added empty() method to common features2d classes; fixed #831
This commit is contained in:
parent
fa446e7e35
commit
9b4c682623
@ -523,6 +523,7 @@ public:
|
||||
virtual int operator()(const Mat& img, Point2f kpt, vector<float>& signature) const;
|
||||
virtual int operator()(const Mat& patch, vector<float>& signature) const;
|
||||
virtual void clear();
|
||||
virtual bool empty() const;
|
||||
void setVerbose(bool verbose);
|
||||
|
||||
int getClassCount() const;
|
||||
@ -1086,6 +1087,8 @@ public:
|
||||
// GetPCAFilename: get default PCA filename
|
||||
static string GetPCAFilename () { return "pca.yml"; }
|
||||
|
||||
virtual bool empty() const { return m_train_feature_count <= 0 ? true : false; }
|
||||
|
||||
protected:
|
||||
CvSize m_patch_size; // patch size
|
||||
int m_pose_count; // the number of poses for each descriptor
|
||||
@ -1212,6 +1215,9 @@ public:
|
||||
// Read detector object from a file node.
|
||||
virtual void write( FileStorage& ) const;
|
||||
|
||||
// Return true if detector object is empty
|
||||
virtual bool empty() const;
|
||||
|
||||
// Create feature detector by detector name.
|
||||
static Ptr<FeatureDetector> create( const string& detectorType );
|
||||
|
||||
@ -1359,18 +1365,19 @@ public:
|
||||
};
|
||||
|
||||
SimpleBlobDetector(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
|
||||
|
||||
protected:
|
||||
struct CV_EXPORTS Center
|
||||
{
|
||||
cv::Point2d location;
|
||||
double radius;
|
||||
double confidence;
|
||||
Point2d location;
|
||||
double radius;
|
||||
double confidence;
|
||||
};
|
||||
|
||||
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
|
||||
virtual void findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, std::vector<Center> ¢ers) const;
|
||||
|
||||
cv::Point2d computeGrayscaleCentroid(const cv::Mat &image, const std::vector<cv::Point> &contour) const;
|
||||
Point2d computeGrayscaleCentroid(const cv::Mat &image, const std::vector<cv::Point> &contour) const;
|
||||
|
||||
Params params;
|
||||
};
|
||||
@ -1422,6 +1429,7 @@ public:
|
||||
int gridRows=4, int gridCols=4 );
|
||||
|
||||
// TODO implement read/write
|
||||
virtual bool empty() const;
|
||||
|
||||
protected:
|
||||
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
|
||||
@ -1442,6 +1450,7 @@ public:
|
||||
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int levels=2 );
|
||||
|
||||
// TODO implement read/write
|
||||
virtual bool empty() const;
|
||||
|
||||
protected:
|
||||
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
|
||||
@ -1500,6 +1509,8 @@ public:
|
||||
*/
|
||||
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster, int min_features=400, int max_features=500, int max_iters=5 );
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
protected:
|
||||
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
|
||||
|
||||
@ -1607,6 +1618,8 @@ public:
|
||||
virtual int descriptorSize() const = 0;
|
||||
virtual int descriptorType() const = 0;
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );
|
||||
|
||||
protected:
|
||||
@ -1680,6 +1693,8 @@ public:
|
||||
virtual int descriptorSize() const { return classifier_.classes(); }
|
||||
virtual int descriptorType() const { return DataType<T>::type; }
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
protected:
|
||||
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
|
||||
|
||||
@ -1722,6 +1737,12 @@ template<typename T>
|
||||
void CalonderDescriptorExtractor<T>::write( FileStorage& ) const
|
||||
{}
|
||||
|
||||
template<typename T>
|
||||
bool CalonderDescriptorExtractor<T>::empty() const
|
||||
{
|
||||
return classifier_.trees_.empty();
|
||||
}
|
||||
|
||||
/*
|
||||
* OpponentColorDescriptorExtractor
|
||||
*
|
||||
@ -1742,6 +1763,8 @@ public:
|
||||
virtual int descriptorSize() const;
|
||||
virtual int descriptorType() const;
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
protected:
|
||||
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
|
||||
|
||||
@ -1766,7 +1789,7 @@ public:
|
||||
/// @todo read and write for brief
|
||||
|
||||
protected:
|
||||
virtual void computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const;
|
||||
virtual void computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const;
|
||||
|
||||
typedef void(*PixelTestFn)(const Mat&, const std::vector<KeyPoint>&, Mat&);
|
||||
|
||||
@ -1924,7 +1947,7 @@ public:
|
||||
/*
|
||||
* Return true if there are not train descriptors in collection.
|
||||
*/
|
||||
bool empty() const;
|
||||
virtual bool empty() const;
|
||||
/*
|
||||
* Return true if the matcher supports mask in match methods.
|
||||
*/
|
||||
@ -2366,6 +2389,9 @@ public:
|
||||
// Writes matcher object to a file storage
|
||||
virtual void write( FileStorage& ) const;
|
||||
|
||||
// Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
|
||||
virtual bool empty() const;
|
||||
|
||||
// Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
|
||||
// both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
|
||||
// but with empty train data.
|
||||
@ -2473,6 +2499,8 @@ public:
|
||||
virtual void read( const FileNode &fn );
|
||||
virtual void write( FileStorage& fs ) const;
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
||||
|
||||
protected:
|
||||
@ -2540,6 +2568,7 @@ public:
|
||||
|
||||
virtual void read( const FileNode &fn );
|
||||
virtual void write( FileStorage& fs ) const;
|
||||
virtual bool empty() const;
|
||||
|
||||
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
||||
|
||||
@ -2586,6 +2615,7 @@ public:
|
||||
|
||||
virtual void read( const FileNode& fn );
|
||||
virtual void write( FileStorage& fs ) const;
|
||||
virtual bool empty() const;
|
||||
|
||||
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
||||
|
||||
|
@ -860,8 +860,11 @@ int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol)
|
||||
void RTreeClassifier::read(const char* file_name)
|
||||
{
|
||||
std::ifstream file(file_name, std::ifstream::binary);
|
||||
read(file);
|
||||
file.close();
|
||||
if( file.is_open() )
|
||||
{
|
||||
read(file);
|
||||
file.close();
|
||||
}
|
||||
}
|
||||
|
||||
void RTreeClassifier::read(std::istream &is)
|
||||
|
@ -96,6 +96,11 @@ void DescriptorExtractor::read( const FileNode& )
|
||||
void DescriptorExtractor::write( FileStorage& ) const
|
||||
{}
|
||||
|
||||
bool DescriptorExtractor::empty() const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void DescriptorExtractor::removeBorderKeypoints( vector<KeyPoint>& keypoints,
|
||||
Size imageSize, int borderSize )
|
||||
{
|
||||
@ -361,4 +366,9 @@ int OpponentColorDescriptorExtractor::descriptorType() const
|
||||
return descriptorExtractor->descriptorType();
|
||||
}
|
||||
|
||||
bool OpponentColorDescriptorExtractor::empty() const
|
||||
{
|
||||
return descriptorExtractor.empty() || (DescriptorExtractor*)(descriptorExtractor)->empty();
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -96,6 +96,11 @@ void FeatureDetector::read( const FileNode& )
|
||||
void FeatureDetector::write( FileStorage& ) const
|
||||
{}
|
||||
|
||||
bool FeatureDetector::empty() const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType )
|
||||
{
|
||||
FeatureDetector* fd = 0;
|
||||
@ -488,6 +493,11 @@ GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr<FeatureDetecto
|
||||
: detector(_detector), maxTotalKeypoints(_maxTotalKeypoints), gridRows(_gridRows), gridCols(_gridCols)
|
||||
{}
|
||||
|
||||
bool GridAdaptedFeatureDetector::empty() const
|
||||
{
|
||||
return detector.empty() || (FeatureDetector*)detector->empty();
|
||||
}
|
||||
|
||||
struct ResponseComparator
|
||||
{
|
||||
bool operator() (const KeyPoint& a, const KeyPoint& b)
|
||||
@ -544,6 +554,11 @@ PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr<FeatureD
|
||||
: detector(_detector), levels(_levels)
|
||||
{}
|
||||
|
||||
bool PyramidAdaptedFeatureDetector::empty() const
|
||||
{
|
||||
return detector.empty() || (FeatureDetector*)detector->empty();
|
||||
}
|
||||
|
||||
void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
{
|
||||
Mat src = image;
|
||||
|
@ -213,7 +213,7 @@ void DescriptorMatcher::clear()
|
||||
|
||||
bool DescriptorMatcher::empty() const
|
||||
{
|
||||
return trainDescCollection.size() == 0;
|
||||
return trainDescCollection.empty();
|
||||
}
|
||||
|
||||
void DescriptorMatcher::train()
|
||||
@ -848,6 +848,11 @@ void GenericDescriptorMatcher::read( const FileNode& )
|
||||
void GenericDescriptorMatcher::write( FileStorage& ) const
|
||||
{}
|
||||
|
||||
bool GenericDescriptorMatcher::empty() const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Factory function for GenericDescriptorMatch creating
|
||||
*/
|
||||
@ -994,13 +999,18 @@ void OneWayDescriptorMatcher::write( FileStorage& fs ) const
|
||||
base->Write (fs);
|
||||
}
|
||||
|
||||
bool OneWayDescriptorMatcher::empty() const
|
||||
{
|
||||
return base.empty() || base->empty();
|
||||
}
|
||||
|
||||
Ptr<GenericDescriptorMatcher> OneWayDescriptorMatcher::clone( bool emptyTrainData ) const
|
||||
{
|
||||
OneWayDescriptorMatcher* matcher = new OneWayDescriptorMatcher( params );
|
||||
|
||||
if( !emptyTrainData )
|
||||
{
|
||||
CV_Error( CV_StsNotImplemented, "deep clone dunctionality is not implemented, because "
|
||||
CV_Error( CV_StsNotImplemented, "deep clone functionality is not implemented, because "
|
||||
"OneWayDescriptorBase has not copy constructor or clone method ");
|
||||
|
||||
//matcher->base;
|
||||
@ -1175,6 +1185,11 @@ void FernDescriptorMatcher::write( FileStorage& fs ) const
|
||||
// classifier->write(fs);
|
||||
}
|
||||
|
||||
bool FernDescriptorMatcher::empty() const
|
||||
{
|
||||
return classifier.empty() || classifier->empty();
|
||||
}
|
||||
|
||||
Ptr<GenericDescriptorMatcher> FernDescriptorMatcher::clone( bool emptyTrainData ) const
|
||||
{
|
||||
FernDescriptorMatcher* matcher = new FernDescriptorMatcher( params );
|
||||
@ -1262,6 +1277,12 @@ void VectorDescriptorMatcher::write (FileStorage& fs) const
|
||||
extractor->write (fs);
|
||||
}
|
||||
|
||||
bool VectorDescriptorMatcher::empty() const
|
||||
{
|
||||
return extractor.empty() || extractor->empty() ||
|
||||
matcher.empty() || matcher->empty();
|
||||
}
|
||||
|
||||
Ptr<GenericDescriptorMatcher> VectorDescriptorMatcher::clone( bool emptyTrainData ) const
|
||||
{
|
||||
// TODO clone extractor
|
||||
|
@ -771,6 +771,10 @@ void FernClassifier::clear()
|
||||
vector<float>().swap(posteriors);
|
||||
}
|
||||
|
||||
bool FernClassifier::empty() const
|
||||
{
|
||||
return features.empty();
|
||||
}
|
||||
|
||||
int FernClassifier::getLeaf(int fern, const Mat& _patch) const
|
||||
{
|
||||
|
@ -73,6 +73,8 @@ protected:
|
||||
|
||||
void CV_FeatureDetectorTest::emptyDataTest()
|
||||
{
|
||||
assert( !fdetector.empty() && !fdetector->empty() );
|
||||
|
||||
// One image.
|
||||
Mat image;
|
||||
vector<KeyPoint> keypoints;
|
||||
@ -172,7 +174,7 @@ void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validK
|
||||
|
||||
void CV_FeatureDetectorTest::regressionTest()
|
||||
{
|
||||
assert( !fdetector.empty() );
|
||||
assert( !fdetector.empty() && !fdetector->empty() );
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
||||
|
||||
@ -229,7 +231,7 @@ void CV_FeatureDetectorTest::regressionTest()
|
||||
|
||||
void CV_FeatureDetectorTest::run( int /*start_from*/ )
|
||||
{
|
||||
if( fdetector.empty() )
|
||||
if( fdetector.empty() || fdetector->empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Feature detector is empty.\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
@ -293,7 +295,7 @@ public:
|
||||
CvTest( testName, "cv::DescriptorExtractor::compute" ),
|
||||
maxDist(_maxDist), prevTime(_prevTime), dextractor(_dextractor), distance(d) {}
|
||||
protected:
|
||||
virtual void createDescriptorExtractor() {}
|
||||
virtual void createDescriptorExtractor(){}
|
||||
|
||||
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
|
||||
{
|
||||
@ -329,7 +331,7 @@ protected:
|
||||
|
||||
void emptyDataTest()
|
||||
{
|
||||
assert( !dextractor.empty() );
|
||||
assert( !dextractor.empty() && !dextractor->empty() );
|
||||
|
||||
// One image.
|
||||
Mat image;
|
||||
@ -374,7 +376,7 @@ protected:
|
||||
|
||||
void regressionTest()
|
||||
{
|
||||
assert( !dextractor.empty() );
|
||||
assert( !dextractor.empty() && !dextractor->empty() );
|
||||
|
||||
// Read the test image.
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
@ -449,7 +451,7 @@ protected:
|
||||
void run(int)
|
||||
{
|
||||
createDescriptorExtractor();
|
||||
if( dextractor.empty() )
|
||||
if( dextractor.empty() || dextractor->empty() )
|
||||
{
|
||||
ts->printf(CvTS::LOG, "Descriptor extractor is empty.\n");
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
@ -495,9 +497,16 @@ public:
|
||||
protected:
|
||||
virtual void createDescriptorExtractor()
|
||||
{
|
||||
string filename = string(CV_DescriptorExtractorTest<Distance>::ts->get_data_path()) +
|
||||
FEATURES2D_DIR + "/calonder_classifier.rtc";
|
||||
CV_DescriptorExtractorTest<Distance>::dextractor =
|
||||
new CalonderDescriptorExtractor<T>( string(CV_DescriptorExtractorTest<Distance>::ts->get_data_path()) +
|
||||
FEATURES2D_DIR + "/calonder_classifier.rtc");
|
||||
new CalonderDescriptorExtractor<T>( filename );
|
||||
if( CV_DescriptorExtractorTest<Distance>::dextractor->empty() )
|
||||
{
|
||||
stringstream ss; ss << "Calonder descriptor extractor can not be loaded from file" << filename<< endl;
|
||||
CV_DescriptorExtractorTest<Distance>::ts->printf( CvTS::LOG, ss.str().c_str() );
|
||||
CV_DescriptorExtractorTest<Distance>::ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@ -531,7 +540,8 @@ private:
|
||||
|
||||
void CV_DescriptorMatcherTest::emptyDataTest()
|
||||
{
|
||||
assert( !dmatcher.empty() );
|
||||
assert( !dmatcher.empty() && !dmatcher->empty() );
|
||||
|
||||
Mat queryDescriptors, trainDescriptors, mask;
|
||||
vector<Mat> trainDescriptorCollection, masks;
|
||||
vector<DMatch> matches;
|
||||
|
Loading…
x
Reference in New Issue
Block a user