use mutex provided by opencv itself
add getoclcontext and getoclcommandqueue so that other opencl program can interactive with opencv ocl module correct haar test cases add face detection sample
This commit is contained in:
parent
11e16a7204
commit
6f6e990988
@ -88,7 +88,10 @@ namespace cv
|
||||
//CV_EXPORTS void getComputeCapability(cl_device_id device, int &major, int &minor);
|
||||
//optional function, if you want save opencl binary kernel to the file, set its path
|
||||
CV_EXPORTS void setBinpath(const char *path);
|
||||
|
||||
//The two functions below are used to get opencl runtime so that opencv can interactive with
|
||||
//other opencl program
|
||||
CV_EXPORTS void* getoclContext();
|
||||
CV_EXPORTS void* getoclCommandQueue();
|
||||
//////////////////////////////// Error handling ////////////////////////
|
||||
CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func);
|
||||
|
||||
|
@ -58,141 +58,113 @@ struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } }
|
||||
PARAM_TEST_CASE(HaarTestBase, int, int)
|
||||
{
|
||||
//std::vector<cv::ocl::Info> oclinfo;
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::CascadeClassifier cpucascade, cpunestedCascade;
|
||||
// Mat img;
|
||||
// Mat img;
|
||||
|
||||
double scale;
|
||||
int index;
|
||||
double scale;
|
||||
int index;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = 1.1;
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = 1.0;
|
||||
index=0;
|
||||
string cascadeName="../../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
|
||||
#if WIN32
|
||||
string cascadeName="E:\\opencvbuffer\\trunk\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
|
||||
#else
|
||||
string cascadeName="../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
#endif
|
||||
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)))
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
cout << "Usage: facedetect [--cascade=<cascade_path>]\n"
|
||||
" [--nested-cascade[=nested_cascade_path]]\n"
|
||||
" [--scale[=<image scale>\n"
|
||||
" [filename|camera_index]\n" << endl ;
|
||||
|
||||
return;
|
||||
}
|
||||
//int devnums = getDevice(oclinfo);
|
||||
//CV_Assert(devnums>0);
|
||||
////if you want to use undefault device, set it here
|
||||
////setDevice(oclinfo[0]);
|
||||
//cv::ocl::setBinpath("E:\\");
|
||||
}
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)))
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
cout << "Usage: facedetect [--cascade=<cascade_path>]\n"
|
||||
" [--scale[=<image scale>\n"
|
||||
" [filename|camera_index]\n" << endl ;
|
||||
return;
|
||||
}
|
||||
//int devnums = getDevice(oclinfo);
|
||||
//CV_Assert(devnums>0);
|
||||
////if you want to use undefault device, set it here
|
||||
////setDevice(oclinfo[0]);
|
||||
//cv::ocl::setBinpath("E:\\");
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////faceDetect/////////////////////////////////////////////////
|
||||
|
||||
struct Haar : HaarTestBase {};
|
||||
|
||||
TEST_P(Haar, FaceDetect)
|
||||
TEST_F(Haar, FaceDetect)
|
||||
{
|
||||
for(int index = 1;index < 2; index++)
|
||||
{
|
||||
Mat img;
|
||||
char buff[256];
|
||||
#if WIN32
|
||||
sprintf(buff,"E:\\myDataBase\\%d.jpg",index);
|
||||
img = imread( buff, 1 );
|
||||
#else
|
||||
sprintf(buff,"%d.jpg",index);
|
||||
img = imread( buff, 1 );
|
||||
std::cout << "Now test " << index << ".jpg" <<std::endl;
|
||||
#endif
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read test" << index <<".jpg" << std::endl;
|
||||
continue;
|
||||
}
|
||||
string imgName = "../../../samples/c/lena.jpg";
|
||||
Mat img = imread( imgName, 1 );
|
||||
|
||||
int i = 0;
|
||||
double t = 0;
|
||||
vector<Rect> faces;
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read test" << index <<".jpg" << std::endl;
|
||||
return ;
|
||||
}
|
||||
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
int i = 0;
|
||||
double t = 0;
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
CvMat _image = smallImg;
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
|
||||
Mat tempimg(&_image, false);
|
||||
Mat gray, smallImg(cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cv::ocl::oclMat image(tempimg);
|
||||
CvSeq* _objects;
|
||||
t = (double)cvGetTickCount();
|
||||
for(int k= 0; k<LOOP_TIMES; k++)
|
||||
{
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
}
|
||||
t = (double)cvGetTickCount() - t ;
|
||||
printf( "cpudetection time = %g ms\n", t/(LOOP_TIMES*(double)cvGetTickFrequency()*1000.) );
|
||||
|
||||
#if 1
|
||||
for(int k= 0; k<10; k++)
|
||||
{
|
||||
t = (double)cvGetTickCount();
|
||||
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
|
||||
2, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
cv::ocl::oclMat image;
|
||||
CvSeq* _objects;
|
||||
t = (double)cvGetTickCount();
|
||||
for(int k= 0; k<LOOP_TIMES; k++)
|
||||
{
|
||||
image.upload(smallImg);
|
||||
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
}
|
||||
t = (double)cvGetTickCount() - t ;
|
||||
printf( "ocldetection time = %g ms\n", t/(LOOP_TIMES*(double)cvGetTickFrequency()*1000.) );
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
t = (double)cvGetTickCount() - t ;
|
||||
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||||
}
|
||||
//for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
//{
|
||||
// Mat smallImgROI;
|
||||
// Point center;
|
||||
// Scalar color = colors[i%8];
|
||||
// int radius;
|
||||
// center.x = cvRound((r->x + r->width*0.5)*scale);
|
||||
// center.y = cvRound((r->y + r->height*0.5)*scale);
|
||||
// radius = cvRound((r->width + r->height)*0.25*scale);
|
||||
// circle( img, center, radius, color, 3, 8, 0 );
|
||||
//}
|
||||
//namedWindow("result");
|
||||
//imshow("result",img);
|
||||
//waitKey(0);
|
||||
//destroyAllWindows();
|
||||
|
||||
#else
|
||||
cpucascade.detectMultiScale( image, faces, 1.1,
|
||||
2, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
|
||||
#endif
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
faces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
|
||||
|
||||
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
vector<Rect> nestedObjects;
|
||||
Point center;
|
||||
Scalar color = colors[i%8];
|
||||
int radius;
|
||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
||||
circle( img, center, radius, color, 3, 8, 0 );
|
||||
}
|
||||
|
||||
#if WIN32
|
||||
sprintf(buff,"E:\\result1\\%d.jpg",index);
|
||||
imwrite(buff,img);
|
||||
#else
|
||||
sprintf(buff,"testdet_%d.jpg",index);
|
||||
imwrite(buff,img);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//INSTANTIATE_TEST_CASE_P(HaarTestBase, Haar, Combine(Values(1),
|
||||
// Values(1)));
|
||||
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
@ -45,10 +45,10 @@
|
||||
#ifdef PRINT_KERNEL_RUN_TIME
|
||||
#define LOOP_TIMES 1
|
||||
#else
|
||||
#define LOOP_TIMES 1
|
||||
#define LOOP_TIMES 100
|
||||
#endif
|
||||
#define MWIDTH 256
|
||||
#define MHEIGHT 256
|
||||
#define MWIDTH 1920
|
||||
#define MHEIGHT 1080
|
||||
#define CLBINPATH ".\\"
|
||||
#define LOOPROISTART 0
|
||||
#define LOOPROIEND 1
|
||||
|
@ -44,7 +44,6 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "threadsafe.h"
|
||||
#include <iomanip>
|
||||
#include "binarycaching.hpp"
|
||||
|
||||
@ -348,7 +347,14 @@ namespace cv
|
||||
}
|
||||
Context::setContext(oclinfo);
|
||||
}
|
||||
|
||||
void* getoclContext()
|
||||
{
|
||||
return &(Context::getContext()->impl->clContext);
|
||||
}
|
||||
void* getoclCommandQueue()
|
||||
{
|
||||
return &(Context::getContext()->impl->clCmdQueue);
|
||||
}
|
||||
void openCLReadBuffer(Context *clCxt, cl_mem dst_buffer, void *host_buffer, size_t size)
|
||||
{
|
||||
cl_int status;
|
||||
@ -772,12 +778,12 @@ namespace cv
|
||||
/////////////////////////////OpenCL initialization/////////////////
|
||||
auto_ptr<Context> Context::clCxt;
|
||||
int Context::val = 0;
|
||||
CriticalSection cs;
|
||||
Mutex cs;
|
||||
Context *Context::getContext()
|
||||
{
|
||||
if(val == 0)
|
||||
{
|
||||
myAutoLock al(&cs);
|
||||
AutoLock al(cs);
|
||||
if( NULL == clCxt.get())
|
||||
clCxt.reset(new Context);
|
||||
|
||||
|
@ -1,83 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
//#include "precomp.hpp"
|
||||
#include "threadsafe.h"
|
||||
|
||||
CriticalSection::CriticalSection()
|
||||
{
|
||||
#if defined WIN32 || defined _WIN32
|
||||
InitializeCriticalSection(&m_CritSec);
|
||||
#else
|
||||
pthread_mutex_init(&m_CritSec, NULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
CriticalSection::~CriticalSection()
|
||||
{
|
||||
#if defined WIN32 || defined _WIN32
|
||||
DeleteCriticalSection(&m_CritSec);
|
||||
#else
|
||||
pthread_mutex_destroy(&m_CritSec);
|
||||
#endif
|
||||
}
|
||||
|
||||
void CriticalSection::Lock()
|
||||
{
|
||||
#if defined WIN32 || defined _WIN32
|
||||
EnterCriticalSection(&m_CritSec);
|
||||
#else
|
||||
pthread_mutex_lock(&m_CritSec);
|
||||
#endif
|
||||
}
|
||||
|
||||
void CriticalSection::Unlock()
|
||||
{
|
||||
#if defined WIN32 || defined _WIN32
|
||||
LeaveCriticalSection(&m_CritSec);
|
||||
#else
|
||||
pthread_mutex_unlock(&m_CritSec);
|
||||
#endif
|
||||
}
|
@ -1,92 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if defined WIN32 || defined _WIN32
|
||||
#include <Windows.h>
|
||||
#undef min
|
||||
#undef max
|
||||
#else
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
class CriticalSection
|
||||
{
|
||||
public:
|
||||
CriticalSection();
|
||||
~CriticalSection();
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
void Lock();
|
||||
void Unlock();
|
||||
protected:
|
||||
#if defined WIN32 || defined _WIN32
|
||||
CRITICAL_SECTION m_CritSec;
|
||||
#else
|
||||
pthread_mutex_t m_CritSec;
|
||||
#endif
|
||||
};
|
||||
|
||||
class myAutoLock
|
||||
{
|
||||
public:
|
||||
explicit myAutoLock(CriticalSection *lock)
|
||||
{
|
||||
m_lock = lock;
|
||||
m_lock->Lock();
|
||||
};
|
||||
~myAutoLock()
|
||||
{
|
||||
m_lock->Unlock();
|
||||
};
|
||||
protected:
|
||||
CriticalSection *m_lock;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -53,154 +53,107 @@ using namespace testing;
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
||||
|
||||
PARAM_TEST_CASE(HaarTestBase, int, int)
|
||||
{
|
||||
//std::vector<cv::ocl::Info> oclinfo;
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::CascadeClassifier cpucascade, cpunestedCascade;
|
||||
// Mat img;
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::CascadeClassifier cpucascade, cpunestedCascade;
|
||||
// Mat img;
|
||||
|
||||
double scale;
|
||||
int index;
|
||||
double scale;
|
||||
int index;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = 1.1;
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = 1.0;
|
||||
index=0;
|
||||
string cascadeName="../../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
|
||||
#if WIN32
|
||||
string cascadeName = "E:\\opencvbuffer\\trunk\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
|
||||
#else
|
||||
string cascadeName = "../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
#endif
|
||||
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)))
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
cout << "Usage: facedetect [--cascade=<cascade_path>]\n"
|
||||
" [--nested-cascade[=nested_cascade_path]]\n"
|
||||
" [--scale[=<image scale>\n"
|
||||
" [filename|camera_index]\n" << endl ;
|
||||
|
||||
return;
|
||||
}
|
||||
//int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
|
||||
//CV_Assert(devnums > 0);
|
||||
////if you want to use undefault device, set it here
|
||||
////setDevice(oclinfo[0]);
|
||||
//cv::ocl::setBinpath("E:\\");
|
||||
}
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)))
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
cout << "Usage: facedetect [--cascade=<cascade_path>]\n"
|
||||
" [--scale[=<image scale>\n"
|
||||
" [filename|camera_index]\n" << endl ;
|
||||
return;
|
||||
}
|
||||
//int devnums = getDevice(oclinfo);
|
||||
//CV_Assert(devnums>0);
|
||||
////if you want to use undefault device, set it here
|
||||
////setDevice(oclinfo[0]);
|
||||
//cv::ocl::setBinpath("E:\\");
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////faceDetect/////////////////////////////////////////////////
|
||||
|
||||
struct Haar : HaarTestBase {};
|
||||
|
||||
TEST_P(Haar, FaceDetect)
|
||||
{
|
||||
|
||||
for(int index = 1; index < 2; index++)
|
||||
{
|
||||
Mat img;
|
||||
char buff[256];
|
||||
#if WIN32
|
||||
sprintf(buff, "E:\\myDataBase\\%d.jpg", index);
|
||||
img = imread( buff, 1 );
|
||||
#else
|
||||
sprintf(buff, "%d.jpg", index);
|
||||
img = imread( buff, 1 );
|
||||
std::cout << "Now test " << index << ".jpg" << std::endl;
|
||||
#endif
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read test" << index << ".jpg" << std::endl;
|
||||
continue;
|
||||
}
|
||||
TEST_F(Haar, FaceDetect)
|
||||
{
|
||||
string imgName = "../../../samples/c/lena.jpg";
|
||||
Mat img = imread( imgName, 1 );
|
||||
|
||||
int i = 0;
|
||||
double t = 0;
|
||||
vector<Rect> faces;
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read test" << index <<".jpg" << std::endl;
|
||||
return ;
|
||||
}
|
||||
|
||||
const static Scalar colors[] = { CV_RGB(0, 0, 255),
|
||||
CV_RGB(0, 128, 255),
|
||||
CV_RGB(0, 255, 255),
|
||||
CV_RGB(0, 255, 0),
|
||||
CV_RGB(255, 128, 0),
|
||||
CV_RGB(255, 255, 0),
|
||||
CV_RGB(255, 0, 0),
|
||||
CV_RGB(255, 0, 255)
|
||||
} ;
|
||||
int i = 0;
|
||||
double t = 0;
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
CvMat _image = smallImg;
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
|
||||
Mat tempimg(&_image, false);
|
||||
Mat gray, smallImg(cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cv::ocl::oclMat image(tempimg);
|
||||
CvSeq *_objects;
|
||||
|
||||
#if 1
|
||||
for(int k = 0; k < 10; k++)
|
||||
{
|
||||
t = (double)cvGetTickCount();
|
||||
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
|
||||
2, 0
|
||||
| CV_HAAR_SCALE_IMAGE
|
||||
, Size(30, 30), Size(0, 0) );
|
||||
cv::ocl::oclMat image;
|
||||
CvSeq* _objects;
|
||||
image.upload(smallImg);
|
||||
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
t = (double)cvGetTickCount() - t ;
|
||||
printf( "detection time = %g ms\n", t / ((double)cvGetTickFrequency() * 1000.) );
|
||||
}
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
EXPECT_EQ(faces.size(),oclfaces.size());
|
||||
/* for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
Point center;
|
||||
Scalar color = colors[i%8];
|
||||
int radius;
|
||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
||||
circle( img, center, radius, color, 3, 8, 0 );
|
||||
} */
|
||||
//namedWindow("result");
|
||||
//imshow("result",img);
|
||||
//waitKey(0);
|
||||
//destroyAllWindows();
|
||||
|
||||
#else
|
||||
cpucascade.detectMultiScale( image, faces, 1.1,
|
||||
2, 0
|
||||
| CV_HAAR_SCALE_IMAGE
|
||||
, Size(30, 30), Size(0, 0) );
|
||||
|
||||
#endif
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
faces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
|
||||
|
||||
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
vector<Rect> nestedObjects;
|
||||
Point center;
|
||||
Scalar color = colors[i%8];
|
||||
int radius;
|
||||
center.x = cvRound((r->x + r->width * 0.5) * scale);
|
||||
center.y = cvRound((r->y + r->height * 0.5) * scale);
|
||||
radius = cvRound((r->width + r->height) * 0.25 * scale);
|
||||
circle( img, center, radius, color, 3, 8, 0 );
|
||||
}
|
||||
|
||||
#if WIN32
|
||||
sprintf(buff, "E:\\result1\\%d.jpg", index);
|
||||
imwrite(buff, img);
|
||||
#else
|
||||
sprintf(buff, "testdet_%d.jpg", index);
|
||||
imwrite(buff, img);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//INSTANTIATE_TEST_CASE_P(HaarTestBase, Haar, Combine(Values(1),
|
||||
// Values(1)));
|
||||
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
229
samples/ocl/facedetect.cpp
Normal file
229
samples/ocl/facedetect.cpp
Normal file
@ -0,0 +1,229 @@
|
||||
//This sample is inherited from facedetect.cpp in smaple/c
|
||||
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates the cascade recognizer.\n"
|
||||
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
|
||||
"Usage:\n"
|
||||
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
|
||||
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
|
||||
" [filename|camera_index]\n\n"
|
||||
"see facedetect.cmd for one call:\n"
|
||||
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --scale=1.3 \n"
|
||||
"Hit any key to quit.\n"
|
||||
"Using OpenCV version " << CV_VERSION << "\n" << endl;
|
||||
}
|
||||
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
||||
void detectAndDraw( Mat& img,
|
||||
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier& nestedCascade,
|
||||
double scale);
|
||||
|
||||
String cascadeName = "../../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
CvCapture* capture = 0;
|
||||
Mat frame, frameCopy, image;
|
||||
const String scaleOpt = "--scale=";
|
||||
size_t scaleOptLen = scaleOpt.length();
|
||||
const String cascadeOpt = "--cascade=";
|
||||
size_t cascadeOptLen = cascadeOpt.length();
|
||||
String inputName;
|
||||
|
||||
help();
|
||||
cv::ocl::OclCascadeClassifier cascade;
|
||||
CascadeClassifier nestedCascade;
|
||||
double scale = 1;
|
||||
|
||||
for( int i = 1; i < argc; i++ )
|
||||
{
|
||||
cout << "Processing " << i << " " << argv[i] << endl;
|
||||
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
|
||||
{
|
||||
cascadeName.assign( argv[i] + cascadeOptLen );
|
||||
cout << " from which we have cascadeName= " << cascadeName << endl;
|
||||
}
|
||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
||||
{
|
||||
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
|
||||
scale = 1;
|
||||
cout << " from which we read scale = " << scale << endl;
|
||||
}
|
||||
else if( argv[i][0] == '-' )
|
||||
{
|
||||
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
|
||||
}
|
||||
else
|
||||
inputName.assign( argv[i] );
|
||||
}
|
||||
|
||||
if( !cascade.load( cascadeName ) )
|
||||
{
|
||||
cerr << "ERROR: Could not load classifier cascade" << endl;
|
||||
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n"
|
||||
" [--scale[=<image scale>\n"
|
||||
" [filename|camera_index]\n" << endl ;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
||||
{
|
||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
|
||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
|
||||
}
|
||||
else if( inputName.size() )
|
||||
{
|
||||
image = imread( inputName, 1 );
|
||||
if( image.empty() )
|
||||
{
|
||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
image = imread( "lena.jpg", 1 );
|
||||
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
|
||||
}
|
||||
|
||||
cvNamedWindow( "result", 1 );
|
||||
std::vector<cv::ocl::Info> oclinfo;
|
||||
int devnums = cv::ocl::getDevice(oclinfo);
|
||||
if(devnums<1)
|
||||
{
|
||||
std::cout << "no device found\n";
|
||||
return -1;
|
||||
}
|
||||
//if you want to use undefault device, set it here
|
||||
//setDevice(oclinfo[0]);
|
||||
//setBinpath(CLBINPATH);
|
||||
if( capture )
|
||||
{
|
||||
cout << "In capture ..." << endl;
|
||||
for(;;)
|
||||
{
|
||||
IplImage* iplImg = cvQueryFrame( capture );
|
||||
frame = iplImg;
|
||||
if( frame.empty() )
|
||||
break;
|
||||
if( iplImg->origin == IPL_ORIGIN_TL )
|
||||
frame.copyTo( frameCopy );
|
||||
else
|
||||
flip( frame, frameCopy, 0 );
|
||||
|
||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale );
|
||||
|
||||
if( waitKey( 10 ) >= 0 )
|
||||
goto _cleanup_;
|
||||
}
|
||||
|
||||
waitKey(0);
|
||||
|
||||
_cleanup_:
|
||||
cvReleaseCapture( &capture );
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "In image read" << endl;
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale );
|
||||
waitKey(0);
|
||||
}
|
||||
else if( !inputName.empty() )
|
||||
{
|
||||
/* assume it is a text file containing the
|
||||
list of the image filenames to be processed - one per line */
|
||||
FILE* f = fopen( inputName.c_str(), "rt" );
|
||||
if( f )
|
||||
{
|
||||
char buf[1000+1];
|
||||
while( fgets( buf, 1000, f ) )
|
||||
{
|
||||
int len = (int)strlen(buf), c;
|
||||
while( len > 0 && isspace(buf[len-1]) )
|
||||
len--;
|
||||
buf[len] = '\0';
|
||||
cout << "file " << buf << endl;
|
||||
image = imread( buf, 1 );
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale );
|
||||
c = waitKey(0);
|
||||
if( c == 27 || c == 'q' || c == 'Q' )
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "Aw snap, couldn't read image " << buf << endl;
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cvDestroyWindow("result");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void detectAndDraw( Mat& img,
|
||||
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier& nestedCascade,
|
||||
double scale)
|
||||
{
|
||||
int i = 0;
|
||||
double t = 0;
|
||||
vector<Rect> faces;
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
cv::ocl::oclMat image(img);
|
||||
cv::ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
|
||||
cv::ocl::cvtColor( image, gray, CV_BGR2GRAY );
|
||||
cv::ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
cv::ocl::equalizeHist( smallImg, smallImg );
|
||||
|
||||
CvSeq* _objects;
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
t = (double)cvGetTickCount();
|
||||
_objects = cascade.oclHaarDetectObjects( smallImg, storage, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
faces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
|
||||
t = (double)cvGetTickCount() - t;
|
||||
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||||
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
Point center;
|
||||
Scalar color = colors[i%8];
|
||||
int radius;
|
||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
||||
circle( img, center, radius, color, 3, 8, 0 );
|
||||
}
|
||||
cv::imshow( "result", img );
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user