opencv/modules/objdetect/src/distancetransform.cpp

384 lines
11 KiB
C++
Raw Normal View History

#include "precomp.hpp"
#include "_lsvm_distancetransform.h"
/*
// Computation the point of intersection functions
// (parabolas on the variable y)
// a(y - q1) + b(q1 - y)(q1 - y) + f[q1]
// a(y - q2) + b(q2 - y)(q2 - y) + f[q2]
//
2010-10-21 20:30:57 +02:00
//
// API
// int GetPointOfIntersection(const float *f,
const float a, const float b,
int q1, int q2, float *point);
// INPUT
// f - function on the regular grid
// a - coefficient of the function
// b - coefficient of the function
// q1 - parameter of the function
// q2 - parameter of the function
// OUTPUT
// point - point of intersection
// RESULT
// Error status
*/
int GetPointOfIntersection(const float *f,
const float a, const float b,
int q1, int q2, float *point)
{
if (q1 == q2)
{
return DISTANCE_TRANSFORM_EQUAL_POINTS;
} /* if (q1 == q2) */
(*point) = ( (f[q2] - a * q2 + b *q2 * q2) -
(f[q1] - a * q1 + b * q1 * q1) ) / (2 * b * (q2 - q1));
return DISTANCE_TRANSFORM_OK;
}
/*
// Decision of one dimensional problem generalized distance transform
// on the regular grid at all points
// min (a(y' - y) + b(y' - y)(y' - y) + f(y')) (on y')
//
// API
// int DistanceTransformOneDimensionalProblem(const float *f, const int n,
const float a, const float b,
float *distanceTransform,
int *points);
// INPUT
// f - function on the regular grid
// n - grid dimension
// a - coefficient of optimizable function
// b - coefficient of optimizable function
// OUTPUT
// distanceTransform - values of generalized distance transform
// points - arguments that corresponds to the optimal value of function
// RESULT
// Error status
*/
int DistanceTransformOneDimensionalProblem(const float *f, const int n,
const float a, const float b,
float *distanceTransform,
int *points)
{
int i, k;
int tmp;
int diff;
float pointIntersection;
int *v;
float *z;
k = 0;
// Allocation memory (must be free in this function)
v = (int *)malloc (sizeof(int) * n);
z = (float *)malloc (sizeof(float) * (n + 1));
v[0] = 0;
z[0] = (float)F_MIN; // left border of envelope
z[1] = (float)F_MAX; // right border of envelope
for (i = 1; i < n; i++)
{
tmp = GetPointOfIntersection(f, a, b, v[k], i, &pointIntersection);
if (tmp != DISTANCE_TRANSFORM_OK)
{
free(v);
free(z);
return DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR;
} /* if (tmp != DISTANCE_TRANSFORM_OK) */
if (pointIntersection <= z[k])
{
// Envelope doesn't contain current parabola
do
{
k--;
tmp = GetPointOfIntersection(f, a, b, v[k], i, &pointIntersection);
if (tmp != DISTANCE_TRANSFORM_OK)
{
free(v);
free(z);
return DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR;
} /* if (tmp != DISTANCE_TRANSFORM_OK) */
}while (pointIntersection <= z[k]);
// Addition parabola to the envelope
k++;
v[k] = i;
z[k] = pointIntersection;
z[k + 1] = (float)F_MAX;
}
else
{
// Addition parabola to the envelope
k++;
v[k] = i;
z[k] = pointIntersection;
z[k + 1] = (float)F_MAX;
} /* if (pointIntersection <= z[k]) */
}
// Computation values of generalized distance transform at all grid points
k = 0;
for (i = 0; i < n; i++)
{
while (z[k + 1] < i)
{
k++;
}
points[i] = v[k];
diff = i - v[k];
distanceTransform[i] = a * diff + b * diff * diff + f[v[k]];
}
// Release allocated memory
free(v);
free(z);
return DISTANCE_TRANSFORM_OK;
}
/*
// Computation next cycle element
//
// API
// int GetNextCycleElement(int k, int n, int q);
// INPUT
// k - index of the previous cycle element
// n - number of matrix rows
// q - parameter that equal
(number_of_rows * number_of_columns - 1)
// OUTPUT
// None
// RESULT
// Next cycle element
*/
int GetNextCycleElement(int k, int n, int q)
{
return ((k * n) % q);
}
/*
// Transpose cycle elements
//
// API
// void TransposeCycleElements(float *a, int *cycle, int cycle_len)
// INPUT
// a - initial matrix
// cycle - indeces array of cycle
// cycle_len - number of elements in the cycle
// OUTPUT
// a - matrix with transposed elements
// RESULT
// Error status
*/
void TransposeCycleElements(float *a, int *cycle, int cycle_len)
{
int i;
float buf;
for (i = cycle_len - 1; i > 0 ; i--)
{
buf = a[ cycle[i] ];
a[ cycle[i] ] = a[ cycle[i - 1] ];
a[ cycle[i - 1] ] = buf;
}
}
/*
// Transpose cycle elements
//
// API
// void TransposeCycleElements(int *a, int *cycle, int cycle_len)
// INPUT
// a - initial matrix
// cycle - indeces array of cycle
// cycle_len - number of elements in the cycle
// OUTPUT
// a - matrix with transposed elements
// RESULT
// Error status
*/
void TransposeCycleElements_int(int *a, int *cycle, int cycle_len)
{
int i;
int buf;
for (i = cycle_len - 1; i > 0 ; i--)
{
buf = a[ cycle[i] ];
a[ cycle[i] ] = a[ cycle[i - 1] ];
a[ cycle[i - 1] ] = buf;
}
}
/*
// Getting transposed matrix
//
// API
// void Transpose(float *a, int n, int m);
// INPUT
// a - initial matrix
// n - number of rows
// m - number of columns
// OUTPUT
// a - transposed matrix
// RESULT
// None
*/
void Transpose(float *a, int n, int m)
{
int *cycle;
int i, k, q, cycle_len;
int max_cycle_len;
max_cycle_len = n * m;
// Allocation memory (must be free in this function)
cycle = (int *)malloc(sizeof(int) * max_cycle_len);
cycle_len = 0;
q = n * m - 1;
for (i = 1; i < q; i++)
{
k = GetNextCycleElement(i, n, q);
cycle[cycle_len] = i;
cycle_len++;
while (k > i)
{
cycle[cycle_len] = k;
cycle_len++;
k = GetNextCycleElement(k, n, q);
}
if (k == i)
{
TransposeCycleElements(a, cycle, cycle_len);
} /* if (k == i) */
cycle_len = 0;
}
// Release allocated memory
free(cycle);
}
/*
// Getting transposed matrix
//
// API
// void Transpose_int(int *a, int n, int m);
// INPUT
// a - initial matrix
// n - number of rows
// m - number of columns
// OUTPUT
// a - transposed matrix
// RESULT
// None
*/
void Transpose_int(int *a, int n, int m)
{
int *cycle;
int i, k, q, cycle_len;
int max_cycle_len;
max_cycle_len = n * m;
// Allocation memory (must be free in this function)
cycle = (int *)malloc(sizeof(int) * max_cycle_len);
cycle_len = 0;
q = n * m - 1;
for (i = 1; i < q; i++)
{
k = GetNextCycleElement(i, n, q);
cycle[cycle_len] = i;
cycle_len++;
while (k > i)
{
cycle[cycle_len] = k;
cycle_len++;
k = GetNextCycleElement(k, n, q);
}
if (k == i)
{
TransposeCycleElements_int(a, cycle, cycle_len);
} /* if (k == i) */
cycle_len = 0;
}
// Release allocated memory
free(cycle);
}
/*
// Decision of two dimensional problem generalized distance transform
// on the regular grid at all points
// min{d2(y' - y) + d4(y' - y)(y' - y) +
min(d1(x' - x) + d3(x' - x)(x' - x) + f(x',y'))} (on x', y')
//
// API
// int DistanceTransformTwoDimensionalProblem(const float *f,
const int n, const int m,
const float coeff[4],
float *distanceTransform,
int *pointsX, int *pointsY);
// INPUT
// f - function on the regular grid
// n - number of rows
// m - number of columns
// coeff - coefficients of optimizable function
coeff[0] = d1, coeff[1] = d2,
coeff[2] = d3, coeff[3] = d4
// OUTPUT
// distanceTransform - values of generalized distance transform
// pointsX - arguments x' that correspond to the optimal value
// pointsY - arguments y' that correspond to the optimal value
// RESULT
// Error status
*/
int DistanceTransformTwoDimensionalProblem(const float *f,
const int n, const int m,
const float coeff[4],
float *distanceTransform,
int *pointsX, int *pointsY)
{
int i, j, tmp;
int resOneDimProblem;
int size = n * m;
2011-09-27 17:50:17 +02:00
std::vector<float> internalDistTrans(size);
std::vector<int> internalPointsX(size);
for (i = 0; i < n; i++)
{
resOneDimProblem = DistanceTransformOneDimensionalProblem(
f + i * m, m,
coeff[0], coeff[2],
2011-09-27 17:50:17 +02:00
&internalDistTrans[i * m],
&internalPointsX[i * m]);
if (resOneDimProblem != DISTANCE_TRANSFORM_OK)
return DISTANCE_TRANSFORM_ERROR;
}
2011-09-27 17:50:17 +02:00
Transpose(&internalDistTrans[0], n, m);
for (j = 0; j < m; j++)
{
resOneDimProblem = DistanceTransformOneDimensionalProblem(
2011-09-27 17:50:17 +02:00
&internalDistTrans[j * n], n,
coeff[1], coeff[3],
distanceTransform + j * n,
pointsY + j * n);
if (resOneDimProblem != DISTANCE_TRANSFORM_OK)
return DISTANCE_TRANSFORM_ERROR;
}
Transpose(distanceTransform, m, n);
Transpose_int(pointsY, m, n);
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
{
tmp = pointsY[i * m + j];
pointsX[i * m + j] = internalPointsX[tmp * m + j];
}
}
return DISTANCE_TRANSFORM_OK;
2010-10-21 20:30:57 +02:00
}