moved utility functions from gpu_perf_test and gpu_test to ts module
This commit is contained in:
parent
819ac111a2
commit
abc9ef6809
@ -2,6 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// StereoBM
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
|
||||
#define GPU_DENOISING_IMAGE_SIZES testing::Values(perf::szVGA, perf::sz720p)
|
||||
|
||||
|
@ -2,105 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
|
||||
struct KeypointIdxCompare
|
||||
{
|
||||
std::vector<cv::KeyPoint>* keypoints;
|
||||
|
||||
explicit KeypointIdxCompare(std::vector<cv::KeyPoint>* _keypoints) : keypoints(_keypoints) {}
|
||||
|
||||
bool operator ()(size_t i1, size_t i2) const
|
||||
{
|
||||
cv::KeyPoint kp1 = (*keypoints)[i1];
|
||||
cv::KeyPoint kp2 = (*keypoints)[i2];
|
||||
if (kp1.pt.x != kp2.pt.x)
|
||||
return kp1.pt.x < kp2.pt.x;
|
||||
if (kp1.pt.y != kp2.pt.y)
|
||||
return kp1.pt.y < kp2.pt.y;
|
||||
if (kp1.response != kp2.response)
|
||||
return kp1.response < kp2.response;
|
||||
return kp1.octave < kp2.octave;
|
||||
}
|
||||
};
|
||||
|
||||
static void sortKeyPoints(std::vector<cv::KeyPoint>& keypoints, cv::InputOutputArray _descriptors = cv::noArray())
|
||||
{
|
||||
std::vector<size_t> indexies(keypoints.size());
|
||||
for (size_t i = 0; i < indexies.size(); ++i)
|
||||
indexies[i] = i;
|
||||
|
||||
std::sort(indexies.begin(), indexies.end(), KeypointIdxCompare(&keypoints));
|
||||
|
||||
std::vector<cv::KeyPoint> new_keypoints;
|
||||
cv::Mat new_descriptors;
|
||||
|
||||
new_keypoints.resize(keypoints.size());
|
||||
|
||||
cv::Mat descriptors;
|
||||
if (_descriptors.needed())
|
||||
{
|
||||
descriptors = _descriptors.getMat();
|
||||
new_descriptors.create(descriptors.size(), descriptors.type());
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < indexies.size(); ++i)
|
||||
{
|
||||
size_t new_idx = indexies[i];
|
||||
new_keypoints[i] = keypoints[new_idx];
|
||||
if (!new_descriptors.empty())
|
||||
descriptors.row((int) new_idx).copyTo(new_descriptors.row((int) i));
|
||||
}
|
||||
|
||||
keypoints.swap(new_keypoints);
|
||||
if (_descriptors.needed())
|
||||
new_descriptors.copyTo(_descriptors);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SURF
|
||||
|
||||
DEF_PARAM_TEST_1(Image, string);
|
||||
|
||||
PERF_TEST_P(Image, Features2D_SURF,
|
||||
Values<string>("gpu/perf/aloe.png"))
|
||||
{
|
||||
declare.time(50.0);
|
||||
|
||||
const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
if (PERF_RUN_GPU())
|
||||
{
|
||||
cv::gpu::SURF_GPU d_surf;
|
||||
|
||||
const cv::gpu::GpuMat d_img(img);
|
||||
cv::gpu::GpuMat d_keypoints, d_descriptors;
|
||||
|
||||
TEST_CYCLE() d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
|
||||
|
||||
std::vector<cv::KeyPoint> gpu_keypoints;
|
||||
d_surf.downloadKeypoints(d_keypoints, gpu_keypoints);
|
||||
|
||||
cv::Mat gpu_descriptors(d_descriptors);
|
||||
|
||||
sortKeyPoints(gpu_keypoints, gpu_descriptors);
|
||||
|
||||
SANITY_CHECK_KEYPOINTS(gpu_keypoints);
|
||||
SANITY_CHECK(gpu_descriptors, 1e-3);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::SURF surf;
|
||||
|
||||
std::vector<cv::KeyPoint> cpu_keypoints;
|
||||
cv::Mat cpu_descriptors;
|
||||
|
||||
TEST_CYCLE() surf(img, cv::noArray(), cpu_keypoints, cpu_descriptors);
|
||||
|
||||
SANITY_CHECK_KEYPOINTS(cpu_keypoints);
|
||||
SANITY_CHECK(cpu_descriptors);
|
||||
}
|
||||
}
|
||||
using namespace perf;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// FAST
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Blur
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
|
||||
DEF_PARAM_TEST_1(Image, string);
|
||||
|
||||
|
@ -1,70 +1,5 @@
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
static void printOsInfo()
|
||||
{
|
||||
#if defined _WIN32
|
||||
# if defined _WIN64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"), fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"), fflush(stdout);
|
||||
# endif
|
||||
#elif defined linux
|
||||
# if defined _LP64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"), fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"), fflush(stdout);
|
||||
# endif
|
||||
#elif defined __APPLE__
|
||||
# if defined _LP64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"), fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"), fflush(stdout);
|
||||
# endif
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
static void printCudaInfo()
|
||||
{
|
||||
printOsInfo();
|
||||
#ifndef HAVE_CUDA
|
||||
printf("[----------]\n[ GPU INFO ] \tOpenCV was built without CUDA support.\n[----------]\n"), fflush(stdout);
|
||||
#else
|
||||
int driver;
|
||||
cudaDriverGetVersion(&driver);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
printf("[ GPU INFO ] \tCUDA Driver version: %d.\n", driver), fflush(stdout);
|
||||
printf("[ GPU INFO ] \tCUDA Runtime version: %d.\n", CUDART_VERSION), fflush(stdout);
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
printf("[ GPU INFO ] \tGPU module was compiled for the following GPU archs.\n"), fflush(stdout);
|
||||
printf("[ BIN ] \t%s.\n", CUDA_ARCH_BIN), fflush(stdout);
|
||||
printf("[ PTX ] \t%s.\n", CUDA_ARCH_PTX), fflush(stdout);
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
int deviceCount = cv::gpu::getCudaEnabledDeviceCount();
|
||||
printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount), fflush(stdout);
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
cv::gpu::DeviceInfo info(i);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()), fflush(stdout);
|
||||
printf("[ ] \tCompute capability: %d.%d\n", (int)info.majorVersion(), (int)info.minorVersion()), fflush(stdout);
|
||||
printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()), fflush(stdout);
|
||||
printf("[ ] \tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)), fflush(stdout);
|
||||
printf("[ ] \tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)), fflush(stdout);
|
||||
if (!info.isCompatible())
|
||||
printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n");
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
using namespace perf;
|
||||
|
||||
CV_PERF_TEST_MAIN(gpu, printCudaInfo())
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// HOG
|
||||
|
@ -20,6 +20,7 @@
|
||||
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/ts/gpu_perf.hpp"
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
@ -27,12 +28,9 @@
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/video/video.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include "opencv2/legacy/legacy.hpp"
|
||||
#include "opencv2/photo/photo.hpp"
|
||||
|
||||
#include "utility.hpp"
|
||||
|
||||
#ifdef GTEST_CREATE_SHARED_LIBRARY
|
||||
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
|
||||
#endif
|
||||
|
@ -1,184 +0,0 @@
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
Mat readImage(const string& fileName, int flags)
|
||||
{
|
||||
return imread(perf::TestBase::getDataPath(fileName), flags);
|
||||
}
|
||||
|
||||
void PrintTo(const CvtColorInfo& info, ostream* os)
|
||||
{
|
||||
static const char* str[] =
|
||||
{
|
||||
"BGR2BGRA",
|
||||
"BGRA2BGR",
|
||||
"BGR2RGBA",
|
||||
"RGBA2BGR",
|
||||
"BGR2RGB",
|
||||
"BGRA2RGBA",
|
||||
|
||||
"BGR2GRAY",
|
||||
"RGB2GRAY",
|
||||
"GRAY2BGR",
|
||||
"GRAY2BGRA",
|
||||
"BGRA2GRAY",
|
||||
"RGBA2GRAY",
|
||||
|
||||
"BGR2BGR565",
|
||||
"RGB2BGR565",
|
||||
"BGR5652BGR",
|
||||
"BGR5652RGB",
|
||||
"BGRA2BGR565",
|
||||
"RGBA2BGR565",
|
||||
"BGR5652BGRA",
|
||||
"BGR5652RGBA",
|
||||
|
||||
"GRAY2BGR565",
|
||||
"BGR5652GRAY",
|
||||
|
||||
"BGR2BGR555",
|
||||
"RGB2BGR555",
|
||||
"BGR5552BGR",
|
||||
"BGR5552RGB",
|
||||
"BGRA2BGR555",
|
||||
"RGBA2BGR555",
|
||||
"BGR5552BGRA",
|
||||
"BGR5552RGBA",
|
||||
|
||||
"GRAY2BGR555",
|
||||
"BGR5552GRAY",
|
||||
|
||||
"BGR2XYZ",
|
||||
"RGB2XYZ",
|
||||
"XYZ2BGR",
|
||||
"XYZ2RGB",
|
||||
|
||||
"BGR2YCrCb",
|
||||
"RGB2YCrCb",
|
||||
"YCrCb2BGR",
|
||||
"YCrCb2RGB",
|
||||
|
||||
"BGR2HSV",
|
||||
"RGB2HSV",
|
||||
|
||||
"",
|
||||
"",
|
||||
|
||||
"BGR2Lab",
|
||||
"RGB2Lab",
|
||||
|
||||
"BayerBG2BGR",
|
||||
"BayerGB2BGR",
|
||||
"BayerRG2BGR",
|
||||
"BayerGR2BGR",
|
||||
|
||||
"BGR2Luv",
|
||||
"RGB2Luv",
|
||||
|
||||
"BGR2HLS",
|
||||
"RGB2HLS",
|
||||
|
||||
"HSV2BGR",
|
||||
"HSV2RGB",
|
||||
|
||||
"Lab2BGR",
|
||||
"Lab2RGB",
|
||||
"Luv2BGR",
|
||||
"Luv2RGB",
|
||||
|
||||
"HLS2BGR",
|
||||
"HLS2RGB",
|
||||
|
||||
"BayerBG2BGR_VNG",
|
||||
"BayerGB2BGR_VNG",
|
||||
"BayerRG2BGR_VNG",
|
||||
"BayerGR2BGR_VNG",
|
||||
|
||||
"BGR2HSV_FULL",
|
||||
"RGB2HSV_FULL",
|
||||
"BGR2HLS_FULL",
|
||||
"RGB2HLS_FULL",
|
||||
|
||||
"HSV2BGR_FULL",
|
||||
"HSV2RGB_FULL",
|
||||
"HLS2BGR_FULL",
|
||||
"HLS2RGB_FULL",
|
||||
|
||||
"LBGR2Lab",
|
||||
"LRGB2Lab",
|
||||
"LBGR2Luv",
|
||||
"LRGB2Luv",
|
||||
|
||||
"Lab2LBGR",
|
||||
"Lab2LRGB",
|
||||
"Luv2LBGR",
|
||||
"Luv2LRGB",
|
||||
|
||||
"BGR2YUV",
|
||||
"RGB2YUV",
|
||||
"YUV2BGR",
|
||||
"YUV2RGB",
|
||||
|
||||
"BayerBG2GRAY",
|
||||
"BayerGB2GRAY",
|
||||
"BayerRG2GRAY",
|
||||
"BayerGR2GRAY",
|
||||
|
||||
//YUV 4:2:0 formats family
|
||||
"YUV2RGB_NV12",
|
||||
"YUV2BGR_NV12",
|
||||
"YUV2RGB_NV21",
|
||||
"YUV2BGR_NV21",
|
||||
|
||||
"YUV2RGBA_NV12",
|
||||
"YUV2BGRA_NV12",
|
||||
"YUV2RGBA_NV21",
|
||||
"YUV2BGRA_NV21",
|
||||
|
||||
"YUV2RGB_YV12",
|
||||
"YUV2BGR_YV12",
|
||||
"YUV2RGB_IYUV",
|
||||
"YUV2BGR_IYUV",
|
||||
|
||||
"YUV2RGBA_YV12",
|
||||
"YUV2BGRA_YV12",
|
||||
"YUV2RGBA_IYUV",
|
||||
"YUV2BGRA_IYUV",
|
||||
|
||||
"YUV2GRAY_420",
|
||||
|
||||
//YUV 4:2:2 formats family
|
||||
"YUV2RGB_UYVY",
|
||||
"YUV2BGR_UYVY",
|
||||
"YUV2RGB_VYUY",
|
||||
"YUV2BGR_VYUY",
|
||||
|
||||
"YUV2RGBA_UYVY",
|
||||
"YUV2BGRA_UYVY",
|
||||
"YUV2RGBA_VYUY",
|
||||
"YUV2BGRA_VYUY",
|
||||
|
||||
"YUV2RGB_YUY2",
|
||||
"YUV2BGR_YUY2",
|
||||
"YUV2RGB_YVYU",
|
||||
"YUV2BGR_YVYU",
|
||||
|
||||
"YUV2RGBA_YUY2",
|
||||
"YUV2BGRA_YUY2",
|
||||
"YUV2RGBA_YVYU",
|
||||
"YUV2BGRA_YVYU",
|
||||
|
||||
"YUV2GRAY_UYVY",
|
||||
"YUV2GRAY_YUY2",
|
||||
|
||||
// alpha premultiplication
|
||||
"RGBA2mRGBA",
|
||||
"mRGBA2RGBA",
|
||||
|
||||
"COLORCVT_MAX"
|
||||
};
|
||||
|
||||
*os << str[info.code];
|
||||
}
|
@ -1,63 +0,0 @@
|
||||
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__
|
||||
#define __OPENCV_PERF_GPU_UTILITY_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
|
||||
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
|
||||
|
||||
using perf::MatType;
|
||||
using perf::MatDepth;
|
||||
|
||||
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
|
||||
#define ALL_BORDER_MODES testing::ValuesIn(BorderMode::all())
|
||||
|
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
|
||||
#define ALL_INTERPOLATIONS testing::ValuesIn(Interpolation::all())
|
||||
|
||||
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING, cv::NORM_MINMAX)
|
||||
|
||||
enum { Gray = 1, TwoChannel = 2, BGR = 3, BGRA = 4 };
|
||||
CV_ENUM(MatCn, Gray, TwoChannel, BGR, BGRA)
|
||||
#define GPU_CHANNELS_1_3_4 testing::Values(MatCn(Gray), MatCn(BGR), MatCn(BGRA))
|
||||
#define GPU_CHANNELS_1_3 testing::Values(MatCn(Gray), MatCn(BGR))
|
||||
|
||||
struct CvtColorInfo
|
||||
{
|
||||
int scn;
|
||||
int dcn;
|
||||
int code;
|
||||
|
||||
CvtColorInfo() {}
|
||||
explicit CvtColorInfo(int scn_, int dcn_, int code_) : scn(scn_), dcn(dcn_), code(code_) {}
|
||||
};
|
||||
void PrintTo(const CvtColorInfo& info, std::ostream* os);
|
||||
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
|
||||
|
||||
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
|
||||
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
|
||||
|
||||
DEF_PARAM_TEST_1(Sz, cv::Size);
|
||||
typedef perf::Size_MatType Sz_Type;
|
||||
DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth);
|
||||
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, MatCn);
|
||||
|
||||
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p)
|
||||
|
||||
#define FAIL_NO_CPU() FAIL() << "No such CPU implementation analogy"
|
||||
|
||||
#define GPU_SANITY_CHECK(mat, ...) \
|
||||
do{ \
|
||||
cv::Mat gpu_##mat(mat); \
|
||||
SANITY_CHECK(gpu_##mat, ## __VA_ARGS__); \
|
||||
} while(0)
|
||||
|
||||
#define CPU_SANITY_CHECK(mat, ...) \
|
||||
do{ \
|
||||
cv::Mat cpu_##mat(mat); \
|
||||
SANITY_CHECK(cpu_##mat, ## __VA_ARGS__); \
|
||||
} while(0)
|
||||
|
||||
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__
|
@ -9,69 +9,19 @@
|
||||
#include "opencv2/legacy/legacy.hpp"
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
|
||||
static void printOsInfo()
|
||||
{
|
||||
#if defined _WIN32
|
||||
# if defined _WIN64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"); fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"); fflush(stdout);
|
||||
# endif
|
||||
#elif defined linux
|
||||
# if defined _LP64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"); fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"); fflush(stdout);
|
||||
# endif
|
||||
#elif defined __APPLE__
|
||||
# if defined _LP64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"); fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"); fflush(stdout);
|
||||
# endif
|
||||
#endif
|
||||
}
|
||||
|
||||
static void printCudaInfo()
|
||||
{
|
||||
const int deviceCount = cv::gpu::getCudaEnabledDeviceCount();
|
||||
|
||||
printf("[----------]\n"); fflush(stdout);
|
||||
printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount); fflush(stdout);
|
||||
printf("[----------]\n"); fflush(stdout);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
cv::gpu::DeviceInfo info(i);
|
||||
|
||||
printf("[----------]\n"); fflush(stdout);
|
||||
printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()); fflush(stdout);
|
||||
printf("[ ] \tCompute capability: %d.%d\n", info.majorVersion(), info.minorVersion()); fflush(stdout);
|
||||
printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()); fflush(stdout);
|
||||
printf("[ ] \tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)); fflush(stdout);
|
||||
printf("[ ] \tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)); fflush(stdout);
|
||||
if (!info.isCompatible())
|
||||
printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n");
|
||||
printf("[----------]\n"); fflush(stdout);
|
||||
}
|
||||
}
|
||||
#include "opencv2/ts/gpu_perf.hpp"
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
printOsInfo();
|
||||
printCudaInfo();
|
||||
perf::printCudaInfo();
|
||||
|
||||
perf::Regression::Init("nv_perf_test");
|
||||
perf::Regression::Init("gpu_perf4au");
|
||||
perf::TestBase::Init(argc, argv);
|
||||
testing::InitGoogleTest(&argc, argv);
|
||||
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
||||
|
||||
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
|
||||
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// HoughLinesP
|
||||
|
||||
|
@ -49,71 +49,6 @@ using namespace cv::gpu;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
|
||||
void printOsInfo()
|
||||
{
|
||||
#if defined _WIN32
|
||||
# if defined _WIN64
|
||||
cout << "OS: Windows x64 \n" << endl;
|
||||
# else
|
||||
cout << "OS: Windows x32 \n" << endl;
|
||||
# endif
|
||||
#elif defined linux
|
||||
# if defined _LP64
|
||||
cout << "OS: Linux x64 \n" << endl;
|
||||
# else
|
||||
cout << "OS: Linux x32 \n" << endl;
|
||||
# endif
|
||||
#elif defined __APPLE__
|
||||
# if defined _LP64
|
||||
cout << "OS: Apple x64 \n" << endl;
|
||||
# else
|
||||
cout << "OS: Apple x32 \n" << endl;
|
||||
# endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void printCudaInfo()
|
||||
{
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
||||
cout << "OpenCV was built without CUDA support \n" << endl;
|
||||
#else
|
||||
int driver;
|
||||
cudaDriverGetVersion(&driver);
|
||||
|
||||
cout << "CUDA Driver version: " << driver << '\n';
|
||||
cout << "CUDA Runtime version: " << CUDART_VERSION << '\n';
|
||||
|
||||
cout << endl;
|
||||
|
||||
cout << "GPU module was compiled for the following GPU archs:" << endl;
|
||||
cout << " BIN: " << CUDA_ARCH_BIN << '\n';
|
||||
cout << " PTX: " << CUDA_ARCH_PTX << '\n';
|
||||
|
||||
cout << endl;
|
||||
|
||||
int deviceCount = getCudaEnabledDeviceCount();
|
||||
cout << "CUDA device count: " << deviceCount << '\n';
|
||||
|
||||
cout << endl;
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
DeviceInfo info(i);
|
||||
|
||||
cout << "Device [" << i << "] \n";
|
||||
cout << "\t Name: " << info.name() << '\n';
|
||||
cout << "\t Compute capability: " << info.majorVersion() << '.' << info.minorVersion()<< '\n';
|
||||
cout << "\t Multi Processor Count: " << info.multiProcessorCount() << '\n';
|
||||
cout << "\t Total memory: " << static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0) << " Mb \n";
|
||||
cout << "\t Free memory: " << static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0) << " Mb \n";
|
||||
if (!info.isCompatible())
|
||||
cout << "\t !!! This device is NOT compatible with current GPU module build \n";
|
||||
|
||||
cout << endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
try
|
||||
@ -133,7 +68,6 @@ int main(int argc, char** argv)
|
||||
return 0;
|
||||
}
|
||||
|
||||
printOsInfo();
|
||||
printCudaInfo();
|
||||
|
||||
if (cmd.get<bool>("info"))
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FGDStatModel
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// StereoBM
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cvtColor
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(Border, int)
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Merge
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// BilateralFilter
|
||||
|
||||
|
@ -43,306 +43,7 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
namespace
|
||||
{
|
||||
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
||||
{
|
||||
const double maxPtDif = 1.0;
|
||||
const double maxSizeDif = 1.0;
|
||||
const double maxAngleDif = 2.0;
|
||||
const double maxResponseDif = 0.1;
|
||||
|
||||
double dist = cv::norm(p1.pt - p2.pt);
|
||||
|
||||
if (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
|
||||
{
|
||||
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
|
||||
{
|
||||
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
|
||||
}
|
||||
};
|
||||
|
||||
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
if (gold.size() != actual.size())
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
|
||||
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
|
||||
<< "\"" << actual_expr << "\" : " << actual.size();
|
||||
}
|
||||
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (!keyPointsEquals(p1, p2))
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
|
||||
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
|
||||
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
|
||||
<< "size : " << p1.size << " vs " << p2.size << "\n"
|
||||
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
|
||||
<< "response : " << p1.response << " vs " << p2.response << "\n"
|
||||
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
|
||||
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
|
||||
}
|
||||
}
|
||||
|
||||
return ::testing::AssertionSuccess();
|
||||
}
|
||||
|
||||
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
|
||||
|
||||
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
|
||||
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
||||
{
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < matches.size(); ++i)
|
||||
{
|
||||
const cv::DMatch& m = matches[i];
|
||||
|
||||
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
||||
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SURF
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
|
||||
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
double hessianThreshold;
|
||||
int nOctaves;
|
||||
int nOctaveLayers;
|
||||
bool extended;
|
||||
bool upright;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
hessianThreshold = GET_PARAM(1);
|
||||
nOctaves = GET_PARAM(2);
|
||||
nOctaveLayers = GET_PARAM(3);
|
||||
extended = GET_PARAM(4);
|
||||
upright = GET_PARAM(5);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
GPU_TEST_P(SURF, Detector)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
cv::gpu::SURF_GPU surf;
|
||||
surf.hessianThreshold = hessianThreshold;
|
||||
surf.nOctaves = nOctaves;
|
||||
surf.nOctaveLayers = nOctaveLayers;
|
||||
surf.extended = extended;
|
||||
surf.upright = upright;
|
||||
surf.keypointsRatio = 0.05f;
|
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
|
||||
{
|
||||
try
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
surf(loadMat(image), cv::gpu::GpuMat(), keypoints);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
surf(loadMat(image), cv::gpu::GpuMat(), keypoints);
|
||||
|
||||
cv::SURF surf_gold;
|
||||
surf_gold.hessianThreshold = hessianThreshold;
|
||||
surf_gold.nOctaves = nOctaves;
|
||||
surf_gold.nOctaveLayers = nOctaveLayers;
|
||||
surf_gold.extended = extended;
|
||||
surf_gold.upright = upright;
|
||||
|
||||
std::vector<cv::KeyPoint> keypoints_gold;
|
||||
surf_gold(image, cv::noArray(), keypoints_gold);
|
||||
|
||||
ASSERT_EQ(keypoints_gold.size(), keypoints.size());
|
||||
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints);
|
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size();
|
||||
|
||||
EXPECT_GT(matchedRatio, 0.95);
|
||||
}
|
||||
}
|
||||
|
||||
GPU_TEST_P(SURF, Detector_Masked)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
|
||||
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
|
||||
|
||||
cv::gpu::SURF_GPU surf;
|
||||
surf.hessianThreshold = hessianThreshold;
|
||||
surf.nOctaves = nOctaves;
|
||||
surf.nOctaveLayers = nOctaveLayers;
|
||||
surf.extended = extended;
|
||||
surf.upright = upright;
|
||||
surf.keypointsRatio = 0.05f;
|
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
|
||||
{
|
||||
try
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
surf(loadMat(image), loadMat(mask), keypoints);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
surf(loadMat(image), loadMat(mask), keypoints);
|
||||
|
||||
cv::SURF surf_gold;
|
||||
surf_gold.hessianThreshold = hessianThreshold;
|
||||
surf_gold.nOctaves = nOctaves;
|
||||
surf_gold.nOctaveLayers = nOctaveLayers;
|
||||
surf_gold.extended = extended;
|
||||
surf_gold.upright = upright;
|
||||
|
||||
std::vector<cv::KeyPoint> keypoints_gold;
|
||||
surf_gold(image, mask, keypoints_gold);
|
||||
|
||||
ASSERT_EQ(keypoints_gold.size(), keypoints.size());
|
||||
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints);
|
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size();
|
||||
|
||||
EXPECT_GT(matchedRatio, 0.95);
|
||||
}
|
||||
}
|
||||
|
||||
GPU_TEST_P(SURF, Descriptor)
|
||||
{
|
||||
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
cv::gpu::SURF_GPU surf;
|
||||
surf.hessianThreshold = hessianThreshold;
|
||||
surf.nOctaves = nOctaves;
|
||||
surf.nOctaveLayers = nOctaveLayers;
|
||||
surf.extended = extended;
|
||||
surf.upright = upright;
|
||||
surf.keypointsRatio = 0.05f;
|
||||
|
||||
cv::SURF surf_gold;
|
||||
surf_gold.hessianThreshold = hessianThreshold;
|
||||
surf_gold.nOctaves = nOctaves;
|
||||
surf_gold.nOctaveLayers = nOctaveLayers;
|
||||
surf_gold.extended = extended;
|
||||
surf_gold.upright = upright;
|
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
|
||||
{
|
||||
try
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
cv::gpu::GpuMat descriptors;
|
||||
surf(loadMat(image), cv::gpu::GpuMat(), keypoints, descriptors);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
surf_gold(image, cv::noArray(), keypoints);
|
||||
|
||||
cv::gpu::GpuMat descriptors;
|
||||
surf(loadMat(image), cv::gpu::GpuMat(), keypoints, descriptors, true);
|
||||
|
||||
cv::Mat descriptors_gold;
|
||||
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
|
||||
|
||||
cv::BFMatcher matcher(cv::NORM_L2);
|
||||
std::vector<cv::DMatch> matches;
|
||||
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
||||
|
||||
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
|
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
||||
|
||||
EXPECT_GT(matchedRatio, 0.6);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(SURF_HessianThreshold(100.0), SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)),
|
||||
testing::Values(SURF_Octaves(3), SURF_Octaves(4)),
|
||||
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)),
|
||||
testing::Values(SURF_Extended(false), SURF_Extended(true)),
|
||||
testing::Values(SURF_Upright(false), SURF_Upright(true))));
|
||||
using namespace cvtest;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FAST
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(KSize, cv::Size)
|
||||
|
@ -44,6 +44,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HoughLines
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Integral
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
//#define DUMP
|
||||
|
||||
struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#if defined(HAVE_CUDA) && defined(HAVE_OPENGL)
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Buffer
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// BroxOpticalFlow
|
||||
|
||||
|
@ -69,19 +69,19 @@
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/ts/gpu_test.hpp"
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/opengl_interop.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/video/video.hpp"
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include "opencv2/legacy/legacy.hpp"
|
||||
|
||||
#include "utility.hpp"
|
||||
#include "interpolation.hpp"
|
||||
#include "main_test_nvidia.h"
|
||||
#endif
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// pyrDown
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gold implementation
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gold implementation
|
||||
|
||||
|
@ -44,6 +44,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
#if CUDA_VERSION >= 5000
|
||||
|
||||
struct Async : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV)
|
||||
#define ALL_THRESH_OPS testing::Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV))
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
namespace
|
||||
{
|
||||
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
|
||||
|
@ -43,6 +43,8 @@
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
|
||||
namespace
|
||||
{
|
||||
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
|
||||
|
@ -1,407 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace testing::internal;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// random generators
|
||||
|
||||
int randomInt(int minVal, int maxVal)
|
||||
{
|
||||
RNG& rng = TS::ptr()->get_rng();
|
||||
return rng.uniform(minVal, maxVal);
|
||||
}
|
||||
|
||||
double randomDouble(double minVal, double maxVal)
|
||||
{
|
||||
RNG& rng = TS::ptr()->get_rng();
|
||||
return rng.uniform(minVal, maxVal);
|
||||
}
|
||||
|
||||
Size randomSize(int minVal, int maxVal)
|
||||
{
|
||||
return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
|
||||
}
|
||||
|
||||
Scalar randomScalar(double minVal, double maxVal)
|
||||
{
|
||||
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
|
||||
}
|
||||
|
||||
Mat randomMat(Size size, int type, double minVal, double maxVal)
|
||||
{
|
||||
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GpuMat create
|
||||
|
||||
GpuMat createMat(Size size, int type, bool useRoi)
|
||||
{
|
||||
Size size0 = size;
|
||||
|
||||
if (useRoi)
|
||||
{
|
||||
size0.width += randomInt(5, 15);
|
||||
size0.height += randomInt(5, 15);
|
||||
}
|
||||
|
||||
GpuMat d_m(size0, type);
|
||||
|
||||
if (size0 != size)
|
||||
d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));
|
||||
|
||||
return d_m;
|
||||
}
|
||||
|
||||
GpuMat loadMat(const Mat& m, bool useRoi)
|
||||
{
|
||||
GpuMat d_m = createMat(m.size(), m.type(), useRoi);
|
||||
d_m.upload(m);
|
||||
return d_m;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Image load
|
||||
|
||||
Mat readImage(const std::string& fileName, int flags)
|
||||
{
|
||||
return imread(TS::ptr()->get_data_path() + fileName, flags);
|
||||
}
|
||||
|
||||
Mat readImageType(const std::string& fname, int type)
|
||||
{
|
||||
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
|
||||
if (CV_MAT_CN(type) == 4)
|
||||
{
|
||||
Mat temp;
|
||||
cvtColor(src, temp, COLOR_BGR2BGRA);
|
||||
swap(src, temp);
|
||||
}
|
||||
src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
|
||||
return src;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Gpu devices
|
||||
|
||||
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
|
||||
{
|
||||
return TargetArchs::builtWith(feature) && info.supports(feature);
|
||||
}
|
||||
|
||||
DeviceManager& DeviceManager::instance()
|
||||
{
|
||||
static DeviceManager obj;
|
||||
return obj;
|
||||
}
|
||||
|
||||
void DeviceManager::load(int i)
|
||||
{
|
||||
devices_.clear();
|
||||
devices_.reserve(1);
|
||||
|
||||
std::ostringstream msg;
|
||||
|
||||
if (i < 0 || i >= getCudaEnabledDeviceCount())
|
||||
{
|
||||
msg << "Incorrect device number - " << i;
|
||||
throw runtime_error(msg.str());
|
||||
}
|
||||
|
||||
DeviceInfo info(i);
|
||||
|
||||
if (!info.isCompatible())
|
||||
{
|
||||
msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current GPU module build";
|
||||
throw runtime_error(msg.str());
|
||||
}
|
||||
|
||||
devices_.push_back(info);
|
||||
}
|
||||
|
||||
void DeviceManager::loadAll()
|
||||
{
|
||||
int deviceCount = getCudaEnabledDeviceCount();
|
||||
|
||||
devices_.clear();
|
||||
devices_.reserve(deviceCount);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
DeviceInfo info(i);
|
||||
if (info.isCompatible())
|
||||
{
|
||||
devices_.push_back(info);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Additional assertion
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
|
||||
{
|
||||
const int cn = m.channels();
|
||||
|
||||
std::ostringstream ostr;
|
||||
ostr << "(";
|
||||
|
||||
p.x /= cn;
|
||||
|
||||
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
|
||||
for (int c = 1; c < m.channels(); ++c)
|
||||
{
|
||||
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
|
||||
}
|
||||
ostr << ")";
|
||||
|
||||
return ostr.str();
|
||||
}
|
||||
|
||||
std::string printMatVal(const Mat& m, Point p)
|
||||
{
|
||||
typedef std::string (*func_t)(const Mat& m, Point p);
|
||||
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
|
||||
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
|
||||
};
|
||||
|
||||
return funcs[m.depth()](m, p);
|
||||
}
|
||||
}
|
||||
|
||||
void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
|
||||
{
|
||||
if (src.depth() != CV_8S)
|
||||
{
|
||||
minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
|
||||
return;
|
||||
}
|
||||
|
||||
// OpenCV's minMaxLoc doesn't support CV_8S type
|
||||
double minVal = numeric_limits<double>::max();
|
||||
Point minLoc(-1, -1);
|
||||
|
||||
double maxVal = -numeric_limits<double>::max();
|
||||
Point maxLoc(-1, -1);
|
||||
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
const schar* src_row = src.ptr<schar>(y);
|
||||
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);
|
||||
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
{
|
||||
if (!mask_row || mask_row[x])
|
||||
{
|
||||
schar val = src_row[x];
|
||||
|
||||
if (val < minVal)
|
||||
{
|
||||
minVal = val;
|
||||
minLoc = cv::Point(x, y);
|
||||
}
|
||||
|
||||
if (val > maxVal)
|
||||
{
|
||||
maxVal = val;
|
||||
maxLoc = cv::Point(x, y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (minVal_) *minVal_ = minVal;
|
||||
if (maxVal_) *maxVal_ = maxVal;
|
||||
|
||||
if (minLoc_) *minLoc_ = minLoc;
|
||||
if (maxLoc_) *maxLoc_ = maxLoc;
|
||||
}
|
||||
|
||||
Mat getMat(InputArray arr)
|
||||
{
|
||||
if (arr.kind() == _InputArray::GPU_MAT)
|
||||
{
|
||||
Mat m;
|
||||
arr.getGpuMat().download(m);
|
||||
return m;
|
||||
}
|
||||
|
||||
return arr.getMat();
|
||||
}
|
||||
|
||||
AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
|
||||
{
|
||||
Mat m1 = getMat(m1_);
|
||||
Mat m2 = getMat(m2_);
|
||||
|
||||
if (m1.size() != m2.size())
|
||||
{
|
||||
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
|
||||
<< expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
|
||||
<< expr2 << "\" [" << PrintToString(m2.size()) << "]";
|
||||
}
|
||||
|
||||
if (m1.type() != m2.type())
|
||||
{
|
||||
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
|
||||
<< expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
|
||||
<< expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
|
||||
}
|
||||
|
||||
Mat diff;
|
||||
absdiff(m1.reshape(1), m2.reshape(1), diff);
|
||||
|
||||
double maxVal = 0.0;
|
||||
Point maxLoc;
|
||||
minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);
|
||||
|
||||
if (maxVal > eps)
|
||||
{
|
||||
return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
|
||||
<< "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
|
||||
<< ", which exceeds \"" << eps_expr << "\", where \""
|
||||
<< expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
|
||||
<< expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
|
||||
<< eps_expr << "\" evaluates to " << eps;
|
||||
}
|
||||
|
||||
return AssertionSuccess();
|
||||
}
|
||||
|
||||
double checkSimilarity(InputArray m1, InputArray m2)
|
||||
{
|
||||
Mat diff;
|
||||
matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED);
|
||||
return std::abs(diff.at<float>(0, 0) - 1.f);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Helper structs for value-parameterized tests
|
||||
|
||||
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
|
||||
{
|
||||
vector<MatType> v;
|
||||
|
||||
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
|
||||
|
||||
for (int depth = depth_start; depth <= depth_end; ++depth)
|
||||
{
|
||||
for (int cn = cn_start; cn <= cn_end; ++cn)
|
||||
{
|
||||
v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
|
||||
}
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
const vector<MatType>& all_types()
|
||||
{
|
||||
static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
|
||||
{
|
||||
(*os) << info.name();
|
||||
}
|
||||
|
||||
void PrintTo(const UseRoi& useRoi, std::ostream* os)
|
||||
{
|
||||
if (useRoi)
|
||||
(*os) << "sub matrix";
|
||||
else
|
||||
(*os) << "whole matrix";
|
||||
}
|
||||
|
||||
void PrintTo(const Inverse& inverse, std::ostream* os)
|
||||
{
|
||||
if (inverse)
|
||||
(*os) << "inverse";
|
||||
else
|
||||
(*os) << "direct";
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Other
|
||||
|
||||
void dumpImage(const std::string& fileName, const Mat& image)
|
||||
{
|
||||
imwrite(TS::ptr()->get_data_path() + fileName, image);
|
||||
}
|
||||
|
||||
void showDiff(InputArray gold_, InputArray actual_, double eps)
|
||||
{
|
||||
Mat gold = getMat(gold_);
|
||||
Mat actual = getMat(actual_);
|
||||
|
||||
Mat diff;
|
||||
absdiff(gold, actual, diff);
|
||||
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
|
||||
|
||||
namedWindow("gold", WINDOW_NORMAL);
|
||||
namedWindow("actual", WINDOW_NORMAL);
|
||||
namedWindow("diff", WINDOW_NORMAL);
|
||||
|
||||
imshow("gold", gold);
|
||||
imshow("actual", actual);
|
||||
imshow("diff", diff);
|
||||
|
||||
waitKey();
|
||||
}
|
||||
|
||||
#endif // HAVE_CUDA
|
@ -1,332 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_GPU_TEST_UTILITY_HPP__
|
||||
#define __OPENCV_GPU_TEST_UTILITY_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/gpumat.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// random generators
|
||||
|
||||
int randomInt(int minVal, int maxVal);
|
||||
double randomDouble(double minVal, double maxVal);
|
||||
cv::Size randomSize(int minVal, int maxVal);
|
||||
cv::Scalar randomScalar(double minVal, double maxVal);
|
||||
cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GpuMat create
|
||||
|
||||
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi = false);
|
||||
cv::gpu::GpuMat loadMat(const cv::Mat& m, bool useRoi = false);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Image load
|
||||
|
||||
//! read image from testdata folder
|
||||
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
|
||||
|
||||
//! read image from testdata folder and convert it to specified type
|
||||
cv::Mat readImageType(const std::string& fname, int type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Gpu devices
|
||||
|
||||
//! return true if device supports specified feature and gpu module was built with support the feature.
|
||||
bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature);
|
||||
|
||||
class DeviceManager
|
||||
{
|
||||
public:
|
||||
static DeviceManager& instance();
|
||||
|
||||
void load(int i);
|
||||
void loadAll();
|
||||
|
||||
const std::vector<cv::gpu::DeviceInfo>& values() const { return devices_; }
|
||||
|
||||
private:
|
||||
std::vector<cv::gpu::DeviceInfo> devices_;
|
||||
};
|
||||
|
||||
#define ALL_DEVICES testing::ValuesIn(DeviceManager::instance().values())
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Additional assertion
|
||||
|
||||
void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat());
|
||||
|
||||
cv::Mat getMat(cv::InputArray arr);
|
||||
|
||||
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps);
|
||||
|
||||
#define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(assertMatNear, m1, m2, eps)
|
||||
#define ASSERT_MAT_NEAR(m1, m2, eps) ASSERT_PRED_FORMAT3(assertMatNear, m1, m2, eps)
|
||||
|
||||
#define EXPECT_SCALAR_NEAR(s1, s2, eps) \
|
||||
{ \
|
||||
EXPECT_NEAR(s1[0], s2[0], eps); \
|
||||
EXPECT_NEAR(s1[1], s2[1], eps); \
|
||||
EXPECT_NEAR(s1[2], s2[2], eps); \
|
||||
EXPECT_NEAR(s1[3], s2[3], eps); \
|
||||
}
|
||||
#define ASSERT_SCALAR_NEAR(s1, s2, eps) \
|
||||
{ \
|
||||
ASSERT_NEAR(s1[0], s2[0], eps); \
|
||||
ASSERT_NEAR(s1[1], s2[1], eps); \
|
||||
ASSERT_NEAR(s1[2], s2[2], eps); \
|
||||
ASSERT_NEAR(s1[3], s2[3], eps); \
|
||||
}
|
||||
|
||||
#define EXPECT_POINT2_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
EXPECT_NEAR(p1.x, p2.x, eps); \
|
||||
EXPECT_NEAR(p1.y, p2.y, eps); \
|
||||
}
|
||||
#define ASSERT_POINT2_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
ASSERT_NEAR(p1.x, p2.x, eps); \
|
||||
ASSERT_NEAR(p1.y, p2.y, eps); \
|
||||
}
|
||||
|
||||
#define EXPECT_POINT3_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
EXPECT_NEAR(p1.x, p2.x, eps); \
|
||||
EXPECT_NEAR(p1.y, p2.y, eps); \
|
||||
EXPECT_NEAR(p1.z, p2.z, eps); \
|
||||
}
|
||||
#define ASSERT_POINT3_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
ASSERT_NEAR(p1.x, p2.x, eps); \
|
||||
ASSERT_NEAR(p1.y, p2.y, eps); \
|
||||
ASSERT_NEAR(p1.z, p2.z, eps); \
|
||||
}
|
||||
|
||||
double checkSimilarity(cv::InputArray m1, cv::InputArray m2);
|
||||
|
||||
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkSimilarity(mat1, mat2), eps); \
|
||||
}
|
||||
#define ASSERT_MAT_SIMILAR(mat1, mat2, eps) \
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
ASSERT_LE(checkSimilarity(mat1, mat2), eps); \
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Helper structs for value-parameterized tests
|
||||
|
||||
#define GPU_TEST_P(test_case_name, test_name) \
|
||||
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
|
||||
: public test_case_name { \
|
||||
public: \
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \
|
||||
virtual void TestBody(); \
|
||||
private: \
|
||||
void UnsafeTestBody(); \
|
||||
static int AddToRegistry() { \
|
||||
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
|
||||
GetTestCasePatternHolder<test_case_name>(\
|
||||
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\
|
||||
#test_case_name, \
|
||||
#test_name, \
|
||||
new ::testing::internal::TestMetaFactory< \
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
|
||||
return 0; \
|
||||
} \
|
||||
static int gtest_registering_dummy_; \
|
||||
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
|
||||
}; \
|
||||
int GTEST_TEST_CLASS_NAME_(test_case_name, \
|
||||
test_name)::gtest_registering_dummy_ = \
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
|
||||
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
|
||||
{ \
|
||||
try \
|
||||
{ \
|
||||
UnsafeTestBody(); \
|
||||
} \
|
||||
catch (...) \
|
||||
{ \
|
||||
cv::gpu::resetDevice(); \
|
||||
throw; \
|
||||
} \
|
||||
} \
|
||||
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::UnsafeTestBody()
|
||||
|
||||
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
void PrintTo(const DeviceInfo& info, std::ostream* os);
|
||||
}}
|
||||
|
||||
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113))
|
||||
|
||||
// Depth
|
||||
|
||||
using perf::MatDepth;
|
||||
|
||||
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
|
||||
|
||||
#define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_16U)), \
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_16S)), \
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_32S), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_32S), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_32S), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_32F), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_32F), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_64F), MatDepth(CV_64F)))
|
||||
|
||||
// Type
|
||||
|
||||
using perf::MatType;
|
||||
|
||||
//! return vector with types from specified range.
|
||||
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end);
|
||||
|
||||
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4).
|
||||
const std::vector<MatType>& all_types();
|
||||
|
||||
#define ALL_TYPES testing::ValuesIn(all_types())
|
||||
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end))
|
||||
|
||||
// ROI
|
||||
|
||||
class UseRoi
|
||||
{
|
||||
public:
|
||||
inline UseRoi(bool val = false) : val_(val) {}
|
||||
|
||||
inline operator bool() const { return val_; }
|
||||
|
||||
private:
|
||||
bool val_;
|
||||
};
|
||||
|
||||
void PrintTo(const UseRoi& useRoi, std::ostream* os);
|
||||
|
||||
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
|
||||
|
||||
// Direct/Inverse
|
||||
|
||||
class Inverse
|
||||
{
|
||||
public:
|
||||
inline Inverse(bool val = false) : val_(val) {}
|
||||
|
||||
inline operator bool() const { return val_; }
|
||||
|
||||
private:
|
||||
bool val_;
|
||||
};
|
||||
|
||||
void PrintTo(const Inverse& useRoi, std::ostream* os);
|
||||
|
||||
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
|
||||
|
||||
// Param class
|
||||
|
||||
#define IMPLEMENT_PARAM_CLASS(name, type) \
|
||||
class name \
|
||||
{ \
|
||||
public: \
|
||||
name ( type arg = type ()) : val_(arg) {} \
|
||||
operator type () const {return val_;} \
|
||||
private: \
|
||||
type val_; \
|
||||
}; \
|
||||
inline void PrintTo( name param, std::ostream* os) \
|
||||
{ \
|
||||
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
|
||||
}
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(Channels, int)
|
||||
|
||||
#define ALL_CHANNELS testing::Values(Channels(1), Channels(2), Channels(3), Channels(4))
|
||||
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4))
|
||||
|
||||
// Flags and enums
|
||||
|
||||
CV_ENUM(NormCode, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_TYPE_MASK, cv::NORM_RELATIVE, cv::NORM_MINMAX)
|
||||
|
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
|
||||
|
||||
CV_ENUM(BorderType, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
|
||||
#define ALL_BORDER_TYPES testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP))
|
||||
|
||||
CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WARP_INVERSE_MAP)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Other
|
||||
|
||||
void dumpImage(const std::string& fileName, const cv::Mat& image);
|
||||
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
|
||||
|
||||
#endif // __OPENCV_GPU_TEST_UTILITY_HPP__
|
@ -1,3 +1,5 @@
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
CV_PERF_TEST_MAIN(superres)
|
||||
using namespace perf;
|
||||
|
||||
CV_PERF_TEST_MAIN(superres, printCudaInfo())
|
||||
|
@ -16,6 +16,7 @@
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/gpumat.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/ts/gpu_perf.hpp"
|
||||
#include "opencv2/superres/superres.hpp"
|
||||
#include "opencv2/superres/optical_flow.hpp"
|
||||
|
||||
|
@ -8,18 +8,6 @@ using namespace cv;
|
||||
using namespace cv::superres;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#define GPU_SANITY_CHECK(mat, ...) \
|
||||
do{ \
|
||||
Mat gpu_##mat(mat); \
|
||||
SANITY_CHECK(gpu_##mat, ## __VA_ARGS__); \
|
||||
} while(0)
|
||||
|
||||
#define CPU_SANITY_CHECK(mat, ...) \
|
||||
do{ \
|
||||
Mat cpu_##mat(mat); \
|
||||
SANITY_CHECK(cpu_##mat, ## __VA_ARGS__); \
|
||||
} while(0)
|
||||
|
||||
namespace
|
||||
{
|
||||
class OneFrameSource_CPU : public FrameSource
|
||||
|
@ -10,6 +10,10 @@ endif()
|
||||
|
||||
set(OPENCV_MODULE_IS_PART_OF_WORLD FALSE)
|
||||
|
||||
if(HAVE_CUDA)
|
||||
ocv_include_directories(${CUDA_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
ocv_add_module(ts opencv_core opencv_features2d)
|
||||
|
||||
ocv_glob_module_sources()
|
||||
|
68
modules/ts/include/opencv2/ts/gpu_perf.hpp
Normal file
68
modules/ts/include/opencv2/ts/gpu_perf.hpp
Normal file
@ -0,0 +1,68 @@
|
||||
#ifndef __OPENCV_GPU_PERF_UTILITY_HPP__
|
||||
#define __OPENCV_GPU_PERF_UTILITY_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
|
||||
namespace perf
|
||||
{
|
||||
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
|
||||
#define ALL_BORDER_MODES testing::ValuesIn(BorderMode::all())
|
||||
|
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
|
||||
#define ALL_INTERPOLATIONS testing::ValuesIn(Interpolation::all())
|
||||
|
||||
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING, cv::NORM_MINMAX)
|
||||
|
||||
enum { Gray = 1, TwoChannel = 2, BGR = 3, BGRA = 4 };
|
||||
CV_ENUM(MatCn, Gray, TwoChannel, BGR, BGRA)
|
||||
#define GPU_CHANNELS_1_3_4 testing::Values(MatCn(Gray), MatCn(BGR), MatCn(BGRA))
|
||||
#define GPU_CHANNELS_1_3 testing::Values(MatCn(Gray), MatCn(BGR))
|
||||
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
|
||||
|
||||
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
|
||||
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
|
||||
|
||||
DEF_PARAM_TEST_1(Sz, cv::Size);
|
||||
typedef perf::Size_MatType Sz_Type;
|
||||
DEF_PARAM_TEST(Sz_Depth, cv::Size, perf::MatDepth);
|
||||
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, perf::MatDepth, MatCn);
|
||||
|
||||
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p)
|
||||
|
||||
#define FAIL_NO_CPU() FAIL() << "No such CPU implementation analogy"
|
||||
|
||||
#define GPU_SANITY_CHECK(mat, ...) \
|
||||
do{ \
|
||||
cv::Mat gpu_##mat(mat); \
|
||||
SANITY_CHECK(gpu_##mat, ## __VA_ARGS__); \
|
||||
} while(0)
|
||||
|
||||
#define CPU_SANITY_CHECK(mat, ...) \
|
||||
do{ \
|
||||
cv::Mat cpu_##mat(mat); \
|
||||
SANITY_CHECK(cpu_##mat, ## __VA_ARGS__); \
|
||||
} while(0)
|
||||
|
||||
CV_EXPORTS cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
|
||||
|
||||
struct CvtColorInfo
|
||||
{
|
||||
int scn;
|
||||
int dcn;
|
||||
int code;
|
||||
|
||||
CvtColorInfo() {}
|
||||
explicit CvtColorInfo(int scn_, int dcn_, int code_) : scn(scn_), dcn(dcn_), code(code_) {}
|
||||
};
|
||||
CV_EXPORTS void PrintTo(const CvtColorInfo& info, std::ostream* os);
|
||||
|
||||
CV_EXPORTS void printCudaInfo();
|
||||
|
||||
CV_EXPORTS void sortKeyPoints(std::vector<cv::KeyPoint>& keypoints, cv::InputOutputArray _descriptors = cv::noArray());
|
||||
}
|
||||
|
||||
#endif // __OPENCV_GPU_PERF_UTILITY_HPP__
|
307
modules/ts/include/opencv2/ts/gpu_test.hpp
Normal file
307
modules/ts/include/opencv2/ts/gpu_test.hpp
Normal file
@ -0,0 +1,307 @@
|
||||
#ifndef __OPENCV_GPU_TEST_UTILITY_HPP__
|
||||
#define __OPENCV_GPU_TEST_UTILITY_HPP__
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/gpumat.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
|
||||
namespace cvtest
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// random generators
|
||||
|
||||
CV_EXPORTS int randomInt(int minVal, int maxVal);
|
||||
CV_EXPORTS double randomDouble(double minVal, double maxVal);
|
||||
CV_EXPORTS cv::Size randomSize(int minVal, int maxVal);
|
||||
CV_EXPORTS cv::Scalar randomScalar(double minVal, double maxVal);
|
||||
CV_EXPORTS cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GpuMat create
|
||||
|
||||
CV_EXPORTS cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi = false);
|
||||
CV_EXPORTS cv::gpu::GpuMat loadMat(const cv::Mat& m, bool useRoi = false);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Image load
|
||||
|
||||
//! read image from testdata folder
|
||||
CV_EXPORTS cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
|
||||
|
||||
//! read image from testdata folder and convert it to specified type
|
||||
CV_EXPORTS cv::Mat readImageType(const std::string& fname, int type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Gpu devices
|
||||
|
||||
//! return true if device supports specified feature and gpu module was built with support the feature.
|
||||
CV_EXPORTS bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature);
|
||||
|
||||
class CV_EXPORTS DeviceManager
|
||||
{
|
||||
public:
|
||||
static DeviceManager& instance();
|
||||
|
||||
void load(int i);
|
||||
void loadAll();
|
||||
|
||||
const std::vector<cv::gpu::DeviceInfo>& values() const { return devices_; }
|
||||
|
||||
private:
|
||||
std::vector<cv::gpu::DeviceInfo> devices_;
|
||||
};
|
||||
|
||||
#define ALL_DEVICES testing::ValuesIn(cvtest::DeviceManager::instance().values())
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Additional assertion
|
||||
|
||||
CV_EXPORTS void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat());
|
||||
|
||||
CV_EXPORTS cv::Mat getMat(cv::InputArray arr);
|
||||
|
||||
CV_EXPORTS testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps);
|
||||
|
||||
#define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(cvtest::assertMatNear, m1, m2, eps)
|
||||
#define ASSERT_MAT_NEAR(m1, m2, eps) ASSERT_PRED_FORMAT3(cvtest::assertMatNear, m1, m2, eps)
|
||||
|
||||
#define EXPECT_SCALAR_NEAR(s1, s2, eps) \
|
||||
{ \
|
||||
EXPECT_NEAR(s1[0], s2[0], eps); \
|
||||
EXPECT_NEAR(s1[1], s2[1], eps); \
|
||||
EXPECT_NEAR(s1[2], s2[2], eps); \
|
||||
EXPECT_NEAR(s1[3], s2[3], eps); \
|
||||
}
|
||||
#define ASSERT_SCALAR_NEAR(s1, s2, eps) \
|
||||
{ \
|
||||
ASSERT_NEAR(s1[0], s2[0], eps); \
|
||||
ASSERT_NEAR(s1[1], s2[1], eps); \
|
||||
ASSERT_NEAR(s1[2], s2[2], eps); \
|
||||
ASSERT_NEAR(s1[3], s2[3], eps); \
|
||||
}
|
||||
|
||||
#define EXPECT_POINT2_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
EXPECT_NEAR(p1.x, p2.x, eps); \
|
||||
EXPECT_NEAR(p1.y, p2.y, eps); \
|
||||
}
|
||||
#define ASSERT_POINT2_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
ASSERT_NEAR(p1.x, p2.x, eps); \
|
||||
ASSERT_NEAR(p1.y, p2.y, eps); \
|
||||
}
|
||||
|
||||
#define EXPECT_POINT3_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
EXPECT_NEAR(p1.x, p2.x, eps); \
|
||||
EXPECT_NEAR(p1.y, p2.y, eps); \
|
||||
EXPECT_NEAR(p1.z, p2.z, eps); \
|
||||
}
|
||||
#define ASSERT_POINT3_NEAR(p1, p2, eps) \
|
||||
{ \
|
||||
ASSERT_NEAR(p1.x, p2.x, eps); \
|
||||
ASSERT_NEAR(p1.y, p2.y, eps); \
|
||||
ASSERT_NEAR(p1.z, p2.z, eps); \
|
||||
}
|
||||
|
||||
CV_EXPORTS double checkSimilarity(cv::InputArray m1, cv::InputArray m2);
|
||||
|
||||
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkSimilarity(mat1, mat2), eps); \
|
||||
}
|
||||
#define ASSERT_MAT_SIMILAR(mat1, mat2, eps) \
|
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
ASSERT_LE(checkSimilarity(mat1, mat2), eps); \
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Helper structs for value-parameterized tests
|
||||
|
||||
#define GPU_TEST_P(test_case_name, test_name) \
|
||||
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
|
||||
: public test_case_name { \
|
||||
public: \
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \
|
||||
virtual void TestBody(); \
|
||||
private: \
|
||||
void UnsafeTestBody(); \
|
||||
static int AddToRegistry() { \
|
||||
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
|
||||
GetTestCasePatternHolder<test_case_name>(\
|
||||
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\
|
||||
#test_case_name, \
|
||||
#test_name, \
|
||||
new ::testing::internal::TestMetaFactory< \
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
|
||||
return 0; \
|
||||
} \
|
||||
static int gtest_registering_dummy_; \
|
||||
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
|
||||
}; \
|
||||
int GTEST_TEST_CLASS_NAME_(test_case_name, \
|
||||
test_name)::gtest_registering_dummy_ = \
|
||||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
|
||||
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
|
||||
{ \
|
||||
try \
|
||||
{ \
|
||||
UnsafeTestBody(); \
|
||||
} \
|
||||
catch (...) \
|
||||
{ \
|
||||
cv::gpu::resetDevice(); \
|
||||
throw; \
|
||||
} \
|
||||
} \
|
||||
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::UnsafeTestBody()
|
||||
|
||||
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
|
||||
|
||||
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113))
|
||||
|
||||
// Depth
|
||||
|
||||
using perf::MatDepth;
|
||||
|
||||
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
|
||||
|
||||
#define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_8U), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_16U)), \
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_16U), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_16S)), \
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_16S), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_32S), MatDepth(CV_32S)), \
|
||||
std::make_pair(MatDepth(CV_32S), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_32S), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_32F), MatDepth(CV_32F)), \
|
||||
std::make_pair(MatDepth(CV_32F), MatDepth(CV_64F)), \
|
||||
\
|
||||
std::make_pair(MatDepth(CV_64F), MatDepth(CV_64F)))
|
||||
|
||||
// Type
|
||||
|
||||
using perf::MatType;
|
||||
|
||||
//! return vector with types from specified range.
|
||||
CV_EXPORTS std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end);
|
||||
|
||||
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4).
|
||||
CV_EXPORTS const std::vector<MatType>& all_types();
|
||||
|
||||
#define ALL_TYPES testing::ValuesIn(all_types())
|
||||
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end))
|
||||
|
||||
// ROI
|
||||
|
||||
class UseRoi
|
||||
{
|
||||
public:
|
||||
inline UseRoi(bool val = false) : val_(val) {}
|
||||
|
||||
inline operator bool() const { return val_; }
|
||||
|
||||
private:
|
||||
bool val_;
|
||||
};
|
||||
|
||||
CV_EXPORTS void PrintTo(const UseRoi& useRoi, std::ostream* os);
|
||||
|
||||
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
|
||||
|
||||
// Direct/Inverse
|
||||
|
||||
class Inverse
|
||||
{
|
||||
public:
|
||||
inline Inverse(bool val = false) : val_(val) {}
|
||||
|
||||
inline operator bool() const { return val_; }
|
||||
|
||||
private:
|
||||
bool val_;
|
||||
};
|
||||
|
||||
CV_EXPORTS void PrintTo(const Inverse& useRoi, std::ostream* os);
|
||||
|
||||
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
|
||||
|
||||
// Param class
|
||||
|
||||
#define IMPLEMENT_PARAM_CLASS(name, type) \
|
||||
class name \
|
||||
{ \
|
||||
public: \
|
||||
name ( type arg = type ()) : val_(arg) {} \
|
||||
operator type () const {return val_;} \
|
||||
private: \
|
||||
type val_; \
|
||||
}; \
|
||||
inline void PrintTo( name param, std::ostream* os) \
|
||||
{ \
|
||||
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
|
||||
}
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(Channels, int)
|
||||
|
||||
#define ALL_CHANNELS testing::Values(Channels(1), Channels(2), Channels(3), Channels(4))
|
||||
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4))
|
||||
|
||||
// Flags and enums
|
||||
|
||||
CV_ENUM(NormCode, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_TYPE_MASK, cv::NORM_RELATIVE, cv::NORM_MINMAX)
|
||||
|
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
|
||||
|
||||
CV_ENUM(BorderType, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
|
||||
#define ALL_BORDER_TYPES testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP))
|
||||
|
||||
CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WARP_INVERSE_MAP)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Features2D
|
||||
|
||||
CV_EXPORTS testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual);
|
||||
|
||||
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual)
|
||||
|
||||
CV_EXPORTS int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual);
|
||||
CV_EXPORTS int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Other
|
||||
|
||||
CV_EXPORTS void dumpImage(const std::string& fileName, const cv::Mat& image);
|
||||
CV_EXPORTS void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
|
||||
|
||||
CV_EXPORTS void printCudaInfo();
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
CV_EXPORTS void PrintTo(const DeviceInfo& info, std::ostream* os);
|
||||
}}
|
||||
|
||||
#endif // __OPENCV_GPU_TEST_UTILITY_HPP__
|
313
modules/ts/src/gpu_perf.cpp
Normal file
313
modules/ts/src/gpu_perf.cpp
Normal file
@ -0,0 +1,313 @@
|
||||
#include "opencv2/ts/gpu_perf.hpp"
|
||||
#include "opencv2/core/gpumat.hpp"
|
||||
|
||||
#include "cvconfig.h"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
using namespace cv;
|
||||
|
||||
namespace perf
|
||||
{
|
||||
Mat readImage(const string& fileName, int flags)
|
||||
{
|
||||
return imread(perf::TestBase::getDataPath(fileName), flags);
|
||||
}
|
||||
|
||||
void PrintTo(const CvtColorInfo& info, std::ostream* os)
|
||||
{
|
||||
static const char* str[] =
|
||||
{
|
||||
"BGR2BGRA",
|
||||
"BGRA2BGR",
|
||||
"BGR2RGBA",
|
||||
"RGBA2BGR",
|
||||
"BGR2RGB",
|
||||
"BGRA2RGBA",
|
||||
|
||||
"BGR2GRAY",
|
||||
"RGB2GRAY",
|
||||
"GRAY2BGR",
|
||||
"GRAY2BGRA",
|
||||
"BGRA2GRAY",
|
||||
"RGBA2GRAY",
|
||||
|
||||
"BGR2BGR565",
|
||||
"RGB2BGR565",
|
||||
"BGR5652BGR",
|
||||
"BGR5652RGB",
|
||||
"BGRA2BGR565",
|
||||
"RGBA2BGR565",
|
||||
"BGR5652BGRA",
|
||||
"BGR5652RGBA",
|
||||
|
||||
"GRAY2BGR565",
|
||||
"BGR5652GRAY",
|
||||
|
||||
"BGR2BGR555",
|
||||
"RGB2BGR555",
|
||||
"BGR5552BGR",
|
||||
"BGR5552RGB",
|
||||
"BGRA2BGR555",
|
||||
"RGBA2BGR555",
|
||||
"BGR5552BGRA",
|
||||
"BGR5552RGBA",
|
||||
|
||||
"GRAY2BGR555",
|
||||
"BGR5552GRAY",
|
||||
|
||||
"BGR2XYZ",
|
||||
"RGB2XYZ",
|
||||
"XYZ2BGR",
|
||||
"XYZ2RGB",
|
||||
|
||||
"BGR2YCrCb",
|
||||
"RGB2YCrCb",
|
||||
"YCrCb2BGR",
|
||||
"YCrCb2RGB",
|
||||
|
||||
"BGR2HSV",
|
||||
"RGB2HSV",
|
||||
|
||||
"",
|
||||
"",
|
||||
|
||||
"BGR2Lab",
|
||||
"RGB2Lab",
|
||||
|
||||
"BayerBG2BGR",
|
||||
"BayerGB2BGR",
|
||||
"BayerRG2BGR",
|
||||
"BayerGR2BGR",
|
||||
|
||||
"BGR2Luv",
|
||||
"RGB2Luv",
|
||||
|
||||
"BGR2HLS",
|
||||
"RGB2HLS",
|
||||
|
||||
"HSV2BGR",
|
||||
"HSV2RGB",
|
||||
|
||||
"Lab2BGR",
|
||||
"Lab2RGB",
|
||||
"Luv2BGR",
|
||||
"Luv2RGB",
|
||||
|
||||
"HLS2BGR",
|
||||
"HLS2RGB",
|
||||
|
||||
"BayerBG2BGR_VNG",
|
||||
"BayerGB2BGR_VNG",
|
||||
"BayerRG2BGR_VNG",
|
||||
"BayerGR2BGR_VNG",
|
||||
|
||||
"BGR2HSV_FULL",
|
||||
"RGB2HSV_FULL",
|
||||
"BGR2HLS_FULL",
|
||||
"RGB2HLS_FULL",
|
||||
|
||||
"HSV2BGR_FULL",
|
||||
"HSV2RGB_FULL",
|
||||
"HLS2BGR_FULL",
|
||||
"HLS2RGB_FULL",
|
||||
|
||||
"LBGR2Lab",
|
||||
"LRGB2Lab",
|
||||
"LBGR2Luv",
|
||||
"LRGB2Luv",
|
||||
|
||||
"Lab2LBGR",
|
||||
"Lab2LRGB",
|
||||
"Luv2LBGR",
|
||||
"Luv2LRGB",
|
||||
|
||||
"BGR2YUV",
|
||||
"RGB2YUV",
|
||||
"YUV2BGR",
|
||||
"YUV2RGB",
|
||||
|
||||
"BayerBG2GRAY",
|
||||
"BayerGB2GRAY",
|
||||
"BayerRG2GRAY",
|
||||
"BayerGR2GRAY",
|
||||
|
||||
//YUV 4:2:0 formats family
|
||||
"YUV2RGB_NV12",
|
||||
"YUV2BGR_NV12",
|
||||
"YUV2RGB_NV21",
|
||||
"YUV2BGR_NV21",
|
||||
|
||||
"YUV2RGBA_NV12",
|
||||
"YUV2BGRA_NV12",
|
||||
"YUV2RGBA_NV21",
|
||||
"YUV2BGRA_NV21",
|
||||
|
||||
"YUV2RGB_YV12",
|
||||
"YUV2BGR_YV12",
|
||||
"YUV2RGB_IYUV",
|
||||
"YUV2BGR_IYUV",
|
||||
|
||||
"YUV2RGBA_YV12",
|
||||
"YUV2BGRA_YV12",
|
||||
"YUV2RGBA_IYUV",
|
||||
"YUV2BGRA_IYUV",
|
||||
|
||||
"YUV2GRAY_420",
|
||||
|
||||
//YUV 4:2:2 formats family
|
||||
"YUV2RGB_UYVY",
|
||||
"YUV2BGR_UYVY",
|
||||
"YUV2RGB_VYUY",
|
||||
"YUV2BGR_VYUY",
|
||||
|
||||
"YUV2RGBA_UYVY",
|
||||
"YUV2BGRA_UYVY",
|
||||
"YUV2RGBA_VYUY",
|
||||
"YUV2BGRA_VYUY",
|
||||
|
||||
"YUV2RGB_YUY2",
|
||||
"YUV2BGR_YUY2",
|
||||
"YUV2RGB_YVYU",
|
||||
"YUV2BGR_YVYU",
|
||||
|
||||
"YUV2RGBA_YUY2",
|
||||
"YUV2BGRA_YUY2",
|
||||
"YUV2RGBA_YVYU",
|
||||
"YUV2BGRA_YVYU",
|
||||
|
||||
"YUV2GRAY_UYVY",
|
||||
"YUV2GRAY_YUY2",
|
||||
|
||||
// alpha premultiplication
|
||||
"RGBA2mRGBA",
|
||||
"mRGBA2RGBA",
|
||||
|
||||
"COLORCVT_MAX"
|
||||
};
|
||||
|
||||
*os << str[info.code];
|
||||
}
|
||||
|
||||
static void printOsInfo()
|
||||
{
|
||||
#if defined _WIN32
|
||||
# if defined _WIN64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"), fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"), fflush(stdout);
|
||||
# endif
|
||||
#elif defined linux
|
||||
# if defined _LP64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"), fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"), fflush(stdout);
|
||||
# endif
|
||||
#elif defined __APPLE__
|
||||
# if defined _LP64
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"), fflush(stdout);
|
||||
# else
|
||||
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"), fflush(stdout);
|
||||
# endif
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void printCudaInfo()
|
||||
{
|
||||
printOsInfo();
|
||||
#ifndef HAVE_CUDA
|
||||
printf("[----------]\n[ GPU INFO ] \tOpenCV was built without CUDA support.\n[----------]\n"), fflush(stdout);
|
||||
#else
|
||||
int driver;
|
||||
cudaDriverGetVersion(&driver);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
printf("[ GPU INFO ] \tCUDA Driver version: %d.\n", driver), fflush(stdout);
|
||||
printf("[ GPU INFO ] \tCUDA Runtime version: %d.\n", CUDART_VERSION), fflush(stdout);
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
printf("[ GPU INFO ] \tGPU module was compiled for the following GPU archs.\n"), fflush(stdout);
|
||||
printf("[ BIN ] \t%s.\n", CUDA_ARCH_BIN), fflush(stdout);
|
||||
printf("[ PTX ] \t%s.\n", CUDA_ARCH_PTX), fflush(stdout);
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
int deviceCount = cv::gpu::getCudaEnabledDeviceCount();
|
||||
printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount), fflush(stdout);
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
cv::gpu::DeviceInfo info(i);
|
||||
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()), fflush(stdout);
|
||||
printf("[ ] \tCompute capability: %d.%d\n", (int)info.majorVersion(), (int)info.minorVersion()), fflush(stdout);
|
||||
printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()), fflush(stdout);
|
||||
printf("[ ] \tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)), fflush(stdout);
|
||||
printf("[ ] \tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)), fflush(stdout);
|
||||
if (!info.isCompatible())
|
||||
printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n");
|
||||
printf("[----------]\n"), fflush(stdout);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
struct KeypointIdxCompare
|
||||
{
|
||||
std::vector<cv::KeyPoint>* keypoints;
|
||||
|
||||
explicit KeypointIdxCompare(std::vector<cv::KeyPoint>* _keypoints) : keypoints(_keypoints) {}
|
||||
|
||||
bool operator ()(size_t i1, size_t i2) const
|
||||
{
|
||||
cv::KeyPoint kp1 = (*keypoints)[i1];
|
||||
cv::KeyPoint kp2 = (*keypoints)[i2];
|
||||
if (kp1.pt.x != kp2.pt.x)
|
||||
return kp1.pt.x < kp2.pt.x;
|
||||
if (kp1.pt.y != kp2.pt.y)
|
||||
return kp1.pt.y < kp2.pt.y;
|
||||
if (kp1.response != kp2.response)
|
||||
return kp1.response < kp2.response;
|
||||
return kp1.octave < kp2.octave;
|
||||
}
|
||||
};
|
||||
|
||||
void sortKeyPoints(std::vector<cv::KeyPoint>& keypoints, cv::InputOutputArray _descriptors)
|
||||
{
|
||||
std::vector<size_t> indexies(keypoints.size());
|
||||
for (size_t i = 0; i < indexies.size(); ++i)
|
||||
indexies[i] = i;
|
||||
|
||||
std::sort(indexies.begin(), indexies.end(), KeypointIdxCompare(&keypoints));
|
||||
|
||||
std::vector<cv::KeyPoint> new_keypoints;
|
||||
cv::Mat new_descriptors;
|
||||
|
||||
new_keypoints.resize(keypoints.size());
|
||||
|
||||
cv::Mat descriptors;
|
||||
if (_descriptors.needed())
|
||||
{
|
||||
descriptors = _descriptors.getMat();
|
||||
new_descriptors.create(descriptors.size(), descriptors.type());
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < indexies.size(); ++i)
|
||||
{
|
||||
size_t new_idx = indexies[i];
|
||||
new_keypoints[i] = keypoints[new_idx];
|
||||
if (!new_descriptors.empty())
|
||||
descriptors.row((int) new_idx).copyTo(new_descriptors.row((int) i));
|
||||
}
|
||||
|
||||
keypoints.swap(new_keypoints);
|
||||
if (_descriptors.needed())
|
||||
new_descriptors.copyTo(_descriptors);
|
||||
}
|
||||
}
|
479
modules/ts/src/gpu_test.cpp
Normal file
479
modules/ts/src/gpu_test.cpp
Normal file
@ -0,0 +1,479 @@
|
||||
#include "opencv2/ts/gpu_test.hpp"
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace testing::internal;
|
||||
|
||||
namespace perf
|
||||
{
|
||||
CV_EXPORTS void printCudaInfo();
|
||||
}
|
||||
|
||||
namespace cvtest
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// random generators
|
||||
|
||||
int randomInt(int minVal, int maxVal)
|
||||
{
|
||||
RNG& rng = TS::ptr()->get_rng();
|
||||
return rng.uniform(minVal, maxVal);
|
||||
}
|
||||
|
||||
double randomDouble(double minVal, double maxVal)
|
||||
{
|
||||
RNG& rng = TS::ptr()->get_rng();
|
||||
return rng.uniform(minVal, maxVal);
|
||||
}
|
||||
|
||||
Size randomSize(int minVal, int maxVal)
|
||||
{
|
||||
return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
|
||||
}
|
||||
|
||||
Scalar randomScalar(double minVal, double maxVal)
|
||||
{
|
||||
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
|
||||
}
|
||||
|
||||
Mat randomMat(Size size, int type, double minVal, double maxVal)
|
||||
{
|
||||
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GpuMat create
|
||||
|
||||
GpuMat createMat(Size size, int type, bool useRoi)
|
||||
{
|
||||
Size size0 = size;
|
||||
|
||||
if (useRoi)
|
||||
{
|
||||
size0.width += randomInt(5, 15);
|
||||
size0.height += randomInt(5, 15);
|
||||
}
|
||||
|
||||
GpuMat d_m(size0, type);
|
||||
|
||||
if (size0 != size)
|
||||
d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));
|
||||
|
||||
return d_m;
|
||||
}
|
||||
|
||||
GpuMat loadMat(const Mat& m, bool useRoi)
|
||||
{
|
||||
GpuMat d_m = createMat(m.size(), m.type(), useRoi);
|
||||
d_m.upload(m);
|
||||
return d_m;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Image load
|
||||
|
||||
Mat readImage(const std::string& fileName, int flags)
|
||||
{
|
||||
return imread(TS::ptr()->get_data_path() + fileName, flags);
|
||||
}
|
||||
|
||||
Mat readImageType(const std::string& fname, int type)
|
||||
{
|
||||
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
|
||||
if (CV_MAT_CN(type) == 4)
|
||||
{
|
||||
Mat temp;
|
||||
cvtColor(src, temp, COLOR_BGR2BGRA);
|
||||
swap(src, temp);
|
||||
}
|
||||
src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
|
||||
return src;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Gpu devices
|
||||
|
||||
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
|
||||
{
|
||||
return TargetArchs::builtWith(feature) && info.supports(feature);
|
||||
}
|
||||
|
||||
DeviceManager& DeviceManager::instance()
|
||||
{
|
||||
static DeviceManager obj;
|
||||
return obj;
|
||||
}
|
||||
|
||||
void DeviceManager::load(int i)
|
||||
{
|
||||
devices_.clear();
|
||||
devices_.reserve(1);
|
||||
|
||||
std::ostringstream msg;
|
||||
|
||||
if (i < 0 || i >= getCudaEnabledDeviceCount())
|
||||
{
|
||||
msg << "Incorrect device number - " << i;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
DeviceInfo info(i);
|
||||
|
||||
if (!info.isCompatible())
|
||||
{
|
||||
msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current GPU module build";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
devices_.push_back(info);
|
||||
}
|
||||
|
||||
void DeviceManager::loadAll()
|
||||
{
|
||||
int deviceCount = getCudaEnabledDeviceCount();
|
||||
|
||||
devices_.clear();
|
||||
devices_.reserve(deviceCount);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
DeviceInfo info(i);
|
||||
if (info.isCompatible())
|
||||
{
|
||||
devices_.push_back(info);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Additional assertion
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
|
||||
{
|
||||
const int cn = m.channels();
|
||||
|
||||
std::ostringstream ostr;
|
||||
ostr << "(";
|
||||
|
||||
p.x /= cn;
|
||||
|
||||
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
|
||||
for (int c = 1; c < m.channels(); ++c)
|
||||
{
|
||||
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
|
||||
}
|
||||
ostr << ")";
|
||||
|
||||
return ostr.str();
|
||||
}
|
||||
|
||||
std::string printMatVal(const Mat& m, Point p)
|
||||
{
|
||||
typedef std::string (*func_t)(const Mat& m, Point p);
|
||||
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
|
||||
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
|
||||
};
|
||||
|
||||
return funcs[m.depth()](m, p);
|
||||
}
|
||||
}
|
||||
|
||||
void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
|
||||
{
|
||||
if (src.depth() != CV_8S)
|
||||
{
|
||||
minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
|
||||
return;
|
||||
}
|
||||
|
||||
// OpenCV's minMaxLoc doesn't support CV_8S type
|
||||
double minVal = std::numeric_limits<double>::max();
|
||||
Point minLoc(-1, -1);
|
||||
|
||||
double maxVal = -std::numeric_limits<double>::max();
|
||||
Point maxLoc(-1, -1);
|
||||
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
const schar* src_row = src.ptr<schar>(y);
|
||||
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);
|
||||
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
{
|
||||
if (!mask_row || mask_row[x])
|
||||
{
|
||||
schar val = src_row[x];
|
||||
|
||||
if (val < minVal)
|
||||
{
|
||||
minVal = val;
|
||||
minLoc = cv::Point(x, y);
|
||||
}
|
||||
|
||||
if (val > maxVal)
|
||||
{
|
||||
maxVal = val;
|
||||
maxLoc = cv::Point(x, y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (minVal_) *minVal_ = minVal;
|
||||
if (maxVal_) *maxVal_ = maxVal;
|
||||
|
||||
if (minLoc_) *minLoc_ = minLoc;
|
||||
if (maxLoc_) *maxLoc_ = maxLoc;
|
||||
}
|
||||
|
||||
Mat getMat(InputArray arr)
|
||||
{
|
||||
if (arr.kind() == _InputArray::GPU_MAT)
|
||||
{
|
||||
Mat m;
|
||||
arr.getGpuMat().download(m);
|
||||
return m;
|
||||
}
|
||||
|
||||
return arr.getMat();
|
||||
}
|
||||
|
||||
AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
|
||||
{
|
||||
Mat m1 = getMat(m1_);
|
||||
Mat m2 = getMat(m2_);
|
||||
|
||||
if (m1.size() != m2.size())
|
||||
{
|
||||
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
|
||||
<< expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
|
||||
<< expr2 << "\" [" << PrintToString(m2.size()) << "]";
|
||||
}
|
||||
|
||||
if (m1.type() != m2.type())
|
||||
{
|
||||
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
|
||||
<< expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
|
||||
<< expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
|
||||
}
|
||||
|
||||
Mat diff;
|
||||
absdiff(m1.reshape(1), m2.reshape(1), diff);
|
||||
|
||||
double maxVal = 0.0;
|
||||
Point maxLoc;
|
||||
minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);
|
||||
|
||||
if (maxVal > eps)
|
||||
{
|
||||
return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
|
||||
<< "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
|
||||
<< ", which exceeds \"" << eps_expr << "\", where \""
|
||||
<< expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
|
||||
<< expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
|
||||
<< eps_expr << "\" evaluates to " << eps;
|
||||
}
|
||||
|
||||
return AssertionSuccess();
|
||||
}
|
||||
|
||||
double checkSimilarity(InputArray m1, InputArray m2)
|
||||
{
|
||||
Mat diff;
|
||||
matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED);
|
||||
return std::abs(diff.at<float>(0, 0) - 1.f);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Helper structs for value-parameterized tests
|
||||
|
||||
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
|
||||
{
|
||||
vector<MatType> v;
|
||||
|
||||
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
|
||||
|
||||
for (int depth = depth_start; depth <= depth_end; ++depth)
|
||||
{
|
||||
for (int cn = cn_start; cn <= cn_end; ++cn)
|
||||
{
|
||||
v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
|
||||
}
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
const vector<MatType>& all_types()
|
||||
{
|
||||
static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
void PrintTo(const UseRoi& useRoi, std::ostream* os)
|
||||
{
|
||||
if (useRoi)
|
||||
(*os) << "sub matrix";
|
||||
else
|
||||
(*os) << "whole matrix";
|
||||
}
|
||||
|
||||
void PrintTo(const Inverse& inverse, std::ostream* os)
|
||||
{
|
||||
if (inverse)
|
||||
(*os) << "inverse";
|
||||
else
|
||||
(*os) << "direct";
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Other
|
||||
|
||||
void dumpImage(const std::string& fileName, const Mat& image)
|
||||
{
|
||||
imwrite(TS::ptr()->get_data_path() + fileName, image);
|
||||
}
|
||||
|
||||
void showDiff(InputArray gold_, InputArray actual_, double eps)
|
||||
{
|
||||
Mat gold = getMat(gold_);
|
||||
Mat actual = getMat(actual_);
|
||||
|
||||
Mat diff;
|
||||
absdiff(gold, actual, diff);
|
||||
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
|
||||
|
||||
namedWindow("gold", WINDOW_NORMAL);
|
||||
namedWindow("actual", WINDOW_NORMAL);
|
||||
namedWindow("diff", WINDOW_NORMAL);
|
||||
|
||||
imshow("gold", gold);
|
||||
imshow("actual", actual);
|
||||
imshow("diff", diff);
|
||||
|
||||
waitKey();
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
||||
{
|
||||
const double maxPtDif = 1.0;
|
||||
const double maxSizeDif = 1.0;
|
||||
const double maxAngleDif = 2.0;
|
||||
const double maxResponseDif = 0.1;
|
||||
|
||||
double dist = cv::norm(p1.pt - p2.pt);
|
||||
|
||||
if (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
|
||||
{
|
||||
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
|
||||
{
|
||||
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
if (gold.size() != actual.size())
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
|
||||
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
|
||||
<< "\"" << actual_expr << "\" : " << actual.size();
|
||||
}
|
||||
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (!keyPointsEquals(p1, p2))
|
||||
{
|
||||
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
|
||||
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
|
||||
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
|
||||
<< "size : " << p1.size << " vs " << p2.size << "\n"
|
||||
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
|
||||
<< "response : " << p1.response << " vs " << p2.response << "\n"
|
||||
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
|
||||
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
|
||||
}
|
||||
}
|
||||
|
||||
return ::testing::AssertionSuccess();
|
||||
}
|
||||
|
||||
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||||
{
|
||||
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||||
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||||
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i)
|
||||
{
|
||||
const cv::KeyPoint& p1 = gold[i];
|
||||
const cv::KeyPoint& p2 = actual[i];
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
|
||||
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
||||
{
|
||||
int validCount = 0;
|
||||
|
||||
for (size_t i = 0; i < matches.size(); ++i)
|
||||
{
|
||||
const cv::DMatch& m = matches[i];
|
||||
|
||||
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
||||
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
||||
|
||||
if (keyPointsEquals(p1, p2))
|
||||
++validCount;
|
||||
}
|
||||
|
||||
return validCount;
|
||||
}
|
||||
|
||||
void printCudaInfo()
|
||||
{
|
||||
perf::printCudaInfo();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::PrintTo(const DeviceInfo& info, std::ostream* os)
|
||||
{
|
||||
(*os) << info.name();
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user