added BOWTrainer::add()
This commit is contained in:
parent
fb7aa43feb
commit
13b535ac19
@ -1356,7 +1356,7 @@ protected:
|
||||
|
||||
CV_EXPORTS Ptr<FeatureDetector> createFeatureDetector( const string& detectorType );
|
||||
|
||||
class DenseFeatureDetector : public FeatureDetector
|
||||
class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
|
||||
{
|
||||
public:
|
||||
DenseFeatureDetector() : initFeatureScale(1), featureScaleLevels(1), featureScaleMul(0.1f),
|
||||
@ -1368,7 +1368,7 @@ public:
|
||||
|
||||
protected:
|
||||
|
||||
virtual void detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints ) const = 0;
|
||||
virtual void detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints ) const;
|
||||
|
||||
float initFeatureScale;
|
||||
int featureScaleLevels;
|
||||
@ -1379,7 +1379,6 @@ protected:
|
||||
|
||||
bool varyXyStepWithScale;
|
||||
bool varyImgBoundWithScale;
|
||||
|
||||
};
|
||||
|
||||
/*
|
||||
@ -2240,31 +2239,47 @@ CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& im
|
||||
/*
|
||||
* Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
|
||||
*/
|
||||
class BOWTrainer
|
||||
class CV_EXPORTS BOWTrainer
|
||||
{
|
||||
public:
|
||||
void add( const Mat& descriptors );
|
||||
const vector<Mat>& getDescriptors() const { return descriptors; }
|
||||
int descripotorsCount() const { return descriptors.empty() ? 0 : size; }
|
||||
|
||||
virtual void clear();
|
||||
|
||||
/*
|
||||
* Train visual words vocabulary, that is cluster training descriptors and
|
||||
* compute cluster centers.
|
||||
* Returns cluster centers.
|
||||
*
|
||||
* descriptors Training descriptors computed on images keypoints.
|
||||
* vocabulary Vocabulary is cluster centers.
|
||||
*/
|
||||
virtual void cluster( const Mat& descriptors, Mat& vocabulary ) = 0;
|
||||
virtual Mat cluster() const = 0;
|
||||
virtual Mat cluster( const Mat& descriptors ) const = 0;
|
||||
|
||||
protected:
|
||||
vector<Mat> descriptors;
|
||||
int size;
|
||||
};
|
||||
|
||||
/*
|
||||
* This is BOWTrainer using cv::kmeans to get vocabulary.
|
||||
*/
|
||||
class BOWKMeansTrainer : public BOWTrainer
|
||||
class CV_EXPORTS BOWKMeansTrainer : public BOWTrainer
|
||||
{
|
||||
public:
|
||||
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
|
||||
int attempts=3, int flags=KMEANS_PP_CENTERS );
|
||||
|
||||
virtual void cluster( const Mat& descriptors, Mat& vocabulary );
|
||||
|
||||
|
||||
// Returns trained vocabulary (i.e. cluster centers).
|
||||
virtual Mat cluster() const;
|
||||
virtual Mat cluster( const Mat& descriptors ) const;
|
||||
|
||||
protected:
|
||||
|
||||
int clusterCount;
|
||||
TermCriteria termcrit;
|
||||
int attempts;
|
||||
@ -2274,14 +2289,15 @@ protected:
|
||||
/*
|
||||
* Class to compute image descriptor using bad of visual words.
|
||||
*/
|
||||
class BOWImgDescriptorExtractor
|
||||
class CV_EXPORTS BOWImgDescriptorExtractor
|
||||
{
|
||||
public:
|
||||
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
|
||||
const Ptr<DescriptorMatcher>& dmatcher );
|
||||
void set( const Mat& vocabulary );
|
||||
void setVocabulary( const Mat& vocabulary );
|
||||
const Mat& getVocabulary() const { return vocabulary; }
|
||||
void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
|
||||
vector<vector<int> >& pointIdxsInClusters );
|
||||
vector<vector<int> >* pointIdxsInClusters=0 ) const;
|
||||
int descriptorSize() const { return vocabulary.empty() ? 0 : vocabulary.rows; }
|
||||
int descriptorType() const { return CV_32FC1; }
|
||||
|
||||
|
@ -46,15 +46,56 @@ using namespace std;
|
||||
namespace cv
|
||||
{
|
||||
|
||||
void BOWTrainer::add( const Mat& _descriptors )
|
||||
{
|
||||
CV_Assert( !_descriptors.empty() );
|
||||
if( !descriptors.empty() )
|
||||
{
|
||||
CV_Assert( descriptors[0].cols == _descriptors.cols );
|
||||
CV_Assert( descriptors[0].type() == _descriptors.type() );
|
||||
size += _descriptors.rows;
|
||||
}
|
||||
else
|
||||
{
|
||||
size = _descriptors.rows;
|
||||
}
|
||||
|
||||
descriptors.push_back(_descriptors);
|
||||
}
|
||||
|
||||
void BOWTrainer::clear()
|
||||
{
|
||||
descriptors.clear();
|
||||
}
|
||||
|
||||
BOWKMeansTrainer::BOWKMeansTrainer( int _clusterCount, const TermCriteria& _termcrit,
|
||||
int _attempts, int _flags ) :
|
||||
clusterCount(_clusterCount), termcrit(_termcrit), attempts(_attempts), flags(_flags)
|
||||
{}
|
||||
|
||||
void BOWKMeansTrainer::cluster( const Mat& descriptors, Mat& vocabulary )
|
||||
Mat BOWKMeansTrainer::cluster() const
|
||||
{
|
||||
Mat labels;
|
||||
CV_Assert( !descriptors.empty() );
|
||||
|
||||
int descCount = 0;
|
||||
for( size_t i = 0; i < descriptors.size(); i++ )
|
||||
descCount += descriptors[i].rows;
|
||||
|
||||
Mat mergedDescriptors( descCount, descriptors[0].cols, descriptors[0].type() );
|
||||
for( size_t i = 0, start = 0; i < descriptors.size(); i++ )
|
||||
{
|
||||
Mat submut = mergedDescriptors.rowRange(start, descriptors[i].rows);
|
||||
descriptors[i].copyTo(submut);
|
||||
start += descriptors[i].rows;
|
||||
}
|
||||
return cluster( mergedDescriptors );
|
||||
}
|
||||
|
||||
Mat BOWKMeansTrainer::cluster( const Mat& descriptors ) const
|
||||
{
|
||||
Mat labels, vocabulary;
|
||||
kmeans( descriptors, clusterCount, labels, termcrit, attempts, flags, &vocabulary );
|
||||
return vocabulary;
|
||||
}
|
||||
|
||||
|
||||
@ -63,7 +104,7 @@ BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtrac
|
||||
dextractor(_dextractor), dmatcher(_dmatcher)
|
||||
{}
|
||||
|
||||
void BOWImgDescriptorExtractor::set( const Mat& _vocabulary )
|
||||
void BOWImgDescriptorExtractor::setVocabulary( const Mat& _vocabulary )
|
||||
{
|
||||
dmatcher->clear();
|
||||
vocabulary = _vocabulary;
|
||||
@ -71,8 +112,13 @@ void BOWImgDescriptorExtractor::set( const Mat& _vocabulary )
|
||||
}
|
||||
|
||||
void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
|
||||
vector<vector<int> >& pointIdxsInClusters )
|
||||
vector<vector<int> >* pointIdxsOfClusters ) const
|
||||
{
|
||||
imgDescriptor.release();
|
||||
|
||||
if( keypoints.empty() )
|
||||
return;
|
||||
|
||||
int clusterCount = descriptorSize(); // = vocabulary.rows
|
||||
|
||||
// Compute descriptors for the image.
|
||||
@ -84,7 +130,12 @@ void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& key
|
||||
dmatcher->match( descriptors, matches );
|
||||
|
||||
// Compute image descriptor
|
||||
pointIdxsInClusters = vector<vector<int> >(clusterCount);
|
||||
if( pointIdxsOfClusters )
|
||||
{
|
||||
pointIdxsOfClusters->clear();
|
||||
pointIdxsOfClusters->resize(clusterCount);
|
||||
}
|
||||
|
||||
imgDescriptor = Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) );
|
||||
float *dptr = (float*)imgDescriptor.data;
|
||||
for( size_t i = 0; i < matches.size(); i++ )
|
||||
@ -94,7 +145,8 @@ void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& key
|
||||
CV_Assert( queryIdx == (int)i );
|
||||
|
||||
dptr[trainIdx] = dptr[trainIdx] + 1.f;
|
||||
pointIdxsInClusters[trainIdx].push_back( queryIdx );
|
||||
if( pointIdxsOfClusters )
|
||||
(*pointIdxsOfClusters)[trainIdx].push_back( queryIdx );
|
||||
}
|
||||
|
||||
// Normalize image descriptor.
|
||||
|
@ -335,7 +335,7 @@ void SurfFeatureDetector::detectImpl( const Mat& image, const Mat& mask,
|
||||
}
|
||||
|
||||
/*
|
||||
* GridAdaptedFeatureDetector
|
||||
* DenseFeatureDetector
|
||||
*/
|
||||
void DenseFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints ) const
|
||||
{
|
||||
@ -461,7 +461,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
FeatureDetector* fd = 0;
|
||||
if( !detectorType.compare( "FAST" ) )
|
||||
{
|
||||
fd = new FastFeatureDetector( 10/*threshold*/, true/*nonmax_suppression*/ );
|
||||
fd = new FastFeatureDetector( 30/*threshold*/, true/*nonmax_suppression*/ );
|
||||
}
|
||||
else if( !detectorType.compare( "STAR" ) )
|
||||
{
|
||||
@ -475,7 +475,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
}
|
||||
else if( !detectorType.compare( "SURF" ) )
|
||||
{
|
||||
fd = new SurfFeatureDetector( 400./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ );
|
||||
fd = new SurfFeatureDetector( 500./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ );
|
||||
}
|
||||
else if( !detectorType.compare( "MSER" ) )
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user