opencv/samples/ocl/facedetect.cpp

240 lines
7.6 KiB
C++
Raw Normal View History

//This sample is inherited from facedetect.cpp in smaple/c
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/highgui/highgui_c.h"
#include <iostream>
#include <stdio.h>
2013-04-12 14:12:12 +04:00
int main( int, const char** ) { return 0; }
#if 0
using namespace std;
using namespace cv;
2013-01-30 17:25:03 +04:00
static void help()
{
2012-10-17 03:18:30 +04:00
cout << "\nThis program demonstrates the cascade recognizer.\n"
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
"Usage:\n"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --scale=1.3 \n"
"Hit any key to quit.\n"
"Using OpenCV version " << CV_VERSION << "\n" << endl;
}
2013-04-12 14:12:12 +04:00
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
void detectAndDraw( Mat& img,
2012-10-17 03:18:30 +04:00
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier& nestedCascade,
double scale);
string cascadeName = "../../../data/haarcascades/haarcascade_frontalface_alt.xml";
int main( int argc, const char** argv )
{
2012-10-17 03:18:30 +04:00
CvCapture* capture = 0;
Mat frame, frameCopy, image;
const string scaleOpt = "--scale=";
2012-10-17 03:18:30 +04:00
size_t scaleOptLen = scaleOpt.length();
const string cascadeOpt = "--cascade=";
2012-10-17 03:18:30 +04:00
size_t cascadeOptLen = cascadeOpt.length();
string inputName;
2012-10-17 03:18:30 +04:00
help();
cv::ocl::OclCascadeClassifier cascade;
CascadeClassifier nestedCascade;
double scale = 1;
for( int i = 1; i < argc; i++ )
{
cout << "Processing " << i << " " << argv[i] << endl;
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
{
cascadeName.assign( argv[i] + cascadeOptLen );
cout << " from which we have cascadeName= " << cascadeName << endl;
}
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
{
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
scale = 1;
cout << " from which we read scale = " << scale << endl;
}
else if( argv[i][0] == '-' )
{
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
}
else
inputName.assign( argv[i] );
}
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade" << endl;
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" << endl ;
return -1;
}
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
{
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
}
else if( inputName.size() )
{
image = imread( inputName, 1 );
if( image.empty() )
{
capture = cvCaptureFromAVI( inputName.c_str() );
if(!capture) cout << "Capture from AVI didn't work" << endl;
}
}
else
{
image = imread( "lena.jpg", 1 );
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
}
cvNamedWindow( "result", 1 );
std::vector<cv::ocl::Info> oclinfo;
int devnums = cv::ocl::getDevice(oclinfo);
if(devnums<1)
{
std::cout << "no device found\n";
return -1;
}
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
//setBinpath(CLBINPATH);
if( capture )
{
cout << "In capture ..." << endl;
for(;;)
{
IplImage* iplImg = cvQueryFrame( capture );
2013-03-30 00:47:22 +04:00
frame = cv::cvarrToMat(iplImg);
2012-10-17 03:18:30 +04:00
if( frame.empty() )
break;
if( iplImg->origin == IPL_ORIGIN_TL )
frame.copyTo( frameCopy );
else
flip( frame, frameCopy, 0 );
detectAndDraw( frameCopy, cascade, nestedCascade, scale );
if( waitKey( 10 ) >= 0 )
goto _cleanup_;
}
waitKey(0);
_cleanup_:
2012-10-17 03:18:30 +04:00
cvReleaseCapture( &capture );
}
else
{
cout << "In image read" << endl;
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf), c;
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread( buf, 1 );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale );
c = waitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
}
cvDestroyWindow("result");
return 0;
}
void detectAndDraw( Mat& img,
2013-01-24 16:15:34 +04:00
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier&,
2012-10-17 03:18:30 +04:00
double scale)
{
2012-10-17 03:18:30 +04:00
int i = 0;
double t = 0;
vector<Rect> faces;
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)} ;
cv::ocl::oclMat image(img);
cv::ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
cv::ocl::cvtColor( image, gray, COLOR_BGR2GRAY );
2012-10-17 03:18:30 +04:00
cv::ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
cv::ocl::equalizeHist( smallImg, smallImg );
CvSeq* _objects;
MemStorage storage(cvCreateMemStorage(0));
t = (double)cvGetTickCount();
_objects = cascade.oclHaarDetectObjects( smallImg, storage, 1.1,
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
faces.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
t = (double)cvGetTickCount() - t;
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
Point center;
Scalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
cv::imshow( "result", img );
}
2013-04-12 14:12:12 +04:00
#endif