opencv/modules/cudafeatures2d/perf/perf_features2d.cpp

313 lines
9.8 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
2012-10-17 03:18:30 +04:00
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
using namespace perf;
2012-10-17 03:18:30 +04:00
//////////////////////////////////////////////////////////////////////
// FAST
2014-03-03 19:37:47 +04:00
DEF_PARAM_TEST(Image_Threshold_NonMaxSuppression, string, int, bool);
Merge remote-tracking branch 'origin/2.4' into merge-2.4 Conflicts: modules/calib3d/perf/perf_pnp.cpp modules/contrib/src/imagelogpolprojection.cpp modules/contrib/src/templatebuffer.hpp modules/core/perf/opencl/perf_gemm.cpp modules/cudafeatures2d/doc/feature_detection_and_description.rst modules/cudafeatures2d/perf/perf_features2d.cpp modules/cudafeatures2d/src/fast.cpp modules/cudafeatures2d/test/test_features2d.cpp modules/features2d/doc/feature_detection_and_description.rst modules/features2d/include/opencv2/features2d/features2d.hpp modules/features2d/perf/opencl/perf_brute_force_matcher.cpp modules/gpu/include/opencv2/gpu/gpu.hpp modules/gpu/perf/perf_imgproc.cpp modules/gpu/perf4au/main.cpp modules/imgproc/perf/opencl/perf_blend.cpp modules/imgproc/perf/opencl/perf_color.cpp modules/imgproc/perf/opencl/perf_moments.cpp modules/imgproc/perf/opencl/perf_pyramid.cpp modules/objdetect/perf/opencl/perf_hogdetect.cpp modules/ocl/perf/perf_arithm.cpp modules/ocl/perf/perf_bgfg.cpp modules/ocl/perf/perf_blend.cpp modules/ocl/perf/perf_brute_force_matcher.cpp modules/ocl/perf/perf_canny.cpp modules/ocl/perf/perf_filters.cpp modules/ocl/perf/perf_gftt.cpp modules/ocl/perf/perf_haar.cpp modules/ocl/perf/perf_imgproc.cpp modules/ocl/perf/perf_imgwarp.cpp modules/ocl/perf/perf_match_template.cpp modules/ocl/perf/perf_matrix_operation.cpp modules/ocl/perf/perf_ml.cpp modules/ocl/perf/perf_moments.cpp modules/ocl/perf/perf_opticalflow.cpp modules/ocl/perf/perf_precomp.hpp modules/ocl/src/cl_context.cpp modules/ocl/src/opencl/haarobjectdetect.cl modules/video/src/lkpyramid.cpp modules/video/src/precomp.hpp samples/gpu/morphology.cpp
2014-03-11 17:20:01 +04:00
PERF_TEST_P(Image_Threshold_NonMaxSuppression, FAST,
Combine(Values<string>("gpu/perf/aloe.png"),
Values(20),
Bool()))
2012-10-17 03:18:30 +04:00
{
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
2012-10-17 03:18:30 +04:00
ASSERT_FALSE(img.empty());
const int threshold = GET_PARAM(1);
const bool nonMaxSuppersion = GET_PARAM(2);
2013-07-24 13:55:18 +04:00
if (PERF_RUN_CUDA())
2012-10-17 03:18:30 +04:00
{
cv::Ptr<cv::cuda::FastFeatureDetector> d_fast =
cv::cuda::FastFeatureDetector::create(threshold, nonMaxSuppersion,
cv::FastFeatureDetector::TYPE_9_16,
0.5 * img.size().area());
2012-10-17 03:18:30 +04:00
2013-08-28 15:45:13 +04:00
const cv::cuda::GpuMat d_img(img);
cv::cuda::GpuMat d_keypoints;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() d_fast->detectAsync(d_img, d_keypoints);
std::vector<cv::KeyPoint> gpu_keypoints;
d_fast->convert(d_keypoints, gpu_keypoints);
2012-10-17 03:18:30 +04:00
sortKeyPoints(gpu_keypoints);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_KEYPOINTS(gpu_keypoints);
2012-10-17 03:18:30 +04:00
}
else
{
std::vector<cv::KeyPoint> cpu_keypoints;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_KEYPOINTS(cpu_keypoints);
2012-10-17 03:18:30 +04:00
}
}
//////////////////////////////////////////////////////////////////////
// ORB
DEF_PARAM_TEST(Image_NFeatures, string, int);
PERF_TEST_P(Image_NFeatures, ORB,
Combine(Values<string>("gpu/perf/aloe.png"),
Values(4000)))
2012-10-17 03:18:30 +04:00
{
2013-03-20 11:49:33 +04:00
declare.time(300.0);
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
2012-10-17 03:18:30 +04:00
ASSERT_FALSE(img.empty());
const int nFeatures = GET_PARAM(1);
2013-07-24 13:55:18 +04:00
if (PERF_RUN_CUDA())
2012-10-17 03:18:30 +04:00
{
cv::Ptr<cv::cuda::ORB> d_orb = cv::cuda::ORB::create(nFeatures);
2012-10-17 03:18:30 +04:00
2013-08-28 15:45:13 +04:00
const cv::cuda::GpuMat d_img(img);
cv::cuda::GpuMat d_keypoints, d_descriptors;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() d_orb->detectAndComputeAsync(d_img, cv::noArray(), d_keypoints, d_descriptors);
std::vector<cv::KeyPoint> gpu_keypoints;
d_orb->convert(d_keypoints, gpu_keypoints);
cv::Mat gpu_descriptors(d_descriptors);
2012-10-17 03:18:30 +04:00
gpu_keypoints.resize(10);
gpu_descriptors = gpu_descriptors.rowRange(0, 10);
2012-10-17 03:18:30 +04:00
sortKeyPoints(gpu_keypoints, gpu_descriptors);
SANITY_CHECK_KEYPOINTS(gpu_keypoints, 1e-4);
SANITY_CHECK(gpu_descriptors);
2012-10-17 03:18:30 +04:00
}
else
{
2014-11-05 12:00:31 +01:00
cv::Ptr<cv::ORB> orb = cv::ORB::create(nFeatures);
2012-10-17 03:18:30 +04:00
std::vector<cv::KeyPoint> cpu_keypoints;
cv::Mat cpu_descriptors;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() orb->detectAndCompute(img, cv::noArray(), cpu_keypoints, cpu_descriptors);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_KEYPOINTS(cpu_keypoints);
SANITY_CHECK(cpu_descriptors);
2012-10-17 03:18:30 +04:00
}
}
//////////////////////////////////////////////////////////////////////
// BFMatch
DEF_PARAM_TEST(DescSize_Norm, int, NormType);
PERF_TEST_P(DescSize_Norm, BFMatch,
Combine(Values(64, 128, 256),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
2012-10-17 03:18:30 +04:00
{
declare.time(20.0);
const int desc_size = GET_PARAM(0);
const int normType = GET_PARAM(1);
2012-10-17 03:18:30 +04:00
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
2012-10-17 03:18:30 +04:00
cv::Mat query(3000, desc_size, type);
declare.in(query, WARMUP_RNG);
2012-10-17 03:18:30 +04:00
cv::Mat train(3000, desc_size, type);
declare.in(train, WARMUP_RNG);
2012-10-17 03:18:30 +04:00
2013-07-24 13:55:18 +04:00
if (PERF_RUN_CUDA())
2012-10-17 03:18:30 +04:00
{
cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType);
2012-10-17 03:18:30 +04:00
2013-08-28 15:45:13 +04:00
const cv::cuda::GpuMat d_query(query);
const cv::cuda::GpuMat d_train(train);
cv::cuda::GpuMat d_matches;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() d_matcher->matchAsync(d_query, d_train, d_matches);
2012-10-17 03:18:30 +04:00
std::vector<cv::DMatch> gpu_matches;
d_matcher->matchConvert(d_matches, gpu_matches);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_MATCHES(gpu_matches);
2012-10-17 03:18:30 +04:00
}
else
{
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> cpu_matches;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() matcher.match(query, train, cpu_matches);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_MATCHES(cpu_matches);
2012-10-17 03:18:30 +04:00
}
}
//////////////////////////////////////////////////////////////////////
// BFKnnMatch
static void toOneRowMatches(const std::vector< std::vector<cv::DMatch> >& src, std::vector<cv::DMatch>& dst)
{
dst.clear();
for (size_t i = 0; i < src.size(); ++i)
for (size_t j = 0; j < src[i].size(); ++j)
dst.push_back(src[i][j]);
}
2012-10-17 03:18:30 +04:00
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
PERF_TEST_P(DescSize_K_Norm, BFKnnMatch,
Combine(Values(64, 128, 256),
Values(2, 3),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))))
2012-10-17 03:18:30 +04:00
{
declare.time(30.0);
const int desc_size = GET_PARAM(0);
const int k = GET_PARAM(1);
const int normType = GET_PARAM(2);
2012-10-17 03:18:30 +04:00
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
2012-10-17 03:18:30 +04:00
cv::Mat query(3000, desc_size, type);
declare.in(query, WARMUP_RNG);
2012-10-17 03:18:30 +04:00
cv::Mat train(3000, desc_size, type);
declare.in(train, WARMUP_RNG);
2012-10-17 03:18:30 +04:00
2013-07-24 13:55:18 +04:00
if (PERF_RUN_CUDA())
2012-10-17 03:18:30 +04:00
{
cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType);
2012-10-17 03:18:30 +04:00
2013-08-28 15:45:13 +04:00
const cv::cuda::GpuMat d_query(query);
const cv::cuda::GpuMat d_train(train);
cv::cuda::GpuMat d_matches;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() d_matcher->knnMatchAsync(d_query, d_train, d_matches, k);
std::vector< std::vector<cv::DMatch> > matchesTbl;
d_matcher->knnMatchConvert(d_matches, matchesTbl);
2012-10-17 03:18:30 +04:00
std::vector<cv::DMatch> gpu_matches;
toOneRowMatches(matchesTbl, gpu_matches);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_MATCHES(gpu_matches);
2012-10-17 03:18:30 +04:00
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matchesTbl;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k);
2012-10-17 03:18:30 +04:00
std::vector<cv::DMatch> cpu_matches;
toOneRowMatches(matchesTbl, cpu_matches);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_MATCHES(cpu_matches);
2012-10-17 03:18:30 +04:00
}
}
//////////////////////////////////////////////////////////////////////
// BFRadiusMatch
PERF_TEST_P(DescSize_Norm, BFRadiusMatch,
Combine(Values(64, 128, 256),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))))
2012-10-17 03:18:30 +04:00
{
declare.time(30.0);
const int desc_size = GET_PARAM(0);
const int normType = GET_PARAM(1);
2012-10-17 03:18:30 +04:00
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
const float maxDistance = 10000;
2012-10-17 03:18:30 +04:00
cv::Mat query(3000, desc_size, type);
declare.in(query, WARMUP_RNG);
2012-10-17 03:18:30 +04:00
cv::Mat train(3000, desc_size, type);
declare.in(train, WARMUP_RNG);
2012-10-17 03:18:30 +04:00
2013-07-24 13:55:18 +04:00
if (PERF_RUN_CUDA())
2012-10-17 03:18:30 +04:00
{
cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType);
2012-10-17 03:18:30 +04:00
2013-08-28 15:45:13 +04:00
const cv::cuda::GpuMat d_query(query);
const cv::cuda::GpuMat d_train(train);
cv::cuda::GpuMat d_matches;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() d_matcher->radiusMatchAsync(d_query, d_train, d_matches, maxDistance);
2012-10-17 03:18:30 +04:00
std::vector< std::vector<cv::DMatch> > matchesTbl;
d_matcher->radiusMatchConvert(d_matches, matchesTbl);
2012-10-17 03:18:30 +04:00
std::vector<cv::DMatch> gpu_matches;
toOneRowMatches(matchesTbl, gpu_matches);
SANITY_CHECK_MATCHES(gpu_matches);
2012-10-17 03:18:30 +04:00
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matchesTbl;
2012-10-17 03:18:30 +04:00
TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance);
2012-10-17 03:18:30 +04:00
std::vector<cv::DMatch> cpu_matches;
toOneRowMatches(matchesTbl, cpu_matches);
2012-10-17 03:18:30 +04:00
SANITY_CHECK_MATCHES(cpu_matches);
2012-10-17 03:18:30 +04:00
}
}