#include "precomp.hpp" #include "_lsvm_distancetransform.h" /* // Computation the point of intersection functions // (parabolas on the variable y) // a(y - q1) + b(q1 - y)(q1 - y) + f[q1] // a(y - q2) + b(q2 - y)(q2 - y) + f[q2] // // // API // int GetPointOfIntersection(const float *f, const float a, const float b, int q1, int q2, float *point); // INPUT // f - function on the regular grid // a - coefficient of the function // b - coefficient of the function // q1 - parameter of the function // q2 - parameter of the function // OUTPUT // point - point of intersection // RESULT // Error status */ int GetPointOfIntersection(const float *f, const float a, const float b, int q1, int q2, float *point) { if (q1 == q2) { return DISTANCE_TRANSFORM_EQUAL_POINTS; } /* if (q1 == q2) */ (*point) = ( (f[q2] - a * q2 + b *q2 * q2) - (f[q1] - a * q1 + b * q1 * q1) ) / (2 * b * (q2 - q1)); return DISTANCE_TRANSFORM_OK; } /* // Decision of one dimensional problem generalized distance transform // on the regular grid at all points // min (a(y' - y) + b(y' - y)(y' - y) + f(y')) (on y') // // API // int DistanceTransformOneDimensionalProblem(const float *f, const int n, const float a, const float b, float *distanceTransform, int *points); // INPUT // f - function on the regular grid // n - grid dimension // a - coefficient of optimizable function // b - coefficient of optimizable function // OUTPUT // distanceTransform - values of generalized distance transform // points - arguments that corresponds to the optimal value of function // RESULT // Error status */ int DistanceTransformOneDimensionalProblem(const float *f, const int n, const float a, const float b, float *distanceTransform, int *points) { int i, k; int tmp; int diff; float pointIntersection; int *v; float *z; k = 0; // Allocation memory (must be free in this function) v = (int *)malloc (sizeof(int) * n); z = (float *)malloc (sizeof(float) * (n + 1)); v[0] = 0; z[0] = (float)F_MIN; // left border of envelope z[1] = (float)F_MAX; // right border of envelope for (i = 1; i < n; i++) { tmp = GetPointOfIntersection(f, a, b, v[k], i, &pointIntersection); if (tmp != DISTANCE_TRANSFORM_OK) { free(v); free(z); return DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR; } /* if (tmp != DISTANCE_TRANSFORM_OK) */ if (pointIntersection <= z[k]) { // Envelope doesn't contain current parabola do { k--; tmp = GetPointOfIntersection(f, a, b, v[k], i, &pointIntersection); if (tmp != DISTANCE_TRANSFORM_OK) { free(v); free(z); return DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR; } /* if (tmp != DISTANCE_TRANSFORM_OK) */ }while (pointIntersection <= z[k]); // Addition parabola to the envelope k++; v[k] = i; z[k] = pointIntersection; z[k + 1] = (float)F_MAX; } else { // Addition parabola to the envelope k++; v[k] = i; z[k] = pointIntersection; z[k + 1] = (float)F_MAX; } /* if (pointIntersection <= z[k]) */ } // Computation values of generalized distance transform at all grid points k = 0; for (i = 0; i < n; i++) { while (z[k + 1] < i) { k++; } points[i] = v[k]; diff = i - v[k]; distanceTransform[i] = a * diff + b * diff * diff + f[v[k]]; } // Release allocated memory free(v); free(z); return DISTANCE_TRANSFORM_OK; } /* // Computation next cycle element // // API // int GetNextCycleElement(int k, int n, int q); // INPUT // k - index of the previous cycle element // n - number of matrix rows // q - parameter that equal (number_of_rows * number_of_columns - 1) // OUTPUT // None // RESULT // Next cycle element */ int GetNextCycleElement(int k, int n, int q) { return ((k * n) % q); } /* // Transpose cycle elements // // API // void TransposeCycleElements(float *a, int *cycle, int cycle_len) // INPUT // a - initial matrix // cycle - indeces array of cycle // cycle_len - number of elements in the cycle // OUTPUT // a - matrix with transposed elements // RESULT // Error status */ void TransposeCycleElements(float *a, int *cycle, int cycle_len) { int i; float buf; for (i = cycle_len - 1; i > 0 ; i--) { buf = a[ cycle[i] ]; a[ cycle[i] ] = a[ cycle[i - 1] ]; a[ cycle[i - 1] ] = buf; } } /* // Transpose cycle elements // // API // void TransposeCycleElements(int *a, int *cycle, int cycle_len) // INPUT // a - initial matrix // cycle - indeces array of cycle // cycle_len - number of elements in the cycle // OUTPUT // a - matrix with transposed elements // RESULT // Error status */ void TransposeCycleElements_int(int *a, int *cycle, int cycle_len) { int i; int buf; for (i = cycle_len - 1; i > 0 ; i--) { buf = a[ cycle[i] ]; a[ cycle[i] ] = a[ cycle[i - 1] ]; a[ cycle[i - 1] ] = buf; } } /* // Getting transposed matrix // // API // void Transpose(float *a, int n, int m); // INPUT // a - initial matrix // n - number of rows // m - number of columns // OUTPUT // a - transposed matrix // RESULT // None */ void Transpose(float *a, int n, int m) { int *cycle; int i, k, q, cycle_len; int max_cycle_len; max_cycle_len = n * m; // Allocation memory (must be free in this function) cycle = (int *)malloc(sizeof(int) * max_cycle_len); cycle_len = 0; q = n * m - 1; for (i = 1; i < q; i++) { k = GetNextCycleElement(i, n, q); cycle[cycle_len] = i; cycle_len++; while (k > i) { cycle[cycle_len] = k; cycle_len++; k = GetNextCycleElement(k, n, q); } if (k == i) { TransposeCycleElements(a, cycle, cycle_len); } /* if (k == i) */ cycle_len = 0; } // Release allocated memory free(cycle); } /* // Getting transposed matrix // // API // void Transpose_int(int *a, int n, int m); // INPUT // a - initial matrix // n - number of rows // m - number of columns // OUTPUT // a - transposed matrix // RESULT // None */ void Transpose_int(int *a, int n, int m) { int *cycle; int i, k, q, cycle_len; int max_cycle_len; max_cycle_len = n * m; // Allocation memory (must be free in this function) cycle = (int *)malloc(sizeof(int) * max_cycle_len); cycle_len = 0; q = n * m - 1; for (i = 1; i < q; i++) { k = GetNextCycleElement(i, n, q); cycle[cycle_len] = i; cycle_len++; while (k > i) { cycle[cycle_len] = k; cycle_len++; k = GetNextCycleElement(k, n, q); } if (k == i) { TransposeCycleElements_int(a, cycle, cycle_len); } /* if (k == i) */ cycle_len = 0; } // Release allocated memory free(cycle); } /* // Decision of two dimensional problem generalized distance transform // on the regular grid at all points // min{d2(y' - y) + d4(y' - y)(y' - y) + min(d1(x' - x) + d3(x' - x)(x' - x) + f(x',y'))} (on x', y') // // API // int DistanceTransformTwoDimensionalProblem(const float *f, const int n, const int m, const float coeff[4], float *distanceTransform, int *pointsX, int *pointsY); // INPUT // f - function on the regular grid // n - number of rows // m - number of columns // coeff - coefficients of optimizable function coeff[0] = d1, coeff[1] = d2, coeff[2] = d3, coeff[3] = d4 // OUTPUT // distanceTransform - values of generalized distance transform // pointsX - arguments x' that correspond to the optimal value // pointsY - arguments y' that correspond to the optimal value // RESULT // Error status */ int DistanceTransformTwoDimensionalProblem(const float *f, const int n, const int m, const float coeff[4], float *distanceTransform, int *pointsX, int *pointsY) { int i, j, tmp; int resOneDimProblem; int size = n * m; std::vector internalDistTrans(size); std::vector internalPointsX(size); for (i = 0; i < n; i++) { resOneDimProblem = DistanceTransformOneDimensionalProblem( f + i * m, m, coeff[0], coeff[2], &internalDistTrans[i * m], &internalPointsX[i * m]); if (resOneDimProblem != DISTANCE_TRANSFORM_OK) return DISTANCE_TRANSFORM_ERROR; } Transpose(&internalDistTrans[0], n, m); for (j = 0; j < m; j++) { resOneDimProblem = DistanceTransformOneDimensionalProblem( &internalDistTrans[j * n], n, coeff[1], coeff[3], distanceTransform + j * n, pointsY + j * n); if (resOneDimProblem != DISTANCE_TRANSFORM_OK) return DISTANCE_TRANSFORM_ERROR; } Transpose(distanceTransform, m, n); Transpose_int(pointsY, m, n); for (i = 0; i < n; i++) { for (j = 0; j < m; j++) { tmp = pointsY[i * m + j]; pointsX[i * m + j] = internalPointsX[tmp * m + j]; } } return DISTANCE_TRANSFORM_OK; }