[i % channels]);
|
||||
unroll<T, channels, count - 1>::unroll_set_with_mask(mat, mask, i+1);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, int channels>
|
||||
struct unroll<T,channels,0>
|
||||
{
|
||||
__device__ static void unroll_set(T * , size_t){}
|
||||
__device__ static void unroll_set_with_mask(T * , float, size_t){}
|
||||
};
|
||||
|
||||
template <typename T, int channels>
|
||||
__global__ void kernel_set_to_without_mask(T * mat)
|
||||
{
|
||||
size_t i = (blockIdx.x * blockDim.x + threadIdx.x) * sizeof(T);
|
||||
unroll<T, channels>::unroll_set(mat, i);
|
||||
}
|
||||
|
||||
template <typename T, int channels>
|
||||
__global__ void kernel_set_to_with_mask(T * mat, const float * mask)
|
||||
{
|
||||
size_t i = (blockIdx.x * blockDim.x + threadIdx.x) * sizeof(T);
|
||||
unroll<T, channels>::unroll_set_with_mask(mat, i, mask[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extern "C" void cv::gpu::impl::set_to_with_mask(const DevMem2D& mat, const double * scalar, const DevMem2D& mask, int depth, int channels)
|
||||
{
|
||||
scalar_d[0] = scalar[0];
|
||||
scalar_d[1] = scalar[1];
|
||||
scalar_d[2] = scalar[2];
|
||||
scalar_d[3] = scalar[3];
|
||||
|
||||
int numBlocks = mat.rows * mat.step / 256;
|
||||
|
||||
dim3 threadsPerBlock(256);
|
||||
|
||||
if (channels == 1)
|
||||
{
|
||||
if (depth == 1) ::mat_operators::kernel_set_to_with_mask<unsigned char, 1><<<numBlocks,threadsPerBlock>>>(mat.ptr, (float *)mask.ptr);
|
||||
if (depth == 2) ::mat_operators::kernel_set_to_with_mask<unsigned short, 1><<<numBlocks,threadsPerBlock>>>((unsigned short *)mat.ptr, (float *)mask.ptr);
|
||||
if (depth == 4) ::mat_operators::kernel_set_to_with_mask<unsigned int, 1><<<numBlocks,threadsPerBlock>>>((unsigned int *)mat.ptr, (float *)mask.ptr);
|
||||
}
|
||||
if (channels == 2)
|
||||
{
|
||||
if (depth == 1) ::mat_operators::kernel_set_to_with_mask<unsigned char, 2><<<numBlocks,threadsPerBlock>>>(mat.ptr, (float *)mask.ptr);
|
||||
if (depth == 2) ::mat_operators::kernel_set_to_with_mask<unsigned short, 2><<<numBlocks,threadsPerBlock>>>((unsigned short *)mat.ptr, (float *)mask.ptr);
|
||||
if (depth == 4) ::mat_operators::kernel_set_to_with_mask<unsigned int, 2><<<numBlocks,threadsPerBlock>>>((unsigned int *)mat.ptr, (float *)mask.ptr);
|
||||
}
|
||||
if (channels == 3)
|
||||
{
|
||||
if (depth == 1) ::mat_operators::kernel_set_to_with_mask<unsigned char, 3><<<numBlocks,threadsPerBlock>>>(mat.ptr, (float *)mask.ptr);
|
||||
if (depth == 2) ::mat_operators::kernel_set_to_with_mask<unsigned short, 3><<<numBlocks,threadsPerBlock>>>((unsigned short *)mat.ptr, (float *)mask.ptr);
|
||||
if (depth == 4) ::mat_operators::kernel_set_to_with_mask<unsigned int, 3><<<numBlocks,threadsPerBlock>>>((unsigned int *)mat.ptr, (float *)mask.ptr);
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void cv::gpu::impl::set_to_without_mask(const DevMem2D& mat, const double * scalar, int depth, int channels)
|
||||
{
|
||||
scalar_d[0] = scalar[0];
|
||||
scalar_d[1] = scalar[1];
|
||||
scalar_d[2] = scalar[2];
|
||||
scalar_d[3] = scalar[3];
|
||||
|
||||
int numBlocks = mat.rows * mat.step / 256;
|
||||
|
||||
dim3 threadsPerBlock(256);
|
||||
|
||||
if (channels == 1)
|
||||
{
|
||||
if (depth == 1) ::mat_operators::kernel_set_to_without_mask<unsigned char, 1><<<numBlocks,threadsPerBlock>>>(mat.ptr);
|
||||
if (depth == 2) ::mat_operators::kernel_set_to_without_mask<unsigned short, 1><<<numBlocks,threadsPerBlock>>>((unsigned short *)mat.ptr);
|
||||
if (depth == 4) ::mat_operators::kernel_set_to_without_mask<unsigned int, 1><<<numBlocks,threadsPerBlock>>>((unsigned int *)mat.ptr);
|
||||
}
|
||||
if (channels == 2)
|
||||
{
|
||||
if (depth == 1) ::mat_operators::kernel_set_to_without_mask<unsigned char, 2><<<numBlocks,threadsPerBlock>>>(mat.ptr);
|
||||
if (depth == 2) ::mat_operators::kernel_set_to_without_mask<unsigned short, 2><<<numBlocks,threadsPerBlock>>>((unsigned short *)mat.ptr);
|
||||
if (depth == 4) ::mat_operators::kernel_set_to_without_mask<unsigned int, 2><<<numBlocks,threadsPerBlock>>>((unsigned int *)mat.ptr);
|
||||
}
|
||||
if (channels == 3)
|
||||
{
|
||||
if (depth == 1) ::mat_operators::kernel_set_to_without_mask<unsigned char, 3><<<numBlocks,threadsPerBlock>>>(mat.ptr);
|
||||
if (depth == 2) ::mat_operators::kernel_set_to_without_mask<unsigned short, 3><<<numBlocks,threadsPerBlock>>>((unsigned short *)mat.ptr);
|
||||
if (depth == 4) ::mat_operators::kernel_set_to_without_mask<unsigned int, 3><<<numBlocks,threadsPerBlock>>>((unsigned int *)mat.ptr);
|
||||
}
|
||||
}
|
@ -48,12 +48,13 @@ namespace cv
|
||||
namespace gpu
|
||||
{
|
||||
// Simple lightweight structure that encapsulates image ptr on device, its pitch and its sizes.
|
||||
// It is intended to pass to nvcc-compiled code.
|
||||
// It is intended to pass to nvcc-compiled code. GpuMat depends on headers that nvcc can't compile
|
||||
|
||||
template<typename T = unsigned char>
|
||||
struct DevMem2D_
|
||||
{
|
||||
enum { elem_size = sizeof(T) };
|
||||
typedef T elem_t;
|
||||
enum { elem_size = sizeof(elem_t) };
|
||||
|
||||
int cols;
|
||||
int rows;
|
||||
|
@ -52,15 +52,20 @@ namespace cv
|
||||
{
|
||||
//////////////////////////////// Initialization ////////////////////////
|
||||
|
||||
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
|
||||
CV_EXPORTS int getCudaEnabledDeviceCount();
|
||||
|
||||
//! Functions below throw cv::Expception if the library is compiled without Cuda.
|
||||
CV_EXPORTS string getDeviceName(int device);
|
||||
CV_EXPORTS void setDevice(int device);
|
||||
CV_EXPORTS int getDevice();
|
||||
|
||||
CV_EXPORTS void getComputeCapability(int device, int* major, int* minor);
|
||||
CV_EXPORTS int getNumberOfSMs(int device);
|
||||
|
||||
//////////////////////////////// GpuMat ////////////////////////////////
|
||||
|
||||
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
|
||||
class CV_EXPORTS GpuMat
|
||||
{
|
||||
public:
|
||||
@ -85,7 +90,7 @@ namespace cv
|
||||
GpuMat(const GpuMat& m, const Rect& roi);
|
||||
|
||||
//! builds GpuMat from Mat. Perfom blocking upload to device.
|
||||
GpuMat (const Mat& m);
|
||||
explicit GpuMat (const Mat& m);
|
||||
|
||||
//! destructor - calls release()
|
||||
~GpuMat();
|
||||
@ -211,44 +216,109 @@ namespace cv
|
||||
uchar* dataend;
|
||||
};
|
||||
|
||||
//////////////////////////////// CudaStream ////////////////////////////////
|
||||
//////////////////////////////// MatPL ////////////////////////////////
|
||||
// MatPL is limited cv::Mat with page locked memory allocation.
|
||||
// Page locked memory is only needed for async and faster coping to GPU.
|
||||
// It is convertable to cv::Mat header without reference counting
|
||||
// so you can use it with other opencv functions.
|
||||
|
||||
class CV_EXPORTS MatPL
|
||||
{
|
||||
public:
|
||||
|
||||
class CudaStream
|
||||
//Not supported. Now behaviour is like ALLOC_DEFAULT.
|
||||
//enum { ALLOC_DEFAULT = 0, ALLOC_PORTABLE = 1, ALLOC_WRITE_COMBINED = 4 }
|
||||
|
||||
MatPL();
|
||||
MatPL(const MatPL& m);
|
||||
|
||||
MatPL(int _rows, int _cols, int _type);
|
||||
MatPL(Size _size, int _type);
|
||||
|
||||
//! creates from cv::Mat with coping data
|
||||
explicit MatPL(const Mat& m);
|
||||
|
||||
~MatPL();
|
||||
|
||||
MatPL& operator = (const MatPL& m);
|
||||
|
||||
//! returns deep copy of the matrix, i.e. the data is copied
|
||||
MatPL clone() const;
|
||||
|
||||
//! allocates new matrix data unless the matrix already has specified size and type.
|
||||
void create(int _rows, int _cols, int _type);
|
||||
void create(Size _size, int _type);
|
||||
|
||||
//! decrements reference counter and released memory if needed.
|
||||
void release();
|
||||
|
||||
//! returns matrix header with disabled reference counting for MatPL data.
|
||||
Mat createMatHeader() const;
|
||||
operator Mat() const;
|
||||
|
||||
// Please see cv::Mat for descriptions
|
||||
bool isContinuous() const;
|
||||
size_t elemSize() const;
|
||||
size_t elemSize1() const;
|
||||
int type() const;
|
||||
int depth() const;
|
||||
int channels() const;
|
||||
size_t step1() const;
|
||||
Size size() const;
|
||||
bool empty() const;
|
||||
|
||||
// Please see cv::Mat for descriptions
|
||||
int flags;
|
||||
int rows, cols;
|
||||
size_t step;
|
||||
|
||||
uchar* data;
|
||||
int* refcount;
|
||||
|
||||
uchar* datastart;
|
||||
uchar* dataend;
|
||||
};
|
||||
|
||||
//////////////////////////////// CudaStream ////////////////////////////////
|
||||
// Encapculates Cuda Stream. Provides interface for async coping.
|
||||
// Passed to each function that supports async kernel execution.
|
||||
// Reference counting is enabled
|
||||
|
||||
class CV_EXPORTS CudaStream
|
||||
{
|
||||
public:
|
||||
|
||||
static CudaStream empty();
|
||||
|
||||
CudaStream();
|
||||
~CudaStream();
|
||||
|
||||
CudaStream(const CudaStream&);
|
||||
CudaStream& operator=(const CudaStream&);
|
||||
|
||||
bool queryIfComplete();
|
||||
void waitForCompletion();
|
||||
void waitForCompletion();
|
||||
|
||||
//calls cudaMemcpyAsync
|
||||
//! downloads asynchronously.
|
||||
// Warning! cv::Mat must point to page locked memory (i.e. to MatPL data or to its subMat)
|
||||
void enqueueDownload(const GpuMat& src, MatPL& dst);
|
||||
void enqueueDownload(const GpuMat& src, Mat& dst);
|
||||
|
||||
//! uploads asynchronously.
|
||||
// Warning! cv::Mat must point to page locked memory (i.e. to MatPL data or to its ROI)
|
||||
void enqueueUpload(const MatPL& src, GpuMat& dst);
|
||||
void enqueueUpload(const Mat& src, GpuMat& dst);
|
||||
|
||||
void enqueueCopy(const GpuMat& src, GpuMat& dst);
|
||||
|
||||
// calls cudaMemset2D asynchronous for single channel. Invoke kernel for some multichannel.
|
||||
void enqueueMemSet(const GpuMat& src, Scalar val);
|
||||
|
||||
// invoke kernel asynchronous because of mask
|
||||
|
||||
void enqueueMemSet(const GpuMat& src, Scalar val);
|
||||
void enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask);
|
||||
|
||||
// converts matrix type, ex from float to uchar depending on type
|
||||
void enqueueConvert(const GpuMat& src, GpuMat& dst, int type);
|
||||
|
||||
struct Impl;
|
||||
const Impl& getImpl() const;
|
||||
void enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a = 1, double b = 0);
|
||||
private:
|
||||
|
||||
Impl *impl;
|
||||
|
||||
|
||||
|
||||
CudaStream(const CudaStream&);
|
||||
CudaStream& operator=(const CudaStream&);
|
||||
void create();
|
||||
void release();
|
||||
struct Impl;
|
||||
Impl *impl;
|
||||
friend struct StreamAccessor;
|
||||
};
|
||||
|
||||
//////////////////////////////// StereoBM_GPU ////////////////////////////////
|
||||
@ -265,17 +335,22 @@ namespace cv
|
||||
StereoBM_GPU(int preset, int ndisparities=0);
|
||||
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
|
||||
//! Output disparity has CV_8U type.
|
||||
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity) const;
|
||||
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity);
|
||||
|
||||
//! Acync version
|
||||
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, const CudaStream& stream);
|
||||
|
||||
//! Some heuristics that tries to estmate
|
||||
// if current GPU will be faster then CPU in this algorithm.
|
||||
// It queries current active device.
|
||||
static bool checkIfGpuCallReasonable();
|
||||
private:
|
||||
mutable GpuMat minSSD;
|
||||
GpuMat minSSD;
|
||||
int preset;
|
||||
int ndisp;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#include "opencv2/gpu/gpumat.hpp"
|
||||
#include "opencv2/gpu/matrix_operations.hpp"
|
||||
|
||||
#endif /* __OPENCV_GPU_HPP__ */
|
@ -1,265 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_GPU_MATPL_HPP__
|
||||
#define __OPENCV_GPU_MATPL_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
|
||||
//////////////////////////////// MatPL ////////////////////////////////
|
||||
|
||||
//class CV_EXPORTS MatPL : private Mat
|
||||
//{
|
||||
//public:
|
||||
// MatPL() {}
|
||||
// MatPL(int _rows, int _cols, int _type) : Mat(_rows, _cols, _type) {}
|
||||
// MatPL(Size _size, int _type) : Mat(_size, _type) {}
|
||||
//
|
||||
// Mat(int _rows, int _cols, int _type, const Scalar& _s) : Mat
|
||||
// MatPL(Size _size, int _type, const Scalar& _s);
|
||||
// //! copy constructor
|
||||
// MatPL(const Mat& m);
|
||||
// //! constructor for matrix headers pointing to user-allocated data
|
||||
// MatPL(int _rows, int _cols, int _type, void* _data, size_t _step=AUTO_STEP);
|
||||
// MatPL(Size _size, int _type, void* _data, size_t _step=AUTO_STEP);
|
||||
// //! creates a matrix header for a part of the bigger matrix
|
||||
// MatPL(const Mat& m, const Range& rowRange, const Range& colRange);
|
||||
// MatPL(const Mat& m, const Rect& roi);
|
||||
// //! converts old-style CvMat to the new matrix; the data is not copied by default
|
||||
// Mat(const CvMat* m, bool copyData=false);
|
||||
// MatPL converts old-style IplImage to the new matrix; the data is not copied by default
|
||||
// MatPL(const IplImage* img, bool copyData=false);
|
||||
// //! builds matrix from std::vector with or without copying the data
|
||||
// template<typename _Tp> explicit Mat(const vector<_Tp>& vec, bool copyData=false);
|
||||
// //! builds matrix from cv::Vec; the data is copied by default
|
||||
// template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec,
|
||||
// bool copyData=true);
|
||||
// //! builds matrix from cv::Matx; the data is copied by default
|
||||
// template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx,
|
||||
// bool copyData=true);
|
||||
// //! builds matrix from a 2D point
|
||||
// template<typename _Tp> explicit Mat(const Point_<_Tp>& pt);
|
||||
// //! builds matrix from a 3D point
|
||||
// template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt);
|
||||
// //! builds matrix from comma initializer
|
||||
// template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);
|
||||
// //! helper constructor to compile matrix expressions
|
||||
// Mat(const MatExpr_Base& expr);
|
||||
// //! destructor - calls release()
|
||||
// ~Mat();
|
||||
// //! assignment operators
|
||||
// Mat& operator = (const Mat& m);
|
||||
// Mat& operator = (const MatExpr_Base& expr);
|
||||
|
||||
// operator MatExpr_<Mat, Mat>() const;
|
||||
|
||||
// //! returns a new matrix header for the specified row
|
||||
// Mat row(int y) const;
|
||||
// //! returns a new matrix header for the specified column
|
||||
// Mat col(int x) const;
|
||||
// //! ... for the specified row span
|
||||
// Mat rowRange(int startrow, int endrow) const;
|
||||
// Mat rowRange(const Range& r) const;
|
||||
// //! ... for the specified column span
|
||||
// Mat colRange(int startcol, int endcol) const;
|
||||
// Mat colRange(const Range& r) const;
|
||||
// //! ... for the specified diagonal
|
||||
// // (d=0 - the main diagonal,
|
||||
// // >0 - a diagonal from the lower half,
|
||||
// // <0 - a diagonal from the upper half)
|
||||
// Mat diag(int d=0) const;
|
||||
// //! constructs a square diagonal matrix which main diagonal is vector "d"
|
||||
// static Mat diag(const Mat& d);
|
||||
|
||||
// //! returns deep copy of the matrix, i.e. the data is copied
|
||||
// Mat clone() const;
|
||||
// //! copies the matrix content to "m".
|
||||
// // It calls m.create(this->size(), this->type()).
|
||||
// void copyTo( Mat& m ) const;
|
||||
// //! copies those matrix elements to "m" that are marked with non-zero mask elements.
|
||||
// void copyTo( Mat& m, const Mat& mask ) const;
|
||||
// //! converts matrix to another datatype with optional scalng. See cvConvertScale.
|
||||
// void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
|
||||
|
||||
// void assignTo( Mat& m, int type=-1 ) const;
|
||||
|
||||
// //! sets every matrix element to s
|
||||
// Mat& operator = (const Scalar& s);
|
||||
// //! sets some of the matrix elements to s, according to the mask
|
||||
// Mat& setTo(const Scalar& s, const Mat& mask=Mat());
|
||||
// //! creates alternative matrix header for the same data, with different
|
||||
// // number of channels and/or different number of rows. see cvReshape.
|
||||
// Mat reshape(int _cn, int _rows=0) const;
|
||||
|
||||
// //! matrix transposition by means of matrix expressions
|
||||
// MatExpr_<MatExpr_Op2_<Mat, double, Mat, MatOp_T_<Mat> >, Mat>
|
||||
// t() const;
|
||||
// //! matrix inversion by means of matrix expressions
|
||||
// MatExpr_<MatExpr_Op2_<Mat, int, Mat, MatOp_Inv_<Mat> >, Mat>
|
||||
// inv(int method=DECOMP_LU) const;
|
||||
// MatExpr_<MatExpr_Op4_<Mat, Mat, double, char, Mat, MatOp_MulDiv_<Mat> >, Mat>
|
||||
// //! per-element matrix multiplication by means of matrix expressions
|
||||
// mul(const Mat& m, double scale=1) const;
|
||||
// MatExpr_<MatExpr_Op4_<Mat, Mat, double, char, Mat, MatOp_MulDiv_<Mat> >, Mat>
|
||||
// mul(const MatExpr_<MatExpr_Op2_<Mat, double, Mat, MatOp_Scale_<Mat> >, Mat>& m, double scale=1) const;
|
||||
// MatExpr_<MatExpr_Op4_<Mat, Mat, double, char, Mat, MatOp_MulDiv_<Mat> >, Mat>
|
||||
// mul(const MatExpr_<MatExpr_Op2_<Mat, double, Mat, MatOp_DivRS_<Mat> >, Mat>& m, double scale=1) const;
|
||||
|
||||
// //! computes cross-product of 2 3D vectors
|
||||
// Mat cross(const Mat& m) const;
|
||||
// //! computes dot-product
|
||||
// double dot(const Mat& m) const;
|
||||
|
||||
// //! Matlab-style matrix initialization
|
||||
// static MatExpr_Initializer zeros(int rows, int cols, int type);
|
||||
// static MatExpr_Initializer zeros(Size size, int type);
|
||||
// static MatExpr_Initializer ones(int rows, int cols, int type);
|
||||
// static MatExpr_Initializer ones(Size size, int type);
|
||||
// static MatExpr_Initializer eye(int rows, int cols, int type);
|
||||
// static MatExpr_Initializer eye(Size size, int type);
|
||||
|
||||
// //! allocates new matrix data unless the matrix already has specified size and type.
|
||||
// // previous data is unreferenced if needed.
|
||||
// void create(int _rows, int _cols, int _type);
|
||||
// void create(Size _size, int _type);
|
||||
// //! increases the reference counter; use with care to avoid memleaks
|
||||
// void addref();
|
||||
// //! decreases reference counter;
|
||||
// // deallocate the data when reference counter reaches 0.
|
||||
// void release();
|
||||
|
||||
// //! locates matrix header within a parent matrix. See below
|
||||
// void locateROI( Size& wholeSize, Point& ofs ) const;
|
||||
// //! moves/resizes the current matrix ROI inside the parent matrix.
|
||||
// Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );
|
||||
// //! extracts a rectangular sub-matrix
|
||||
// // (this is a generalized form of row, rowRange etc.)
|
||||
// Mat operator()( Range rowRange, Range colRange ) const;
|
||||
// Mat operator()( const Rect& roi ) const;
|
||||
|
||||
// //! converts header to CvMat; no data is copied
|
||||
// operator CvMat() const;
|
||||
// //! converts header to IplImage; no data is copied
|
||||
// operator IplImage() const;
|
||||
|
||||
// //! returns true iff the matrix data is continuous
|
||||
// // (i.e. when there are no gaps between successive rows).
|
||||
// // similar to CV_IS_MAT_CONT(cvmat->type)
|
||||
// bool isContinuous() const;
|
||||
// //! returns element size in bytes,
|
||||
// // similar to CV_ELEM_SIZE(cvmat->type)
|
||||
// size_t elemSize() const;
|
||||
// //! returns the size of element channel in bytes.
|
||||
// size_t elemSize1() const;
|
||||
// //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
|
||||
// int type() const;
|
||||
// //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
|
||||
// int depth() const;
|
||||
// //! returns element type, similar to CV_MAT_CN(cvmat->type)
|
||||
// int channels() const;
|
||||
// //! returns step/elemSize1()
|
||||
// size_t step1() const;
|
||||
// //! returns matrix size:
|
||||
// // width == number of columns, height == number of rows
|
||||
// Size size() const;
|
||||
// //! returns true if matrix data is NULL
|
||||
// bool empty() const;
|
||||
|
||||
// //! returns pointer to y-th row
|
||||
// uchar* ptr(int y=0);
|
||||
// const uchar* ptr(int y=0) const;
|
||||
|
||||
// //! template version of the above method
|
||||
// template<typename _Tp> _Tp* ptr(int y=0);
|
||||
// template<typename _Tp> const _Tp* ptr(int y=0) const;
|
||||
|
||||
// //! template methods for read-write or read-only element access.
|
||||
// // note that _Tp must match the actual matrix type -
|
||||
// // the functions do not do any on-fly type conversion
|
||||
// template<typename _Tp> _Tp& at(int y, int x);
|
||||
// template<typename _Tp> _Tp& at(Point pt);
|
||||
// template<typename _Tp> const _Tp& at(int y, int x) const;
|
||||
// template<typename _Tp> const _Tp& at(Point pt) const;
|
||||
// template<typename _Tp> _Tp& at(int i);
|
||||
// template<typename _Tp> const _Tp& at(int i) const;
|
||||
|
||||
// //! template methods for iteration over matrix elements.
|
||||
// // the iterators take care of skipping gaps in the end of rows (if any)
|
||||
// template<typename _Tp> MatIterator_<_Tp> begin();
|
||||
// template<typename _Tp> MatIterator_<_Tp> end();
|
||||
// template<typename _Tp> MatConstIterator_<_Tp> begin() const;
|
||||
// template<typename _Tp> MatConstIterator_<_Tp> end() const;
|
||||
|
||||
// enum { MAGIC_VAL=0x42FF0000, AUTO_STEP=0, CONTINUOUS_FLAG=CV_MAT_CONT_FLAG };
|
||||
|
||||
// /*! includes several bit-fields:
|
||||
// - the magic signature
|
||||
// - continuity flag
|
||||
// - depth
|
||||
// - number of channels
|
||||
// */
|
||||
// int flags;
|
||||
// //! the number of rows and columns
|
||||
// int rows, cols;
|
||||
// //! a distance between successive rows in bytes; includes the gap if any
|
||||
// size_t step;
|
||||
// //! pointer to the data
|
||||
// uchar* data;
|
||||
|
||||
// //! pointer to the reference counter;
|
||||
// // when matrix points to user-allocated data, the pointer is NULL
|
||||
// int* refcount;
|
||||
|
||||
// //! helper fields used in locateROI and adjustROI
|
||||
// uchar* datastart;
|
||||
// uchar* dataend;
|
||||
//};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif /* __OPENCV_GPU_MATPL_HPP__ */
|
@ -43,27 +43,25 @@
|
||||
#ifndef __OPENCV_GPU_MATRIX_OPERATIONS_HPP__
|
||||
#define __OPENCV_GPU_MATRIX_OPERATIONS_HPP__
|
||||
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
namespace gpu
|
||||
{
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// GpuMat ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
inline GpuMat::GpuMat()
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) {}
|
||||
inline GpuMat::GpuMat() : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) {}
|
||||
|
||||
inline GpuMat::GpuMat(int _rows, int _cols, int _type)
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
inline GpuMat::GpuMat(int _rows, int _cols, int _type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if( _rows > 0 && _cols > 0 )
|
||||
create( _rows, _cols, _type );
|
||||
}
|
||||
|
||||
inline GpuMat::GpuMat(Size _size, int _type)
|
||||
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
inline GpuMat::GpuMat(Size _size, int _type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if( _size.height > 0 && _size.width > 0 )
|
||||
create( _size.height, _size.width, _type );
|
||||
@ -249,12 +247,9 @@ inline void GpuMat::assignTo( GpuMat& m, int type ) const
|
||||
|
||||
//CPP GpuMat& GpuMat::operator = (const Scalar& s);
|
||||
//CPP GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask=GpuMat());
|
||||
|
||||
//CPP GpuMat GpuMat::reshape(int _cn, int _rows=0) const;
|
||||
|
||||
//CPP void GpuMat::create(int _rows, int _cols, int _type);
|
||||
inline void GpuMat::create(Size _size, int _type) { create(_size.height, _size.width, _type); }
|
||||
|
||||
//CPP void GpuMat::create(int _rows, int _cols, int _type);
|
||||
//CPP void GpuMat::release();
|
||||
|
||||
inline void GpuMat::swap(GpuMat& b)
|
||||
@ -343,6 +338,87 @@ template<typename _Tp> inline const _Tp* GpuMat::ptr(int y) const
|
||||
static inline void swap( GpuMat& a, GpuMat& b ) { a.swap(b); }
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// MatPL ////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
|
||||
MatPL::MatPL() : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) {}
|
||||
MatPL::MatPL(int _rows, int _cols, int _type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if( _rows > 0 && _cols > 0 )
|
||||
create( _rows, _cols, _type );
|
||||
}
|
||||
|
||||
MatPL::MatPL(Size _size, int _type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if( _size.height > 0 && _size.width > 0 )
|
||||
create( _size.height, _size.width, _type );
|
||||
}
|
||||
|
||||
MatPL::MatPL(const MatPL& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(0), dataend(0)
|
||||
{
|
||||
if( refcount )
|
||||
CV_XADD(refcount, 1);
|
||||
|
||||
}
|
||||
|
||||
MatPL::MatPL(const Mat& m) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
||||
{
|
||||
if( m.rows > 0 && m.cols > 0 )
|
||||
create( m.size(), m.type() );
|
||||
|
||||
Mat tmp = createMatHeader();
|
||||
m.copyTo(tmp);
|
||||
}
|
||||
|
||||
MatPL::~MatPL()
|
||||
{
|
||||
release();
|
||||
}
|
||||
MatPL& MatPL::operator = (const MatPL& m)
|
||||
{
|
||||
if( this != &m )
|
||||
{
|
||||
if( m.refcount )
|
||||
CV_XADD(m.refcount, 1);
|
||||
release();
|
||||
flags = m.flags;
|
||||
rows = m.rows; cols = m.cols;
|
||||
step = m.step; data = m.data;
|
||||
datastart = m.datastart;
|
||||
dataend = m.dataend;
|
||||
refcount = m.refcount;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
MatPL MatPL::clone() const
|
||||
{
|
||||
MatPL m(size(), type());
|
||||
Mat to = m;
|
||||
Mat from = *this;
|
||||
from.copyTo(to);
|
||||
return m;
|
||||
}
|
||||
|
||||
inline void MatPL::create(Size _size, int _type) { create(_size.height, _size.width, _type); }
|
||||
//CCP void MatPL::create(int _rows, int _cols, int _type);
|
||||
//CPP void MatPL::release();
|
||||
|
||||
inline Mat MatPL::createMatHeader() const { return Mat(size(), type(), data); }
|
||||
inline MatPL::operator Mat() const { return createMatHeader(); }
|
||||
|
||||
inline bool MatPL::isContinuous() const { return (flags & Mat::CONTINUOUS_FLAG) != 0; }
|
||||
inline size_t MatPL::elemSize() const { return CV_ELEM_SIZE(flags); }
|
||||
inline size_t MatPL::elemSize1() const { return CV_ELEM_SIZE1(flags); }
|
||||
inline int MatPL::type() const { return CV_MAT_TYPE(flags); }
|
||||
inline int MatPL::depth() const { return CV_MAT_DEPTH(flags); }
|
||||
inline int MatPL::channels() const { return CV_MAT_CN(flags); }
|
||||
inline size_t MatPL::step1() const { return step/elemSize1(); }
|
||||
inline Size MatPL::size() const { return Size(cols, rows); }
|
||||
inline bool MatPL::empty() const { return data == 0; }
|
||||
|
||||
|
||||
} /* end of namespace gpu */
|
||||
|
||||
} /* end of namespace cv */
|
64
modules/gpu/include/opencv2/gpu/stream_accessor.hpp
Normal file
64
modules/gpu/include/opencv2/gpu/stream_accessor.hpp
Normal file
@ -0,0 +1,64 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_GPU_STREAM_ACCESSOR_HPP__
|
||||
#define __OPENCV_GPU_STREAM_ACCESSOR_HPP__
|
||||
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "cuda_runtime_api.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
// This is only header file that depends on Cuda. All other headers are independent.
|
||||
// So if you use OpenCV binaries you do noot need to install Cuda Toolkit.
|
||||
// But of you wanna use GPU by yourself, may get cuda stream instance using the class below.
|
||||
// In this case you have to install Cuda Toolkit.
|
||||
struct StreamAccessor
|
||||
{
|
||||
CV_EXPORTS static cudaStream_t getStream(const CudaStream& stream);
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* __OPENCV_GPU_STREAM_ACCESSOR_HPP__ */
|
@ -44,31 +44,37 @@
|
||||
#define __OPENCV_CUDA_SHARED_HPP__
|
||||
|
||||
#include "opencv2/gpu/devmem2d.hpp"
|
||||
#include "cuda_runtime_api.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
{
|
||||
typedef unsigned char uchar;
|
||||
typedef unsigned short ushort;
|
||||
typedef unsigned int uint;
|
||||
typedef unsigned int uint;
|
||||
|
||||
extern "C" void error( const char *error_string, const char *file, const int line, const char *func = "");
|
||||
|
||||
namespace impl
|
||||
{
|
||||
{
|
||||
static inline int divUp(int a, int b) { return (a % b == 0) ? a/b : a/b + 1; }
|
||||
|
||||
extern "C" void stereoBM_GPU(const DevMem2D& left, const DevMem2D& right, DevMem2D& disp, int maxdisp, DevMem2D_<uint>& minSSD_buf);
|
||||
|
||||
extern "C" void set_to_without_mask (const DevMem2D& mat, const double * scalar, int depth, int channels);
|
||||
extern "C" void set_to_with_mask (const DevMem2D& mat, const double * scalar, const DevMem2D& mask, int depth, int channels);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __CUDACC__
|
||||
#define cudaSafeCall(expr) { cudaError_t err = expr; if( cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), __FILE__, __LINE__); }
|
||||
#if defined(__GNUC__)
|
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__);
|
||||
#else /* defined(__CUDACC__) || defined(__MSVC__) */
|
||||
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
|
||||
#endif
|
||||
|
||||
static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if( cudaSuccess != err)
|
||||
cv::gpu::error(cudaGetErrorString(err), __FILE__, __LINE__, func);
|
||||
}
|
||||
|
||||
#endif /* __OPENCV_CUDA_SHARED_HPP__ */
|
@ -41,56 +41,118 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
//#include "opencv2/gpu/stream_access.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
|
||||
cv::gpu::CudaStream::CudaStream() //: impl( (Impl*)fastMalloc(sizeof(Impl)) )
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
void cv::gpu::CudaStream::create() { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::release() { throw_nogpu(); }
|
||||
cv::gpu::CudaStream::CudaStream() : impl(0) { throw_nogpu(); }
|
||||
cv::gpu::CudaStream::~CudaStream() { throw_nogpu(); }
|
||||
cv::gpu::CudaStream::CudaStream(const CudaStream& stream) { throw_nogpu(); }
|
||||
CudaStream& cv::gpu::CudaStream::operator=(const CudaStream& stream) { throw_nogpu(); return *this; }
|
||||
bool cv::gpu::CudaStream::queryIfComplete() { throw_nogpu(); return true; }
|
||||
void cv::gpu::CudaStream::waitForCompletion() { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, Mat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, MatPL& dst) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueUpload(const MatPL& src, GpuMat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueUpload(const Mat& src, GpuMat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueCopy(const GpuMat& src, GpuMat& dst) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueMemSet(const GpuMat& src, Scalar val) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask) { throw_nogpu(); }
|
||||
void cv::gpu::CudaStream::enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a, double b) { throw_nogpu(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
#include "opencv2/gpu/stream_accessor.hpp"
|
||||
|
||||
struct CudaStream::Impl
|
||||
{
|
||||
//cudaSafeCall( cudaStreamCreate( &impl->stream) );
|
||||
cudaStream_t stream;
|
||||
int ref_counter;
|
||||
};
|
||||
namespace
|
||||
{
|
||||
template<class S, class D> void devcopy(const S& src, D& dst, cudaStream_t s, cudaMemcpyKind k)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
size_t bwidth = src.cols * src.elemSize();
|
||||
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, k, s) );
|
||||
};
|
||||
}
|
||||
cv::gpu::CudaStream::~CudaStream()
|
||||
|
||||
CV_EXPORTS cudaStream_t cv::gpu::StreamAccessor::getStream(const CudaStream& stream) { return stream.impl->stream; };
|
||||
|
||||
void cv::gpu::CudaStream::create()
|
||||
{
|
||||
if (impl)
|
||||
release();
|
||||
|
||||
cudaStream_t stream;
|
||||
cudaSafeCall( cudaStreamCreate( &stream ) );
|
||||
|
||||
impl = (CudaStream::Impl*)fastMalloc(sizeof(CudaStream::Impl));
|
||||
|
||||
impl->stream = stream;
|
||||
impl->ref_counter = 1;
|
||||
}
|
||||
|
||||
void cv::gpu::CudaStream::release()
|
||||
{
|
||||
if( impl && CV_XADD(&impl->ref_counter, -1) == 1 )
|
||||
{
|
||||
cudaSafeCall( cudaStreamDestroy( *(cudaStream_t*)impl ) );
|
||||
cudaSafeCall( cudaStreamDestroy( impl->stream ) );
|
||||
cv::fastFree( impl );
|
||||
}
|
||||
}
|
||||
|
||||
cv::gpu::CudaStream::CudaStream() : impl(0) { create(); }
|
||||
cv::gpu::CudaStream::~CudaStream() { release(); }
|
||||
|
||||
cv::gpu::CudaStream::CudaStream(const CudaStream& stream) : impl(stream.impl)
|
||||
{
|
||||
if( impl )
|
||||
CV_XADD(&impl->ref_counter, 1);
|
||||
}
|
||||
CudaStream& cv::gpu::CudaStream::operator=(const CudaStream& stream)
|
||||
{
|
||||
if( this != &stream )
|
||||
{
|
||||
if( stream.impl )
|
||||
CV_XADD(&stream.impl->ref_counter, 1);
|
||||
|
||||
release();
|
||||
impl = stream.impl;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool cv::gpu::CudaStream::queryIfComplete()
|
||||
{
|
||||
//cudaError_t err = cudaStreamQuery( *(cudaStream_t*)impl );
|
||||
cudaError_t err = cudaStreamQuery( impl->stream );
|
||||
|
||||
//if (err == cudaSuccess)
|
||||
// return true;
|
||||
if (err == cudaErrorNotReady || err == cudaSuccess)
|
||||
return err == cudaSuccess;
|
||||
|
||||
//if (err == cudaErrorNotReady)
|
||||
// return false;
|
||||
|
||||
////cudaErrorInvalidResourceHandle
|
||||
//cudaSafeCall( err );
|
||||
return true;
|
||||
}
|
||||
void cv::gpu::CudaStream::waitForCompletion()
|
||||
{
|
||||
cudaSafeCall( cudaStreamSynchronize( *(cudaStream_t*)impl ) );
|
||||
cudaSafeCall(err);
|
||||
}
|
||||
|
||||
void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, Mat& dst)
|
||||
{
|
||||
// cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost,
|
||||
}
|
||||
void cv::gpu::CudaStream::enqueueUpload(const Mat& src, GpuMat& dst)
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
void cv::gpu::CudaStream::enqueueCopy(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
void cv::gpu::CudaStream::waitForCompletion() { cudaSafeCall( cudaStreamSynchronize( impl->stream ) ); }
|
||||
|
||||
void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, Mat& dst)
|
||||
{
|
||||
// if not -> allocation will be done, but after that dst will not point to page locked memory
|
||||
CV_Assert(src.cols == dst.cols && src.rows == dst.rows && src.type() == dst.type() )
|
||||
devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost);
|
||||
}
|
||||
void cv::gpu::CudaStream::enqueueDownload(const GpuMat& src, MatPL& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost); }
|
||||
|
||||
void cv::gpu::CudaStream::enqueueUpload(const MatPL& src, GpuMat& dst){ devcopy(src, dst, impl->stream, cudaMemcpyHostToDevice); }
|
||||
void cv::gpu::CudaStream::enqueueUpload(const Mat& src, GpuMat& dst) { devcopy(src, dst, impl->stream, cudaMemcpyHostToDevice); }
|
||||
void cv::gpu::CudaStream::enqueueCopy(const GpuMat& src, GpuMat& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToDevice); }
|
||||
|
||||
void cv::gpu::CudaStream::enqueueMemSet(const GpuMat& src, Scalar val)
|
||||
{
|
||||
@ -102,11 +164,10 @@ void cv::gpu::CudaStream::enqueueMemSet(const GpuMat& src, Scalar val, const Gpu
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
void cv::gpu::CudaStream::enqueueConvert(const GpuMat& src, GpuMat& dst, int type)
|
||||
void cv::gpu::CudaStream::enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a, double b)
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
//struct cudaStream_t& cv::gpu::CudaStream::getStream() { return stream; }
|
||||
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
@ -45,15 +45,18 @@
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#ifndef HAVE_CUDA
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
CV_EXPORTS int cv::gpu::getCudaEnabledDeviceCount() { return 0; }
|
||||
CV_EXPORTS string cv::gpu::getDeviceName(int /*device*/) { cudaSafeCall(0); return 0; }
|
||||
CV_EXPORTS void cv::gpu::setDevice(int /*device*/) { cudaSafeCall(0); }
|
||||
CV_EXPORTS void cv::gpu::getComputeCapability(int /*device*/, int* /*major*/, int* /*minor*/) { cudaSafeCall(0); }
|
||||
CV_EXPORTS int cv::gpu::getNumberOfSMs(int /*device*/) { cudaSafeCall(0); return 0; }
|
||||
CV_EXPORTS string cv::gpu::getDeviceName(int /*device*/) { throw_nogpu(); return 0; }
|
||||
CV_EXPORTS void cv::gpu::setDevice(int /*device*/) { throw_nogpu(); }
|
||||
CV_EXPORTS int cv::gpu::getDevice() { throw_nogpu(); return 0; }
|
||||
CV_EXPORTS void cv::gpu::getComputeCapability(int /*device*/, int* /*major*/, int* /*minor*/) { throw_nogpu(); }
|
||||
CV_EXPORTS int cv::gpu::getNumberOfSMs(int /*device*/) { throw_nogpu(); return 0; }
|
||||
|
||||
#else
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
CV_EXPORTS int cv::gpu::getCudaEnabledDeviceCount()
|
||||
{
|
||||
@ -73,6 +76,12 @@ CV_EXPORTS void cv::gpu::setDevice(int device)
|
||||
{
|
||||
cudaSafeCall( cudaSetDevice( device ) );
|
||||
}
|
||||
CV_EXPORTS int cv::gpu::getDevice()
|
||||
{
|
||||
int device;
|
||||
cudaSafeCall( cudaGetDevice( &device ) );
|
||||
return device;
|
||||
}
|
||||
|
||||
CV_EXPORTS void cv::gpu::getComputeCapability(int device, int* major, int* minor)
|
||||
{
|
||||
@ -90,4 +99,5 @@ CV_EXPORTS int cv::gpu::getNumberOfSMs(int device)
|
||||
return prop.multiProcessorCount;
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
@ -45,23 +45,53 @@
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// GpuMat ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void GpuMat::upload(const Mat& m)
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
void GpuMat::upload(const Mat& /*m*/) { throw_nogpu(); }
|
||||
void GpuMat::download(cv::Mat& /*m*/) const { throw_nogpu(); }
|
||||
void GpuMat::copyTo( GpuMat& /*m*/ ) const { throw_nogpu(); }
|
||||
void GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const { throw_nogpu(); }
|
||||
void GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const { throw_nogpu(); }
|
||||
GpuMat& GpuMat::operator = (const Scalar& /*s*/) { throw_nogpu(); return *this; }
|
||||
GpuMat& GpuMat::setTo(const Scalar& /*s*/, const GpuMat& /*mask*/) { throw_nogpu(); return *this; }
|
||||
GpuMat GpuMat::reshape(int /*new_cn*/, int /*new_rows*/) const { throw_nogpu(); return GpuMat(); }
|
||||
void GpuMat::create(int /*_rows*/, int /*_cols*/, int /*_type*/) { throw_nogpu(); }
|
||||
void GpuMat::release() { throw_nogpu(); }
|
||||
|
||||
void MatPL::create(int /*_rows*/, int /*_cols*/, int /*_type*/) { throw_nogpu(); }
|
||||
void MatPL::release() { throw_nogpu(); }
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
|
||||
void cv::gpu::GpuMat::upload(const Mat& m)
|
||||
{
|
||||
CV_DbgAssert(!m.empty());
|
||||
create(m.size(), m.type());
|
||||
cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
|
||||
}
|
||||
|
||||
void GpuMat::download(cv::Mat& m) const
|
||||
void cv::gpu::GpuMat::download(cv::Mat& m) const
|
||||
{
|
||||
CV_DbgAssert(!this->empty());
|
||||
m.create(size(), type());
|
||||
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
|
||||
}
|
||||
|
||||
void GpuMat::copyTo( GpuMat& m ) const
|
||||
void cv::gpu::GpuMat::copyTo( GpuMat& m ) const
|
||||
{
|
||||
CV_DbgAssert(!this->empty());
|
||||
m.create(size(), type());
|
||||
@ -69,45 +99,30 @@ void GpuMat::copyTo( GpuMat& m ) const
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
void GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const
|
||||
void cv::gpu::GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
void cv::gpu::GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
void GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const
|
||||
GpuMat& cv::gpu::GpuMat::operator = (const Scalar& /*s*/)
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
GpuMat& GpuMat::operator = (const Scalar& s)
|
||||
{
|
||||
cv::gpu::impl::set_to_without_mask(*this, s.val, this->depth(), this->channels());
|
||||
CV_Assert(!"Not implemented");
|
||||
return *this;
|
||||
}
|
||||
|
||||
GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask)
|
||||
GpuMat& cv::gpu::GpuMat::setTo(const Scalar& /*s*/, const GpuMat& /*mask*/)
|
||||
{
|
||||
CV_Assert(mask.type() == CV_32F);
|
||||
|
||||
CV_DbgAssert(!this->empty());
|
||||
|
||||
this->channels();
|
||||
this->depth();
|
||||
|
||||
if (mask.empty())
|
||||
{
|
||||
cv::gpu::impl::set_to_without_mask(*this, s.val, this->depth(), this->channels());
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::impl::set_to_with_mask(*this, s.val, mask, this->depth(), this->channels());
|
||||
}
|
||||
|
||||
CV_Assert(!"Not implemented");
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
GpuMat GpuMat::reshape(int new_cn, int new_rows) const
|
||||
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
|
||||
{
|
||||
GpuMat hdr = *this;
|
||||
|
||||
@ -148,7 +163,7 @@ GpuMat GpuMat::reshape(int new_cn, int new_rows) const
|
||||
return hdr;
|
||||
}
|
||||
|
||||
void GpuMat::create(int _rows, int _cols, int _type)
|
||||
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
|
||||
{
|
||||
_type &= TYPE_MASK;
|
||||
if( rows == _rows && cols == _cols && type() == _type && data )
|
||||
@ -162,7 +177,7 @@ void GpuMat::create(int _rows, int _cols, int _type)
|
||||
rows = _rows;
|
||||
cols = _cols;
|
||||
|
||||
size_t esz = elemSize();
|
||||
size_t esz = elemSize();
|
||||
|
||||
void *dev_ptr;
|
||||
cudaSafeCall( cudaMallocPitch(&dev_ptr, &step, esz * cols, rows) );
|
||||
@ -174,19 +189,19 @@ void GpuMat::create(int _rows, int _cols, int _type)
|
||||
size_t nettosize = (size_t)_nettosize;
|
||||
|
||||
datastart = data = (uchar*)dev_ptr;
|
||||
dataend = data + nettosize;
|
||||
dataend = data + nettosize;
|
||||
|
||||
refcount = (int*)fastMalloc(sizeof(*refcount));
|
||||
*refcount = 1;
|
||||
}
|
||||
}
|
||||
|
||||
void GpuMat::release()
|
||||
void cv::gpu::GpuMat::release()
|
||||
{
|
||||
if( refcount && CV_XADD(refcount, -1) == 1 )
|
||||
{
|
||||
fastFree(refcount);
|
||||
cudaSafeCall( cudaFree(datastart) );
|
||||
cudaSafeCall( cudaFree(datastart) );
|
||||
}
|
||||
data = datastart = dataend = 0;
|
||||
step = rows = cols = 0;
|
||||
@ -194,7 +209,52 @@ void GpuMat::release()
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// MatPL ////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
|
||||
void cv::gpu::MatPL::create(int _rows, int _cols, int _type)
|
||||
{
|
||||
_type &= TYPE_MASK;
|
||||
if( rows == _rows && cols == _cols && type() == _type && data )
|
||||
return;
|
||||
if( data )
|
||||
release();
|
||||
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
|
||||
if( _rows > 0 && _cols > 0 )
|
||||
{
|
||||
flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type;
|
||||
rows = _rows;
|
||||
cols = _cols;
|
||||
step = elemSize()*cols;
|
||||
int64 _nettosize = (int64)step*rows;
|
||||
size_t nettosize = (size_t)_nettosize;
|
||||
if( _nettosize != (int64)nettosize )
|
||||
CV_Error(CV_StsNoMem, "Too big buffer is allocated");
|
||||
size_t datasize = alignSize(nettosize, (int)sizeof(*refcount));
|
||||
|
||||
//datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount));
|
||||
void *ptr;
|
||||
cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) );
|
||||
|
||||
datastart = data = (uchar*)ptr;
|
||||
dataend = data + nettosize;
|
||||
|
||||
refcount = (int*)cv::fastMalloc(sizeof(*refcount));
|
||||
*refcount = 1;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::MatPL::release()
|
||||
{
|
||||
if( refcount && CV_XADD(refcount, -1) == 1 )
|
||||
{
|
||||
cudaSafeCall( cudaFreeHost(datastart ) );
|
||||
fastFree(refcount);
|
||||
}
|
||||
data = datastart = dataend = 0;
|
||||
step = rows = cols = 0;
|
||||
refcount = 0;
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
@ -44,7 +44,13 @@
|
||||
/* End of file. */
|
||||
|
||||
|
||||
extern "C" void cv::gpu::error( const char *error_string, const char *file, const int line, const char *func)
|
||||
{
|
||||
cv::error( cv::Exception(CV_GpuApiCallError, error_string, func, file, line) );
|
||||
}
|
||||
namespace cv
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
extern "C" void error(const char *error_string, const char *file, const int line, const char *func)
|
||||
{
|
||||
cv::error( cv::Exception(CV_GpuApiCallError, error_string, func, file, line) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -53,30 +53,17 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "cuda_shared.hpp"
|
||||
|
||||
#ifndef HAVE_CUDA
|
||||
|
||||
#define cudaSafeCall(expr) CV_Error(CV_GpuNotFound, "The library is compilled with no GPU support")
|
||||
#define cudaCallerSafeCall(expr) CV_Error(CV_GpuNotFound, "The library is compilled with no GPU support")
|
||||
|
||||
#else /* HAVE_CUDA */
|
||||
|
||||
#if _MSC_VER >= 1200
|
||||
#pragma warning (disable : 4100 4211 4201 4408)
|
||||
#endif
|
||||
|
||||
#include "cuda_runtime_api.h"
|
||||
|
||||
#ifdef __GNUC__
|
||||
#define cudaSafeCall(expr) { cudaError_t err = expr; if(cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), __FILE__, __LINE__, __func__); }
|
||||
#else
|
||||
#define cudaSafeCall(expr) { cudaError_t err = expr; if(cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), __FILE__, __LINE__); }
|
||||
#endif
|
||||
|
||||
#define cudaCallerSafeCall(expr) expr;
|
||||
|
||||
|
||||
#endif /* HAVE_CUDA */
|
||||
#if defined(HAVE_CUDA)
|
||||
|
||||
#endif
|
||||
#include "cuda_shared.hpp"
|
||||
#include "cuda_runtime_api.h"
|
||||
|
||||
#else /* defined(HAVE_CUDA) */
|
||||
|
||||
static inline void throw_nogpu() { CV_Error(CV_GpuNotFound, "The library is compilled with no GPU support"); }
|
||||
|
||||
#endif /* defined(HAVE_CUDA) */
|
||||
|
||||
#endif /* __OPENCV_PRECOMP_H__ */
|
||||
|
@ -44,15 +44,45 @@
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::StereoBM_GPU::StereoBM_GPU() { throw_nogpu(); }
|
||||
cv::gpu::StereoBM_GPU::StereoBM_GPU(int preset_, int ndisparities_) { throw_nogpu(); }
|
||||
|
||||
bool cv::gpu::StereoBM_GPU::checkIfGpuCallReasonable() { throw_nogpu(); return false; }
|
||||
void cv::gpu::StereoBM_GPU::operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity) { throw_nogpu(); }
|
||||
void cv::gpu::StereoBM_GPU::operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, const CudaStream& stream) { throw_nogpu(); }
|
||||
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
StereoBM_GPU::StereoBM_GPU() : preset(BASIC_PRESET), ndisp(64) {}
|
||||
StereoBM_GPU::StereoBM_GPU(int preset_, int ndisparities_) : preset(preset_), ndisp(ndisparities_)
|
||||
cv::gpu::StereoBM_GPU::StereoBM_GPU() : preset(BASIC_PRESET), ndisp(64) {}
|
||||
cv::gpu::StereoBM_GPU::StereoBM_GPU(int preset_, int ndisparities_) : preset(preset_), ndisp(ndisparities_)
|
||||
{
|
||||
const int max_supported_ndisp = 1 << (sizeof(unsigned char) * 8);
|
||||
CV_Assert(ndisp <= max_supported_ndisp);
|
||||
CV_Assert(ndisp % 8 == 0);
|
||||
}
|
||||
|
||||
bool cv::gpu::StereoBM_GPU::checkIfGpuCallReasonable()
|
||||
{
|
||||
if (0 == getCudaEnabledDeviceCount())
|
||||
return false;
|
||||
|
||||
int device = getDevice();
|
||||
|
||||
int minor, major;
|
||||
getComputeCapability(device, &major, &minor);
|
||||
int numSM = getNumberOfSMs(device);
|
||||
|
||||
if (major > 1 || numSM > 16)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void StereoBM_GPU::operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity) const
|
||||
void cv::gpu::StereoBM_GPU::operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity)
|
||||
{
|
||||
CV_DbgAssert(left.rows == right.rows && left.cols == right.cols);
|
||||
CV_DbgAssert(left.type() == CV_8UC1);
|
||||
@ -67,6 +97,13 @@ void StereoBM_GPU::operator() ( const GpuMat& left, const GpuMat& right, GpuMat&
|
||||
}
|
||||
|
||||
DevMem2D disp = disparity;
|
||||
DevMem2D_<uint> mssd = minSSD;
|
||||
cudaCallerSafeCall( impl::stereoBM_GPU(left, right, disp, ndisp, mssd) );
|
||||
DevMem2D_<unsigned int> mssd = minSSD;
|
||||
impl::stereoBM_GPU(left, right, disp, ndisp, mssd);
|
||||
}
|
||||
|
||||
void cv::gpu::StereoBM_GPU::operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, const CudaStream& stream)
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
Loading…
Reference in New Issue
Block a user