refactor CUDA FAST feature detector algorithm:
use new FastFeatureDetector abstract interface and hidden implementation
This commit is contained in:
parent
6f91b7f6a4
commit
14ef62ed66
@ -48,6 +48,7 @@
|
||||
#endif
|
||||
|
||||
#include "opencv2/core/cuda.hpp"
|
||||
#include "opencv2/features2d.hpp"
|
||||
#include "opencv2/cudafilters.hpp"
|
||||
|
||||
/**
|
||||
@ -228,91 +229,49 @@ private:
|
||||
std::vector<GpuMat> trainDescCollection;
|
||||
};
|
||||
|
||||
/** @brief Class used for corner detection using the FAST algorithm. :
|
||||
//
|
||||
// Feature2DAsync
|
||||
//
|
||||
|
||||
/** @brief Abstract base class for 2D image feature detectors and descriptor extractors.
|
||||
*/
|
||||
class CV_EXPORTS FAST_CUDA
|
||||
class CV_EXPORTS Feature2DAsync
|
||||
{
|
||||
public:
|
||||
virtual ~Feature2DAsync() {}
|
||||
|
||||
virtual void detectAsync(InputArray image, OutputArray keypoints,
|
||||
InputArray mask = noArray(),
|
||||
Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
virtual void convert(InputArray gpu_keypoints, std::vector<KeyPoint>& keypoints) = 0;
|
||||
};
|
||||
|
||||
//
|
||||
// FastFeatureDetector
|
||||
//
|
||||
|
||||
/** @brief Wrapping class for feature detection using the FAST method.
|
||||
*/
|
||||
class CV_EXPORTS FastFeatureDetector : public cv::FastFeatureDetector, public Feature2DAsync
|
||||
{
|
||||
public:
|
||||
enum
|
||||
{
|
||||
LOCATION_ROW = 0,
|
||||
RESPONSE_ROW,
|
||||
ROWS_COUNT
|
||||
ROWS_COUNT,
|
||||
|
||||
FEATURE_SIZE = 7
|
||||
};
|
||||
|
||||
//! all features have same size
|
||||
static const int FEATURE_SIZE = 7;
|
||||
static Ptr<FastFeatureDetector> create(int threshold=10,
|
||||
bool nonmaxSuppression=true,
|
||||
int type=FastFeatureDetector::TYPE_9_16,
|
||||
int max_npoints = 5000);
|
||||
|
||||
/** @brief Constructor.
|
||||
|
||||
@param threshold Threshold on difference between intensity of the central pixel and pixels on a
|
||||
circle around this pixel.
|
||||
@param nonmaxSuppression If it is true, non-maximum suppression is applied to detected corners
|
||||
(keypoints).
|
||||
@param keypointsRatio Inner buffer size for keypoints store is determined as (keypointsRatio \*
|
||||
image_width \* image_height).
|
||||
*/
|
||||
explicit FAST_CUDA(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05);
|
||||
|
||||
/** @brief Finds the keypoints using FAST detector.
|
||||
|
||||
@param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are
|
||||
supported.
|
||||
@param mask Optional input mask that marks the regions where we should detect features.
|
||||
@param keypoints The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU
|
||||
memory:
|
||||
- keypoints.ptr\<Vec2s\>(LOCATION_ROW)[i] will contain location of i'th point
|
||||
- keypoints.ptr\<float\>(RESPONSE_ROW)[i] will contain response of i'th point (if non-maximum
|
||||
suppression is applied)
|
||||
*/
|
||||
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
||||
/** @overload */
|
||||
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
||||
|
||||
/** @brief Download keypoints from GPU to CPU memory.
|
||||
*/
|
||||
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
||||
|
||||
/** @brief Converts keypoints from CUDA representation to vector of KeyPoint.
|
||||
*/
|
||||
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
|
||||
|
||||
/** @brief Releases inner buffer memory.
|
||||
*/
|
||||
void release();
|
||||
|
||||
bool nonmaxSuppression;
|
||||
|
||||
int threshold;
|
||||
|
||||
//! max keypoints = keypointsRatio * img.size().area()
|
||||
double keypointsRatio;
|
||||
|
||||
/** @brief Find keypoints and compute it's response if nonmaxSuppression is true.
|
||||
|
||||
@param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are
|
||||
supported.
|
||||
@param mask Optional input mask that marks the regions where we should detect features.
|
||||
|
||||
The function returns count of detected keypoints.
|
||||
*/
|
||||
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
|
||||
|
||||
/** @brief Gets final array of keypoints.
|
||||
|
||||
@param keypoints The output vector of keypoints.
|
||||
|
||||
The function performs non-max suppression if needed and returns final count of keypoints.
|
||||
*/
|
||||
int getKeyPoints(GpuMat& keypoints);
|
||||
|
||||
private:
|
||||
GpuMat kpLoc_;
|
||||
int count_;
|
||||
|
||||
GpuMat score_;
|
||||
|
||||
GpuMat d_keypoints_;
|
||||
virtual void setMaxNumPoints(int max_npoints) = 0;
|
||||
virtual int getMaxNumPoints() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Class for extracting ORB features and descriptors from an image. :
|
||||
@ -388,8 +347,8 @@ public:
|
||||
|
||||
inline void setFastParams(int threshold, bool nonmaxSuppression = true)
|
||||
{
|
||||
fastDetector_.threshold = threshold;
|
||||
fastDetector_.nonmaxSuppression = nonmaxSuppression;
|
||||
fastDetector_->setThreshold(threshold);
|
||||
fastDetector_->setNonmaxSuppression(nonmaxSuppression);
|
||||
}
|
||||
|
||||
/** @brief Releases inner buffer memory.
|
||||
@ -433,7 +392,7 @@ private:
|
||||
std::vector<GpuMat> keyPointsPyr_;
|
||||
std::vector<int> keyPointsCount_;
|
||||
|
||||
FAST_CUDA fastDetector_;
|
||||
Ptr<cv::cuda::FastFeatureDetector> fastDetector_;
|
||||
|
||||
Ptr<cuda::Filter> blurFilter;
|
||||
|
||||
|
@ -64,15 +64,18 @@ PERF_TEST_P(Image_Threshold_NonMaxSuppression, FAST,
|
||||
|
||||
if (PERF_RUN_CUDA())
|
||||
{
|
||||
cv::cuda::FAST_CUDA d_fast(threshold, nonMaxSuppersion, 0.5);
|
||||
cv::Ptr<cv::cuda::FastFeatureDetector> d_fast =
|
||||
cv::cuda::FastFeatureDetector::create(threshold, nonMaxSuppersion,
|
||||
cv::FastFeatureDetector::TYPE_9_16,
|
||||
0.5 * img.size().area());
|
||||
|
||||
const cv::cuda::GpuMat d_img(img);
|
||||
cv::cuda::GpuMat d_keypoints;
|
||||
|
||||
TEST_CYCLE() d_fast(d_img, cv::cuda::GpuMat(), d_keypoints);
|
||||
TEST_CYCLE() d_fast->detectAsync(d_img, d_keypoints);
|
||||
|
||||
std::vector<cv::KeyPoint> gpu_keypoints;
|
||||
d_fast.downloadKeypoints(d_keypoints, gpu_keypoints);
|
||||
d_fast->convert(d_keypoints, gpu_keypoints);
|
||||
|
||||
sortKeyPoints(gpu_keypoints);
|
||||
|
||||
|
@ -279,7 +279,7 @@ namespace cv { namespace cuda { namespace device
|
||||
#endif
|
||||
}
|
||||
|
||||
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold)
|
||||
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, cudaStream_t stream)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) );
|
||||
@ -290,29 +290,29 @@ namespace cv { namespace cuda { namespace device
|
||||
grid.x = divUp(img.cols - 6, block.x);
|
||||
grid.y = divUp(img.rows - 6, block.y);
|
||||
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
|
||||
cudaSafeCall( cudaMemsetAsync(counter_ptr, 0, sizeof(unsigned int), stream) );
|
||||
|
||||
if (score.data)
|
||||
{
|
||||
if (mask.data)
|
||||
calcKeypoints<true><<<grid, block>>>(img, SingleMask(mask), kpLoc, maxKeypoints, score, threshold);
|
||||
calcKeypoints<true><<<grid, block, 0, stream>>>(img, SingleMask(mask), kpLoc, maxKeypoints, score, threshold);
|
||||
else
|
||||
calcKeypoints<true><<<grid, block>>>(img, WithOutMask(), kpLoc, maxKeypoints, score, threshold);
|
||||
calcKeypoints<true><<<grid, block, 0, stream>>>(img, WithOutMask(), kpLoc, maxKeypoints, score, threshold);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (mask.data)
|
||||
calcKeypoints<false><<<grid, block>>>(img, SingleMask(mask), kpLoc, maxKeypoints, score, threshold);
|
||||
calcKeypoints<false><<<grid, block, 0, stream>>>(img, SingleMask(mask), kpLoc, maxKeypoints, score, threshold);
|
||||
else
|
||||
calcKeypoints<false><<<grid, block>>>(img, WithOutMask(), kpLoc, maxKeypoints, score, threshold);
|
||||
calcKeypoints<false><<<grid, block, 0, stream>>>(img, WithOutMask(), kpLoc, maxKeypoints, score, threshold);
|
||||
}
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
unsigned int count;
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
cudaSafeCall( cudaMemcpyAsync(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost, stream) );
|
||||
|
||||
cudaSafeCall( cudaStreamSynchronize(stream) );
|
||||
|
||||
return count;
|
||||
}
|
||||
@ -356,7 +356,7 @@ namespace cv { namespace cuda { namespace device
|
||||
#endif
|
||||
}
|
||||
|
||||
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response)
|
||||
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, cudaStream_t stream)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) );
|
||||
@ -366,15 +366,15 @@ namespace cv { namespace cuda { namespace device
|
||||
dim3 grid;
|
||||
grid.x = divUp(count, block.x);
|
||||
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
|
||||
cudaSafeCall( cudaMemsetAsync(counter_ptr, 0, sizeof(unsigned int), stream) );
|
||||
|
||||
nonmaxSuppression<<<grid, block>>>(kpLoc, count, score, loc, response);
|
||||
nonmaxSuppression<<<grid, block, 0, stream>>>(kpLoc, count, score, loc, response);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
unsigned int new_count;
|
||||
cudaSafeCall( cudaMemcpy(&new_count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
cudaSafeCall( cudaMemcpyAsync(&new_count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost, stream) );
|
||||
|
||||
cudaSafeCall( cudaStreamSynchronize(stream) );
|
||||
|
||||
return new_count;
|
||||
}
|
||||
|
@ -47,124 +47,162 @@ using namespace cv::cuda;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
cv::cuda::FAST_CUDA::FAST_CUDA(int, bool, double) { throw_no_cuda(); }
|
||||
void cv::cuda::FAST_CUDA::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::FAST_CUDA::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
|
||||
void cv::cuda::FAST_CUDA::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
|
||||
void cv::cuda::FAST_CUDA::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
|
||||
void cv::cuda::FAST_CUDA::release() { throw_no_cuda(); }
|
||||
int cv::cuda::FAST_CUDA::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_no_cuda(); return 0; }
|
||||
int cv::cuda::FAST_CUDA::getKeyPoints(GpuMat&) { throw_no_cuda(); return 0; }
|
||||
Ptr<FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int, bool, int, int) { throw_no_cuda(); return Ptr<FastFeatureDetector>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
cv::cuda::FAST_CUDA::FAST_CUDA(int _threshold, bool _nonmaxSuppression, double _keypointsRatio) :
|
||||
nonmaxSuppression(_nonmaxSuppression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0)
|
||||
{
|
||||
}
|
||||
|
||||
void cv::cuda::FAST_CUDA::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (image.empty())
|
||||
return;
|
||||
|
||||
(*this)(image, mask, d_keypoints_);
|
||||
downloadKeypoints(d_keypoints_, keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::FAST_CUDA::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (d_keypoints.empty())
|
||||
return;
|
||||
|
||||
Mat h_keypoints(d_keypoints);
|
||||
convertKeypoints(h_keypoints, keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::FAST_CUDA::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (h_keypoints.empty())
|
||||
return;
|
||||
|
||||
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4);
|
||||
|
||||
int npoints = h_keypoints.cols;
|
||||
|
||||
keypoints.resize(npoints);
|
||||
|
||||
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
|
||||
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
|
||||
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
|
||||
keypoints[i] = kp;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::FAST_CUDA::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
|
||||
{
|
||||
calcKeyPointsLocation(img, mask);
|
||||
keypoints.cols = getKeyPoints(keypoints);
|
||||
}
|
||||
|
||||
namespace cv { namespace cuda { namespace device
|
||||
{
|
||||
namespace fast
|
||||
{
|
||||
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold);
|
||||
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response);
|
||||
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, cudaStream_t stream);
|
||||
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, cudaStream_t stream);
|
||||
}
|
||||
}}}
|
||||
|
||||
int cv::cuda::FAST_CUDA::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask)
|
||||
namespace
|
||||
{
|
||||
using namespace cv::cuda::device::fast;
|
||||
|
||||
CV_Assert(img.type() == CV_8UC1);
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
|
||||
|
||||
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());
|
||||
|
||||
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);
|
||||
|
||||
if (nonmaxSuppression)
|
||||
class FAST_Impl : public cv::cuda::FastFeatureDetector
|
||||
{
|
||||
public:
|
||||
FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints);
|
||||
|
||||
virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask);
|
||||
virtual void detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream);
|
||||
|
||||
virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
|
||||
|
||||
virtual void setThreshold(int threshold) { threshold_ = threshold; }
|
||||
virtual int getThreshold() const { return threshold_; }
|
||||
|
||||
virtual void setNonmaxSuppression(bool f) { nonmaxSuppression_ = f; }
|
||||
virtual bool getNonmaxSuppression() const { return nonmaxSuppression_; }
|
||||
|
||||
virtual void setMaxNumPoints(int max_npoints) { max_npoints_ = max_npoints; }
|
||||
virtual int getMaxNumPoints() const { return max_npoints_; }
|
||||
|
||||
virtual void setType(int type) { CV_Assert( type == TYPE_9_16 ); }
|
||||
virtual int getType() const { return TYPE_9_16; }
|
||||
|
||||
private:
|
||||
int threshold_;
|
||||
bool nonmaxSuppression_;
|
||||
int max_npoints_;
|
||||
};
|
||||
|
||||
FAST_Impl::FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints) :
|
||||
threshold_(threshold), nonmaxSuppression_(nonmaxSuppression), max_npoints_(max_npoints)
|
||||
{
|
||||
ensureSizeIsEnough(img.size(), CV_32SC1, score_);
|
||||
score_.setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSuppression ? score_ : PtrStepSzi(), threshold);
|
||||
count_ = std::min(count_, maxKeypoints);
|
||||
void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask)
|
||||
{
|
||||
if (_image.empty())
|
||||
{
|
||||
keypoints.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
return count_;
|
||||
BufferPool pool(Stream::Null());
|
||||
GpuMat d_keypoints = pool.getBuffer(ROWS_COUNT, max_npoints_, CV_16SC2);
|
||||
|
||||
detectAsync(_image, d_keypoints, _mask, Stream::Null());
|
||||
convert(d_keypoints, keypoints);
|
||||
}
|
||||
|
||||
void FAST_Impl::detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream)
|
||||
{
|
||||
using namespace cv::cuda::device::fast;
|
||||
|
||||
const GpuMat img = _image.getGpuMat();
|
||||
const GpuMat mask = _mask.getGpuMat();
|
||||
|
||||
CV_Assert( img.type() == CV_8UC1 );
|
||||
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()) );
|
||||
|
||||
BufferPool pool(stream);
|
||||
|
||||
GpuMat kpLoc = pool.getBuffer(1, max_npoints_, CV_16SC2);
|
||||
|
||||
GpuMat score;
|
||||
if (nonmaxSuppression_)
|
||||
{
|
||||
score = pool.getBuffer(img.size(), CV_32SC1);
|
||||
score.setTo(Scalar::all(0), stream);
|
||||
}
|
||||
|
||||
int count = calcKeypoints_gpu(img, mask, kpLoc.ptr<short2>(), max_npoints_, score, threshold_, StreamAccessor::getStream(stream));
|
||||
count = std::min(count, max_npoints_);
|
||||
|
||||
if (count == 0)
|
||||
{
|
||||
_keypoints.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(ROWS_COUNT, count, CV_32FC1, _keypoints);
|
||||
GpuMat& keypoints = _keypoints.getGpuMatRef();
|
||||
|
||||
if (nonmaxSuppression_)
|
||||
{
|
||||
count = nonmaxSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW), StreamAccessor::getStream(stream));
|
||||
if (count == 0)
|
||||
{
|
||||
keypoints.release();
|
||||
}
|
||||
else
|
||||
{
|
||||
keypoints.cols = count;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0));
|
||||
kpLoc.colRange(0, count).copyTo(locRow, stream);
|
||||
keypoints.row(1).setTo(Scalar::all(0), stream);
|
||||
}
|
||||
}
|
||||
|
||||
void FAST_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (_gpu_keypoints.empty())
|
||||
{
|
||||
keypoints.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
Mat h_keypoints;
|
||||
if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
|
||||
{
|
||||
_gpu_keypoints.getGpuMat().download(h_keypoints);
|
||||
}
|
||||
else
|
||||
{
|
||||
h_keypoints = _gpu_keypoints.getMat();
|
||||
}
|
||||
|
||||
CV_Assert( h_keypoints.rows == ROWS_COUNT );
|
||||
CV_Assert( h_keypoints.elemSize() == 4 );
|
||||
|
||||
const int npoints = h_keypoints.cols;
|
||||
|
||||
keypoints.resize(npoints);
|
||||
|
||||
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
|
||||
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
|
||||
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
|
||||
keypoints[i] = kp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int cv::cuda::FAST_CUDA::getKeyPoints(GpuMat& keypoints)
|
||||
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int threshold, bool nonmaxSuppression, int type, int max_npoints)
|
||||
{
|
||||
using namespace cv::cuda::device::fast;
|
||||
|
||||
if (count_ == 0)
|
||||
return 0;
|
||||
|
||||
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints);
|
||||
|
||||
if (nonmaxSuppression)
|
||||
return nonmaxSuppression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW));
|
||||
|
||||
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0));
|
||||
kpLoc_.colRange(0, count_).copyTo(locRow);
|
||||
keypoints.row(1).setTo(Scalar::all(0));
|
||||
|
||||
return count_;
|
||||
}
|
||||
|
||||
void cv::cuda::FAST_CUDA::release()
|
||||
{
|
||||
kpLoc_.release();
|
||||
score_.release();
|
||||
|
||||
d_keypoints_.release();
|
||||
CV_Assert( type == TYPE_9_16 );
|
||||
return makePtr<FAST_Impl>(threshold, nonmaxSuppression, max_npoints);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
@ -398,7 +398,7 @@ namespace
|
||||
cv::cuda::ORB_CUDA::ORB_CUDA(int nFeatures, float scaleFactor, int nLevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) :
|
||||
nFeatures_(nFeatures), scaleFactor_(scaleFactor), nLevels_(nLevels), edgeThreshold_(edgeThreshold), firstLevel_(firstLevel), WTA_K_(WTA_K),
|
||||
scoreType_(scoreType), patchSize_(patchSize),
|
||||
fastDetector_(DEFAULT_FAST_THRESHOLD)
|
||||
fastDetector_(cuda::FastFeatureDetector::create(DEFAULT_FAST_THRESHOLD))
|
||||
{
|
||||
CV_Assert(patchSize_ >= 2);
|
||||
|
||||
@ -554,7 +554,7 @@ namespace
|
||||
return;
|
||||
}
|
||||
|
||||
count = cull_gpu(keypoints.ptr<int>(FAST_CUDA::LOCATION_ROW), keypoints.ptr<float>(FAST_CUDA::RESPONSE_ROW), count, n_points);
|
||||
count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -570,20 +570,20 @@ void cv::cuda::ORB_CUDA::computeKeyPointsPyramid()
|
||||
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
{
|
||||
keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]);
|
||||
fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area());
|
||||
|
||||
GpuMat fastKpRange;
|
||||
fastDetector_->detectAsync(imagePyr_[level], fastKpRange, maskPyr_[level], Stream::Null());
|
||||
|
||||
keyPointsCount_[level] = fastKpRange.cols;
|
||||
|
||||
if (keyPointsCount_[level] == 0)
|
||||
continue;
|
||||
|
||||
ensureSizeIsEnough(3, keyPointsCount_[level], CV_32FC1, keyPointsPyr_[level]);
|
||||
ensureSizeIsEnough(3, keyPointsCount_[level], fastKpRange.type(), keyPointsPyr_[level]);
|
||||
fastKpRange.copyTo(keyPointsPyr_[level].rowRange(0, 2));
|
||||
|
||||
GpuMat fastKpRange = keyPointsPyr_[level].rowRange(0, 2);
|
||||
keyPointsCount_[level] = fastDetector_.getKeyPoints(fastKpRange);
|
||||
|
||||
if (keyPointsCount_[level] == 0)
|
||||
continue;
|
||||
|
||||
int n_features = static_cast<int>(n_features_per_level_[level]);
|
||||
const int n_features = static_cast<int>(n_features_per_level_[level]);
|
||||
|
||||
if (scoreType_ == ORB::HARRIS_SCORE)
|
||||
{
|
||||
@ -767,8 +767,6 @@ void cv::cuda::ORB_CUDA::release()
|
||||
|
||||
keyPointsPyr_.clear();
|
||||
|
||||
fastDetector_.release();
|
||||
|
||||
d_keypoints_.release();
|
||||
}
|
||||
|
||||
|
@ -76,15 +76,14 @@ CUDA_TEST_P(FAST, Accuracy)
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
cv::cuda::FAST_CUDA fast(threshold);
|
||||
fast.nonmaxSuppression = nonmaxSuppression;
|
||||
cv::Ptr<cv::cuda::FastFeatureDetector> fast = cv::cuda::FastFeatureDetector::create(threshold, nonmaxSuppression);
|
||||
|
||||
if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
|
||||
{
|
||||
try
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
fast(loadMat(image), cv::cuda::GpuMat(), keypoints);
|
||||
fast->detect(loadMat(image), keypoints);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
@ -94,7 +93,7 @@ CUDA_TEST_P(FAST, Accuracy)
|
||||
else
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
fast(loadMat(image), cv::cuda::GpuMat(), keypoints);
|
||||
fast->detect(loadMat(image), keypoints);
|
||||
|
||||
std::vector<cv::KeyPoint> keypoints_gold;
|
||||
cv::FAST(image, keypoints_gold, threshold, nonmaxSuppression);
|
||||
|
@ -322,14 +322,14 @@ TEST(FAST)
|
||||
FAST(src, keypoints, 20);
|
||||
CPU_OFF;
|
||||
|
||||
cuda::FAST_CUDA d_FAST(20);
|
||||
cv::Ptr<cv::cuda::FastFeatureDetector> d_FAST = cv::cuda::FastFeatureDetector::create(20);
|
||||
cuda::GpuMat d_src(src);
|
||||
cuda::GpuMat d_keypoints;
|
||||
|
||||
d_FAST(d_src, cuda::GpuMat(), d_keypoints);
|
||||
d_FAST->detectAsync(d_src, d_keypoints);
|
||||
|
||||
CUDA_ON;
|
||||
d_FAST(d_src, cuda::GpuMat(), d_keypoints);
|
||||
d_FAST->detectAsync(d_src, d_keypoints);
|
||||
CUDA_OFF;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user