opencv/modules/features2d/src/detectors.cpp

359 lines
12 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
2012-06-07 17:21:29 +00:00
/*
* FeatureDetector
*/
FeatureDetector::~FeatureDetector()
{}
void FeatureDetector::detect( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
keypoints.clear();
if( image.empty() )
return;
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
detectImpl( image, keypoints, mask );
}
void FeatureDetector::detect(const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, const std::vector<Mat>& masks ) const
{
pointCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
detect( imageCollection[i], pointCollection[i], masks.empty() ? Mat() : masks[i] );
}
/*void FeatureDetector::read( const FileNode& )
{}
void FeatureDetector::write( FileStorage& ) const
{}*/
bool FeatureDetector::empty() const
{
return false;
}
void FeatureDetector::removeInvalidPoints( const Mat& mask, std::vector<KeyPoint>& keypoints )
{
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
Ptr<FeatureDetector> FeatureDetector::create( const String& detectorType )
{
if( detectorType.find("Grid") == 0 )
{
return new GridAdaptedFeatureDetector(FeatureDetector::create(
detectorType.substr(strlen("Grid"))));
}
2012-06-07 17:21:29 +00:00
if( detectorType.find("Pyramid") == 0 )
{
return new PyramidAdaptedFeatureDetector(FeatureDetector::create(
detectorType.substr(strlen("Pyramid"))));
}
2012-06-07 17:21:29 +00:00
if( detectorType.find("Dynamic") == 0 )
2011-05-20 22:25:53 +00:00
{
return new DynamicAdaptedFeatureDetector(AdjusterAdapter::create(
detectorType.substr(strlen("Dynamic"))));
2011-05-20 22:25:53 +00:00
}
2012-06-07 17:21:29 +00:00
if( detectorType.compare( "HARRIS" ) == 0 )
{
Ptr<FeatureDetector> fd = FeatureDetector::create("GFTT");
fd->set("useHarrisDetector", true);
return fd;
}
return Algorithm::create<FeatureDetector>("Feature2D." + detectorType);
}
GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
double _minDistance, int _blockSize,
bool _useHarrisDetector, double _k )
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
{
}
void GFTTDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
{
2010-09-23 10:53:36 +00:00
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
std::vector<Point2f> corners;
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, mask,
blockSize, useHarrisDetector, k );
keypoints.resize(corners.size());
std::vector<Point2f>::const_iterator corner_it = corners.begin();
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
{
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
}
}
2011-05-20 22:25:53 +00:00
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2010-09-24 16:55:12 +00:00
/*
2010-09-30 14:21:22 +00:00
* DenseFeatureDetector
2010-09-24 16:55:12 +00:00
*/
2012-06-07 17:21:29 +00:00
DenseFeatureDetector::DenseFeatureDetector( float _initFeatureScale, int _featureScaleLevels,
float _featureScaleMul, int _initXyStep,
int _initImgBound, bool _varyXyStepWithScale,
bool _varyImgBoundWithScale ) :
initFeatureScale(_initFeatureScale), featureScaleLevels(_featureScaleLevels),
featureScaleMul(_featureScaleMul), initXyStep(_initXyStep), initImgBound(_initImgBound),
varyXyStepWithScale(_varyXyStepWithScale), varyImgBoundWithScale(_varyImgBoundWithScale)
{}
void DenseFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
float curScale = static_cast<float>(initFeatureScale);
int curStep = initXyStep;
int curBound = initImgBound;
for( int curLevel = 0; curLevel < featureScaleLevels; curLevel++ )
{
2010-09-24 16:55:12 +00:00
for( int x = curBound; x < image.cols - curBound; x += curStep )
{
for( int y = curBound; y < image.rows - curBound; y += curStep )
{
keypoints.push_back( KeyPoint(static_cast<float>(x), static_cast<float>(y), curScale) );
}
}
curScale = static_cast<float>(curScale * featureScaleMul);
if( varyXyStepWithScale ) curStep = static_cast<int>( curStep * featureScaleMul + 0.5f );
if( varyImgBoundWithScale ) curBound = static_cast<int>( curBound * featureScaleMul + 0.5f );
}
2010-09-24 16:55:12 +00:00
2011-05-05 10:10:46 +00:00
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
/*
* GridAdaptedFeatureDetector
*/
GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& _detector,
int _maxTotalKeypoints, int _gridRows, int _gridCols )
: detector(_detector), maxTotalKeypoints(_maxTotalKeypoints), gridRows(_gridRows), gridCols(_gridCols)
{}
bool GridAdaptedFeatureDetector::empty() const
{
return detector.empty() || (FeatureDetector*)detector->empty();
}
struct ResponseComparator
{
bool operator() (const KeyPoint& a, const KeyPoint& b)
{
return std::abs(a.response) > std::abs(b.response);
}
};
static void keepStrongest( int N, std::vector<KeyPoint>& keypoints )
{
if( (int)keypoints.size() > N )
{
std::vector<KeyPoint>::iterator nth = keypoints.begin() + N;
std::nth_element( keypoints.begin(), nth, keypoints.end(), ResponseComparator() );
keypoints.erase( nth, keypoints.end() );
}
}
namespace {
class GridAdaptedFeatureDetectorInvoker
{
private:
int gridRows_, gridCols_;
int maxPerCell_;
std::vector<KeyPoint>& keypoints_;
const Mat& image_;
const Mat& mask_;
const Ptr<FeatureDetector>& detector_;
#ifdef HAVE_TBB
tbb::mutex* kptLock_;
#endif
2012-10-08 10:36:48 +04:00
GridAdaptedFeatureDetectorInvoker& operator=(const GridAdaptedFeatureDetectorInvoker&); // to quiet MSVC
public:
GridAdaptedFeatureDetectorInvoker(const Ptr<FeatureDetector>& detector, const Mat& image, const Mat& mask, std::vector<KeyPoint>& keypoints, int maxPerCell, int gridRows, int gridCols
#ifdef HAVE_TBB
, tbb::mutex* kptLock
#endif
) : gridRows_(gridRows), gridCols_(gridCols), maxPerCell_(maxPerCell),
keypoints_(keypoints), image_(image), mask_(mask), detector_(detector)
#ifdef HAVE_TBB
, kptLock_(kptLock)
#endif
{
}
void operator() (const BlockedRange& range) const
{
for (int i = range.begin(); i < range.end(); ++i)
{
int celly = i / gridCols_;
int cellx = i - celly * gridCols_;
Range row_range((celly*image_.rows)/gridRows_, ((celly+1)*image_.rows)/gridRows_);
Range col_range((cellx*image_.cols)/gridCols_, ((cellx+1)*image_.cols)/gridCols_);
Mat sub_image = image_(row_range, col_range);
Mat sub_mask;
if (!mask_.empty()) sub_mask = mask_(row_range, col_range);
std::vector<KeyPoint> sub_keypoints;
sub_keypoints.reserve(maxPerCell_);
detector_->detect( sub_image, sub_keypoints, sub_mask );
keepStrongest( maxPerCell_, sub_keypoints );
2011-08-08 12:47:04 +00:00
std::vector<cv::KeyPoint>::iterator it = sub_keypoints.begin(),
end = sub_keypoints.end();
for( ; it != end; ++it )
{
it->pt.x += col_range.start;
it->pt.y += row_range.start;
}
#ifdef HAVE_TBB
tbb::mutex::scoped_lock join_keypoints(*kptLock_);
#endif
keypoints_.insert( keypoints_.end(), sub_keypoints.begin(), sub_keypoints.end() );
}
}
};
} // namepace
void GridAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
if (image.empty() || maxTotalKeypoints < gridRows * gridCols)
{
keypoints.clear();
return;
}
keypoints.reserve(maxTotalKeypoints);
int maxPerCell = maxTotalKeypoints / (gridRows * gridCols);
#ifdef HAVE_TBB
tbb::mutex kptLock;
cv::parallel_for(cv::BlockedRange(0, gridRows * gridCols),
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols, &kptLock));
#else
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols)(cv::BlockedRange(0, gridRows * gridCols));
#endif
}
/*
2010-11-03 10:00:24 +00:00
* PyramidAdaptedFeatureDetector
*/
2011-05-15 09:19:05 +00:00
PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& _detector, int _maxLevel )
: detector(_detector), maxLevel(_maxLevel)
{}
bool PyramidAdaptedFeatureDetector::empty() const
{
return detector.empty() || (FeatureDetector*)detector->empty();
}
void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
Mat src = image;
Mat src_mask = mask;
Mat dilated_mask;
if( !mask.empty() )
{
dilate( mask, dilated_mask, Mat() );
Mat mask255( mask.size(), CV_8UC1, Scalar(0) );
mask255.setTo( Scalar(255), dilated_mask != 0 );
dilated_mask = mask255;
}
2011-05-15 09:19:05 +00:00
for( int l = 0, multiplier = 1; l <= maxLevel; ++l, multiplier *= 2 )
{
// Detect on current level of the pyramid
std::vector<KeyPoint> new_pts;
detector->detect( src, new_pts, src_mask );
std::vector<KeyPoint>::iterator it = new_pts.begin(),
2011-08-08 12:47:04 +00:00
end = new_pts.end();
for( ; it != end; ++it)
{
it->pt.x *= multiplier;
it->pt.y *= multiplier;
it->size *= multiplier;
it->octave = l;
}
keypoints.insert( keypoints.end(), new_pts.begin(), new_pts.end() );
// Downsample
2011-05-15 09:19:05 +00:00
if( l < maxLevel )
{
Mat dst;
pyrDown( src, dst );
src = dst;
if( !mask.empty() )
resize( dilated_mask, src_mask, src.size(), 0, 0, CV_INTER_AREA );
}
}
if( !mask.empty() )
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
}