opencv/modules/gpubgsegm/test/test_bgsegm.cpp

406 lines
11 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
2013-04-17 15:24:53 +04:00
#include "opencv2/legacy.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(WIN32) /* assume that we have ffmpeg */
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1
#else
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0
#endif
//////////////////////////////////////////////////////
// FGDStatModel
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
namespace cv
{
template<> void Ptr<CvBGStatModel>::delete_obj()
{
cvReleaseBGStatModel(&obj);
}
}
PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
int out_cn;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
out_cn = GET_PARAM(2);
}
};
GPU_TEST_P(FGDStatModel, Update)
{
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
IplImage ipl_frame = frame;
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
cv::gpu::GpuMat d_frame(frame);
cv::gpu::FGDStatModel d_model(out_cn);
d_model.create(d_frame);
cv::Mat h_background;
cv::Mat h_foreground;
cv::Mat h_background3;
cv::Mat backgroundDiff;
cv::Mat foregroundDiff;
for (int i = 0; i < 5; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
ipl_frame = frame;
int gold_count = cvUpdateBGStatModel(&ipl_frame, model);
d_frame.upload(frame);
int count = d_model.update(d_frame);
ASSERT_EQ(gold_count, count);
2013-04-04 11:00:36 +04:00
cv::Mat gold_background = cv::cvarrToMat(model->background);
cv::Mat gold_foreground = cv::cvarrToMat(model->foreground);
if (out_cn == 3)
d_model.background.download(h_background3);
else
{
d_model.background.download(h_background);
cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR);
}
d_model.foreground.download(h_foreground);
ASSERT_MAT_NEAR(gold_background, h_background3, 1.0);
ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, FGDStatModel, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi")),
testing::Values(Channels(3), Channels(4))));
#endif
//////////////////////////////////////////////////////
// MOG
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
namespace
{
IMPLEMENT_PARAM_CLASS(UseGray, bool)
IMPLEMENT_PARAM_CLASS(LearningRate, double)
}
PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
bool useGray;
double learningRate;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
useGray = GET_PARAM(2);
learningRate = GET_PARAM(3);
useRoi = GET_PARAM(4);
}
};
GPU_TEST_P(MOG, Update)
{
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
cv::gpu::MOG_GPU mog;
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
cv::Ptr<cv::BackgroundSubtractorMOG> mog_gold = cv::createBackgroundSubtractorMOG();
cv::Mat foreground_gold;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (useGray)
{
cv::Mat temp;
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
cv::swap(temp, frame);
}
mog(loadMat(frame, useRoi), foreground, (float)learningRate);
mog_gold->apply(frame, foreground_gold, learningRate);
ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, MOG, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi")),
testing::Values(UseGray(true), UseGray(false)),
testing::Values(LearningRate(0.0), LearningRate(0.01)),
WHOLE_SUBMAT));
#endif
//////////////////////////////////////////////////////
// MOG2
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
2013-02-28 16:43:08 +04:00
namespace
{
IMPLEMENT_PARAM_CLASS(DetectShadow, bool)
}
PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, DetectShadow, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
bool useGray;
2013-02-28 16:43:08 +04:00
bool detectShadow;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
useGray = GET_PARAM(2);
2013-02-28 16:43:08 +04:00
detectShadow = GET_PARAM(3);
useRoi = GET_PARAM(4);
}
};
GPU_TEST_P(MOG2, Update)
{
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
cv::gpu::MOG2_GPU mog2;
2013-02-28 16:43:08 +04:00
mog2.bShadowDetection = detectShadow;
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = cv::createBackgroundSubtractorMOG2();
mog2_gold->setDetectShadows(detectShadow);
cv::Mat foreground_gold;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (useGray)
{
cv::Mat temp;
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
cv::swap(temp, frame);
}
mog2(loadMat(frame, useRoi), foreground);
mog2_gold->apply(frame, foreground_gold);
2013-02-28 16:43:08 +04:00
if (detectShadow)
{
ASSERT_MAT_SIMILAR(foreground_gold, foreground, 1e-2);
}
else
{
ASSERT_MAT_NEAR(foreground_gold, foreground, 0);
}
}
}
GPU_TEST_P(MOG2, getBackgroundImage)
{
if (useGray)
return;
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cv::gpu::MOG2_GPU mog2;
2013-02-28 16:43:08 +04:00
mog2.bShadowDetection = detectShadow;
cv::gpu::GpuMat foreground;
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = cv::createBackgroundSubtractorMOG2();
mog2_gold->setDetectShadows(detectShadow);
cv::Mat foreground_gold;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
mog2(loadMat(frame, useRoi), foreground);
mog2_gold->apply(frame, foreground_gold);
}
cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi);
mog2.getBackgroundImage(background);
cv::Mat background_gold;
mog2_gold->getBackgroundImage(background_gold);
ASSERT_MAT_NEAR(background_gold, background, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, MOG2, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi")),
testing::Values(UseGray(true), UseGray(false)),
2013-02-28 16:43:08 +04:00
testing::Values(DetectShadow(true), DetectShadow(false)),
WHOLE_SUBMAT));
#endif
//////////////////////////////////////////////////////
// GMG
PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
{
};
GPU_TEST_P(GMG, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const int depth = GET_PARAM(2);
const int channels = GET_PARAM(3);
const bool useRoi = GET_PARAM(4);
const int type = CV_MAKE_TYPE(depth, channels);
const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0));
const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
cv::Mat frame = randomMat(size, type, 0, 100);
cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
cv::gpu::GMG_GPU gmg;
gmg.numInitializationFrames = 5;
gmg.smoothingRadius = 0;
gmg.initialize(d_frame.size(), 0, 255);
cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
for (int i = 0; i < gmg.numInitializationFrames; ++i)
{
gmg(d_frame, d_fgmask);
// fgmask should be entirely background during training
ASSERT_MAT_NEAR(zeros, d_fgmask, 0);
}
frame = randomMat(size, type, 160, 255);
d_frame = loadMat(frame, useRoi);
gmg(d_frame, d_fgmask);
// now fgmask should be entirely foreground
ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, GMG, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)),
testing::Values(Channels(1), Channels(3), Channels(4)),
WHOLE_SUBMAT));
#endif // HAVE_CUDA