renamed internal headers to avoid conflicts with system header files

This commit is contained in:
Vadim Pisarevsky 2010-10-12 12:35:04 +00:00
parent 87f6e500e1
commit 191f25ae7c
18 changed files with 782 additions and 847 deletions

View File

@ -6,10 +6,9 @@
#define SVM_LATENTSVM
#include <stdio.h>
#include "precomp.hpp"
#include "_types.h"
#include "_error.h"
#include "_routine.h"
#include "_lsvm_types.h"
#include "_lsvm_error.h"
#include "_lsvm_routine.h"
//////////////////////////////////////////////////////////////
// Building feature pyramid

View File

@ -1,140 +1,138 @@
#ifndef DIST_TRANSFORM
#define DIST_TRANSFORM
#include "precomp.hpp"
#include "_types.h"
#include "_error.h"
/*
// Computation the point of intersection functions
// (parabolas on the variable y)
// a(y - q1) + b(q1 - y)(q1 - y) + f[q1]
// a(y - q2) + b(q2 - y)(q2 - y) + f[q2]
//
// API
// int GetPointOfIntersection(const F_type *f,
const F_type a, const F_type b,
int q1, int q2, F_type *point);
// INPUT
// f - function on the regular grid
// a - coefficient of the function
// b - coefficient of the function
// q1 - parameter of the function
// q2 - parameter of the function
// OUTPUT
// point - point of intersection
// RESULT
// Error status
*/
int GetPointOfIntersection(const float *f,
const float a, const float b,
int q1, int q2, float *point);
/*
// Decision of one dimensional problem generalized distance transform
// on the regular grid at all points
// min (a(y' - y) + b(y' - y)(y' - y) + f(y')) (on y')
//
// API
// int DistanceTransformOneDimensionalProblem(const F_type *f, const int n,
const F_type a, const F_type b,
F_type *distanceTransform,
int *points);
// INPUT
// f - function on the regular grid
// n - grid dimension
// a - coefficient of optimizable function
// b - coefficient of optimizable function
// OUTPUT
// distanceTransform - values of generalized distance transform
// points - arguments that corresponds to the optimal value of function
// RESULT
// Error status
*/
int DistanceTransformOneDimensionalProblem(const float *f, const int n,
const float a, const float b,
float *distanceTransform,
int *points);
/*
// Computation next cycle element
//
// API
// int GetNextCycleElement(int k, int n, int q);
// INPUT
// k - index of the previous cycle element
// n - number of matrix rows
// q - parameter that equal (number_of_rows * number_of_columns - 1)
// OUTPUT
// None
// RESULT
// Next cycle element
*/
int GetNextCycleElement(int k, int n, int q);
/*
// Transposition of cycle elements
//
// API
// void TransposeCycleElements(F_type *a, int *cycle, int cycle_len);
// INPUT
// a - initial matrix
// cycle - cycle
// cycle_len - cycle length
// OUTPUT
// a - matrix with transposed elements
// RESULT
// None
*/
void TransposeCycleElements(float *a, int *cycle, int cycle_len);
/*
// Getting transposed matrix
//
// API
// void Transpose(F_type *a, int n, int m);
// INPUT
// a - initial matrix
// n - number of rows
// m - number of columns
// OUTPUT
// a - transposed matrix
// RESULT
// Error status
*/
void Transpose(float *a, int n, int m);
/*
// Decision of two dimensional problem generalized distance transform
// on the regular grid at all points
// min{d2(y' - y) + d4(y' - y)(y' - y) +
min(d1(x' - x) + d3(x' - x)(x' - x) + f(x',y'))} (on x', y')
//
// API
// int DistanceTransformTwoDimensionalProblem(const F_type *f,
const int n, const int m,
const F_type coeff[4],
F_type *distanceTransform,
int *pointsX, int *pointsY);
// INPUT
// f - function on the regular grid
// n - number of rows
// m - number of columns
// coeff - coefficients of optimizable function
coeff[0] = d1, coeff[1] = d2,
coeff[2] = d3, coeff[3] = d4
// OUTPUT
// distanceTransform - values of generalized distance transform
// pointsX - arguments x' that correspond to the optimal value
// pointsY - arguments y' that correspond to the optimal value
// RESULT
// Error status
*/
int DistanceTransformTwoDimensionalProblem(const float *f,
const int n, const int m,
const float coeff[4],
float *distanceTransform,
int *pointsX, int *pointsY);
#ifndef LSVM_DIST_TRANSFORM
#define LSVM_DIST_TRANSFORM
#include "_lsvm_types.h"
#include "_lsvm_error.h"
/*
// Computation the point of intersection functions
// (parabolas on the variable y)
// a(y - q1) + b(q1 - y)(q1 - y) + f[q1]
// a(y - q2) + b(q2 - y)(q2 - y) + f[q2]
//
// API
// int GetPointOfIntersection(const F_type *f,
const F_type a, const F_type b,
int q1, int q2, F_type *point);
// INPUT
// f - function on the regular grid
// a - coefficient of the function
// b - coefficient of the function
// q1 - parameter of the function
// q2 - parameter of the function
// OUTPUT
// point - point of intersection
// RESULT
// Error status
*/
int GetPointOfIntersection(const float *f,
const float a, const float b,
int q1, int q2, float *point);
/*
// Decision of one dimensional problem generalized distance transform
// on the regular grid at all points
// min (a(y' - y) + b(y' - y)(y' - y) + f(y')) (on y')
//
// API
// int DistanceTransformOneDimensionalProblem(const F_type *f, const int n,
const F_type a, const F_type b,
F_type *distanceTransform,
int *points);
// INPUT
// f - function on the regular grid
// n - grid dimension
// a - coefficient of optimizable function
// b - coefficient of optimizable function
// OUTPUT
// distanceTransform - values of generalized distance transform
// points - arguments that corresponds to the optimal value of function
// RESULT
// Error status
*/
int DistanceTransformOneDimensionalProblem(const float *f, const int n,
const float a, const float b,
float *distanceTransform,
int *points);
/*
// Computation next cycle element
//
// API
// int GetNextCycleElement(int k, int n, int q);
// INPUT
// k - index of the previous cycle element
// n - number of matrix rows
// q - parameter that equal (number_of_rows * number_of_columns - 1)
// OUTPUT
// None
// RESULT
// Next cycle element
*/
int GetNextCycleElement(int k, int n, int q);
/*
// Transposition of cycle elements
//
// API
// void TransposeCycleElements(F_type *a, int *cycle, int cycle_len);
// INPUT
// a - initial matrix
// cycle - cycle
// cycle_len - cycle length
// OUTPUT
// a - matrix with transposed elements
// RESULT
// None
*/
void TransposeCycleElements(float *a, int *cycle, int cycle_len);
/*
// Getting transposed matrix
//
// API
// void Transpose(F_type *a, int n, int m);
// INPUT
// a - initial matrix
// n - number of rows
// m - number of columns
// OUTPUT
// a - transposed matrix
// RESULT
// Error status
*/
void Transpose(float *a, int n, int m);
/*
// Decision of two dimensional problem generalized distance transform
// on the regular grid at all points
// min{d2(y' - y) + d4(y' - y)(y' - y) +
min(d1(x' - x) + d3(x' - x)(x' - x) + f(x',y'))} (on x', y')
//
// API
// int DistanceTransformTwoDimensionalProblem(const F_type *f,
const int n, const int m,
const F_type coeff[4],
F_type *distanceTransform,
int *pointsX, int *pointsY);
// INPUT
// f - function on the regular grid
// n - number of rows
// m - number of columns
// coeff - coefficients of optimizable function
coeff[0] = d1, coeff[1] = d2,
coeff[2] = d3, coeff[3] = d4
// OUTPUT
// distanceTransform - values of generalized distance transform
// pointsX - arguments x' that correspond to the optimal value
// pointsY - arguments y' that correspond to the optimal value
// RESULT
// Error status
*/
int DistanceTransformTwoDimensionalProblem(const float *f,
const int n, const int m,
const float coeff[4],
float *distanceTransform,
int *pointsX, int *pointsY);
#endif

View File

@ -1,16 +1,16 @@
#ifndef SVM_ERROR
#define SVM_ERROR
#define LATENT_SVM_OK 0
#define DISTANCE_TRANSFORM_OK 1
#define DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR -1
#define DISTANCE_TRANSFORM_ERROR -2
#define DISTANCE_TRANSFORM_EQUAL_POINTS -3
#define LATENT_SVM_GET_FEATURE_PYRAMID_FAILED -4
#define LATENT_SVM_SEARCH_OBJECT_FAILED -5
#define LATENT_SVM_FAILED_SUPERPOSITION -6
#define FILTER_OUT_OF_BOUNDARIES -7
#define FFT_OK 2
#define FFT_ERROR -8
#ifndef SVM_ERROR
#define SVM_ERROR
#define LATENT_SVM_OK 0
#define DISTANCE_TRANSFORM_OK 1
#define DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR -1
#define DISTANCE_TRANSFORM_ERROR -2
#define DISTANCE_TRANSFORM_EQUAL_POINTS -3
#define LATENT_SVM_GET_FEATURE_PYRAMID_FAILED -4
#define LATENT_SVM_SEARCH_OBJECT_FAILED -5
#define LATENT_SVM_FAILED_SUPERPOSITION -6
#define FILTER_OUT_OF_BOUNDARIES -7
#define FFT_OK 2
#define FFT_ERROR -8
#endif

View File

@ -1,81 +1,79 @@
#ifndef _FFT_H
#define _FFT_H
#include "precomp.hpp"
#include "_types.h"
#include "_error.h"
#include <math.h>
/*
// 1-dimensional FFT
//
// API
// int fft(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in - input signal
// n - number of elements for searching Fourier image
// shift - shift between input elements
// OUTPUT
// x_out - output signal (contains 2n elements in order
Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.)
// RESULT
// Error status
*/
int fft(float *x_in, float *x_out, int n, int shift);
/*
// Inverse 1-dimensional FFT
//
// API
// int fftInverse(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in - Fourier image of 1d input signal(contains 2n elements
in order Re(x_in[0]), Im(x_in[0]),
Re(x_in[1]), Im(x_in[1]) and etc.)
// n - number of elements for searching counter FFT image
// shift - shift between input elements
// OUTPUT
// x_in - input signal (contains n elements)
// RESULT
// Error status
*/
int fftInverse(float *x_in, float *x_out, int n, int shift);
/*
// 2-dimensional FFT
//
// API
// int fft2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in - input signal (matrix, launched by rows)
// numRows - number of rows
// numColls - number of collumns
// OUTPUT
// x_out - output signal (contains (2 * numRows * numColls) elements
in order Re(x_in[0][0]), Im(x_in[0][0]),
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// RESULT
// Error status
*/
int fft2d(float *x_in, float *x_out, int numRows, int numColls);
/*
// Inverse 2-dimensional FFT
//
// API
// int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in - Fourier image of matrix (contains (2 * numRows * numColls)
elements in order Re(x_in[0][0]), Im(x_in[0][0]),
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// numRows - number of rows
// numColls - number of collumns
// OUTPUT
// x_out - initial signal (matrix, launched by rows)
// RESULT
// Error status
*/
int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
#ifndef _LSVM_FFT_H
#define _LSVM_FFT_H
#include "_lsvm_types.h"
#include "_lsvm_error.h"
#include <math.h>
/*
// 1-dimensional FFT
//
// API
// int fft(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in - input signal
// n - number of elements for searching Fourier image
// shift - shift between input elements
// OUTPUT
// x_out - output signal (contains 2n elements in order
Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.)
// RESULT
// Error status
*/
int fft(float *x_in, float *x_out, int n, int shift);
/*
// Inverse 1-dimensional FFT
//
// API
// int fftInverse(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in - Fourier image of 1d input signal(contains 2n elements
in order Re(x_in[0]), Im(x_in[0]),
Re(x_in[1]), Im(x_in[1]) and etc.)
// n - number of elements for searching counter FFT image
// shift - shift between input elements
// OUTPUT
// x_in - input signal (contains n elements)
// RESULT
// Error status
*/
int fftInverse(float *x_in, float *x_out, int n, int shift);
/*
// 2-dimensional FFT
//
// API
// int fft2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in - input signal (matrix, launched by rows)
// numRows - number of rows
// numColls - number of collumns
// OUTPUT
// x_out - output signal (contains (2 * numRows * numColls) elements
in order Re(x_in[0][0]), Im(x_in[0][0]),
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// RESULT
// Error status
*/
int fft2d(float *x_in, float *x_out, int numRows, int numColls);
/*
// Inverse 2-dimensional FFT
//
// API
// int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in - Fourier image of matrix (contains (2 * numRows * numColls)
elements in order Re(x_in[0][0]), Im(x_in[0][0]),
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// numRows - number of rows
// numColls - number of collumns
// OUTPUT
// x_out - initial signal (matrix, launched by rows)
// RESULT
// Error status
*/
int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
#endif

View File

@ -1,396 +1,396 @@
/*****************************************************************************/
/* Matching procedure API */
/*****************************************************************************/
//
#ifndef SVM_MATCHING
#define SVM_MATCHING
#include "_latentsvm.h"
#include "_error.h"
#include "_distancetransform.h"
#include "_fft.h"
#include "_routine.h"
//extern "C" {
/*
// Function for convolution computation
//
// API
// int convolution(const filterObject *Fi, const featureMap *map, float *f);
// INPUT
// Fi - filter object
// map - feature map
// OUTPUT
// f - the convolution
// RESULT
// Error status
*/
int convolution(const filterObject *Fi, const featureMap *map, float *f);
/*
// Computation multiplication of FFT images
//
// API
// int fftImagesMulti(float *fftImage1, float *fftImage2, int numRows, int numColls,
float *multi);
// INPUT
// fftImage1 - first fft image
// fftImage2 - second fft image
// (numRows, numColls) - image dimesions
// OUTPUT
// multi - multiplication
// RESULT
// Error status
*/
int fftImagesMulti(float *fftImage1, float *fftImage2, int numRows, int numColls,
float *multi);
/*
// Turnover filter matrix for the single feature
//
// API
// int rot2PI(float *filter, int dimX, int dimY, float *rot2PIFilter,
int p, int shift);
// INPUT
// filter - filter weight matrix
// (dimX, dimY) - dimension of filter matrix
// p - number of features
// shift - number of feature (or channel)
// OUTPUT
// rot2PIFilter - rotated matrix
// RESULT
// Error status
*/
int rot2PI(float *filter, int dimX, int dimY, float *rot2PIFilter,
int p, int shift);
/*
// Addition nullable bars to the dimension of feature map (single feature)
//
// API
// int addNullableBars(float *rot2PIFilter, int dimX, int dimY,
float *newFilter, int newDimX, int newDimY);
// INPUT
// rot2PIFilter - filter matrix for the single feature that was rotated
// (dimX, dimY) - dimension rot2PIFilter
// (newDimX, newDimY)- dimension of feature map for the single feature
// OUTPUT
// newFilter - filter matrix with nullable bars
// RESULT
// Error status
*/
int addNullableBars(float *rot2PIFilter, int dimX, int dimY,
float *newFilter, int newDimX, int newDimY);
/*
// Computation FFT image for filter object
//
// API
// int getFFTImageFilterObject(const filterObject *filter,
int mapDimX, int mapDimY,
fftImage **image);
// INPUT
// filter - filter object
// (mapDimX, mapDimY)- dimension of feature map
// OUTPUT
// image - fft image
// RESULT
// Error status
*/
int getFFTImageFilterObject(const filterObject *filter,
int mapDimX, int mapDimY,
fftImage **image);
/*
// Computation FFT image for feature map
//
// API
// int getFFTImageFeatureMap(const featureMap *map, fftImage **image);
// INPUT
// OUTPUT
// RESULT
// Error status
*/
int getFFTImageFeatureMap(const featureMap *map, fftImage **image);
/*
// Function for convolution computation using FFT
//
// API
// int convFFTConv2d(const fftImage *featMapImage, const fftImage *filterImage,
int filterDimX, int filterDimY, float **conv);
// INPUT
// featMapImage - feature map image
// filterImage - filter image
// (filterDimX,filterDimY) - filter dimension
// OUTPUT
// conv - the convolution
// RESULT
// Error status
*/
int convFFTConv2d(const fftImage *featMapImage, const fftImage *filterImage,
int filterDimX, int filterDimY, float **conv);
/*
// Computation objective function D according the original paper
//
// API
// int filterDispositionLevel(const filterObject *Fi, const featureMap *pyramid,
float **scoreFi,
int **pointsX, int **pointsY);
// INPUT
// Fi - filter object (weights and coefficients of penalty
function that are used in this routine)
// pyramid - feature map
// OUTPUT
// scoreFi - values of distance transform on the level at all positions
// (pointsX, pointsY)- positions that correspond to the maximum value
of distance transform at all grid nodes
// RESULT
// Error status
*/
int filterDispositionLevel(const filterObject *Fi, const featureMap *pyramid,
float **scoreFi,
int **pointsX, int **pointsY);
/*
// Computation objective function D according the original paper using FFT
//
// API
// int filterDispositionLevelFFT(const filterObject *Fi, const fftImage *featMapImage,
float **scoreFi,
int **pointsX, int **pointsY);
// INPUT
// Fi - filter object (weights and coefficients of penalty
function that are used in this routine)
// featMapImage - FFT image of feature map
// OUTPUT
// scoreFi - values of distance transform on the level at all positions
// (pointsX, pointsY)- positions that correspond to the maximum value
of distance transform at all grid nodes
// RESULT
// Error status
*/
int filterDispositionLevelFFT(const filterObject *Fi, const fftImage *featMapImage,
float **scoreFi,
int **pointsX, int **pointsY);
/*
// Computation border size for feature map
//
// API
// int computeBorderSize(int maxXBorder, int maxYBorder, int *bx, int *by);
// INPUT
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// bx - border size (X-direction)
// by - border size (Y-direction)
// RESULT
// Error status
*/
int computeBorderSize(int maxXBorder, int maxYBorder, int *bx, int *by);
/*
// Addition nullable border to the feature map
//
// API
// int addNullableBorder(featureMap *map, int bx, int by);
// INPUT
// map - feature map
// bx - border size (X-direction)
// by - border size (Y-direction)
// OUTPUT
// RESULT
// Error status
*/
int addNullableBorder(featureMap *map, int bx, int by);
/*
// Computation the maximum of the score function at the level
//
// API
// int maxFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float *score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// level - feature pyramid level for computation maximum score
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// score - the maximum of the score function at the level
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int maxFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float *score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Computation score function at the level that exceed threshold
//
// API
// int thresholdFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// level - feature pyramid level for computation maximum score
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// OUTPUT
// score - score function at the level that exceed threshold
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int thresholdFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Computation the maximum of the score function
//
// API
// int maxFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H, float b,
int maxXBorder, int maxYBorder,
float *score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// score - the maximum of the score function
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int maxFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H, float b,
int maxXBorder, int maxYBorder,
float *score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Computation score function that exceed threshold
//
// API
// int thresholdFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// OUTPUT
// score - score function values that exceed threshold
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int thresholdFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Perform non-maximum suppression algorithm (described in original paper)
// to remove "similar" bounding boxes
//
// API
// int nonMaximumSuppression(int numBoxes, const CvPoint *points,
const CvPoint *oppositePoints, const float *score,
float overlapThreshold,
int *numBoxesout, CvPoint **pointsOut,
CvPoint **oppositePointsOut, float **scoreOut);
// INPUT
// numBoxes - number of bounding boxes
// points - array of left top corner coordinates
// oppositePoints - array of right bottom corner coordinates
// score - array of detection scores
// overlapThreshold - threshold: bounding box is removed if overlap part
is greater than passed value
// OUTPUT
// numBoxesOut - the number of bounding boxes algorithm returns
// pointsOut - array of left top corner coordinates
// oppositePointsOut - array of right bottom corner coordinates
// scoreOut - array of detection scores
// RESULT
// Error status
*/
#ifdef __cplusplus
extern "C"
#endif
int nonMaximumSuppression(int numBoxes, const CvPoint *points,
const CvPoint *oppositePoints, const float *score,
float overlapThreshold,
int *numBoxesOut, CvPoint **pointsOut,
CvPoint **oppositePointsOut, float **scoreOut);
#ifdef __cplusplus
extern "C"
#endif
int getMaxFilterDims(const filterObject **filters, int kComponents,
const int *kPartFilters,
unsigned int *maxXBorder, unsigned int *maxYBorder);
//}
#endif
/*****************************************************************************/
/* Matching procedure API */
/*****************************************************************************/
//
#ifndef SVM_MATCHING
#define SVM_MATCHING
#include "_latentsvm.h"
#include "_lsvm_error.h"
#include "_lsvm_distancetransform.h"
#include "_lsvm_fft.h"
#include "_lsvm_routine.h"
//extern "C" {
/*
// Function for convolution computation
//
// API
// int convolution(const filterObject *Fi, const featureMap *map, float *f);
// INPUT
// Fi - filter object
// map - feature map
// OUTPUT
// f - the convolution
// RESULT
// Error status
*/
int convolution(const filterObject *Fi, const featureMap *map, float *f);
/*
// Computation multiplication of FFT images
//
// API
// int fftImagesMulti(float *fftImage1, float *fftImage2, int numRows, int numColls,
float *multi);
// INPUT
// fftImage1 - first fft image
// fftImage2 - second fft image
// (numRows, numColls) - image dimesions
// OUTPUT
// multi - multiplication
// RESULT
// Error status
*/
int fftImagesMulti(float *fftImage1, float *fftImage2, int numRows, int numColls,
float *multi);
/*
// Turnover filter matrix for the single feature
//
// API
// int rot2PI(float *filter, int dimX, int dimY, float *rot2PIFilter,
int p, int shift);
// INPUT
// filter - filter weight matrix
// (dimX, dimY) - dimension of filter matrix
// p - number of features
// shift - number of feature (or channel)
// OUTPUT
// rot2PIFilter - rotated matrix
// RESULT
// Error status
*/
int rot2PI(float *filter, int dimX, int dimY, float *rot2PIFilter,
int p, int shift);
/*
// Addition nullable bars to the dimension of feature map (single feature)
//
// API
// int addNullableBars(float *rot2PIFilter, int dimX, int dimY,
float *newFilter, int newDimX, int newDimY);
// INPUT
// rot2PIFilter - filter matrix for the single feature that was rotated
// (dimX, dimY) - dimension rot2PIFilter
// (newDimX, newDimY)- dimension of feature map for the single feature
// OUTPUT
// newFilter - filter matrix with nullable bars
// RESULT
// Error status
*/
int addNullableBars(float *rot2PIFilter, int dimX, int dimY,
float *newFilter, int newDimX, int newDimY);
/*
// Computation FFT image for filter object
//
// API
// int getFFTImageFilterObject(const filterObject *filter,
int mapDimX, int mapDimY,
fftImage **image);
// INPUT
// filter - filter object
// (mapDimX, mapDimY)- dimension of feature map
// OUTPUT
// image - fft image
// RESULT
// Error status
*/
int getFFTImageFilterObject(const filterObject *filter,
int mapDimX, int mapDimY,
fftImage **image);
/*
// Computation FFT image for feature map
//
// API
// int getFFTImageFeatureMap(const featureMap *map, fftImage **image);
// INPUT
// OUTPUT
// RESULT
// Error status
*/
int getFFTImageFeatureMap(const featureMap *map, fftImage **image);
/*
// Function for convolution computation using FFT
//
// API
// int convFFTConv2d(const fftImage *featMapImage, const fftImage *filterImage,
int filterDimX, int filterDimY, float **conv);
// INPUT
// featMapImage - feature map image
// filterImage - filter image
// (filterDimX,filterDimY) - filter dimension
// OUTPUT
// conv - the convolution
// RESULT
// Error status
*/
int convFFTConv2d(const fftImage *featMapImage, const fftImage *filterImage,
int filterDimX, int filterDimY, float **conv);
/*
// Computation objective function D according the original paper
//
// API
// int filterDispositionLevel(const filterObject *Fi, const featureMap *pyramid,
float **scoreFi,
int **pointsX, int **pointsY);
// INPUT
// Fi - filter object (weights and coefficients of penalty
function that are used in this routine)
// pyramid - feature map
// OUTPUT
// scoreFi - values of distance transform on the level at all positions
// (pointsX, pointsY)- positions that correspond to the maximum value
of distance transform at all grid nodes
// RESULT
// Error status
*/
int filterDispositionLevel(const filterObject *Fi, const featureMap *pyramid,
float **scoreFi,
int **pointsX, int **pointsY);
/*
// Computation objective function D according the original paper using FFT
//
// API
// int filterDispositionLevelFFT(const filterObject *Fi, const fftImage *featMapImage,
float **scoreFi,
int **pointsX, int **pointsY);
// INPUT
// Fi - filter object (weights and coefficients of penalty
function that are used in this routine)
// featMapImage - FFT image of feature map
// OUTPUT
// scoreFi - values of distance transform on the level at all positions
// (pointsX, pointsY)- positions that correspond to the maximum value
of distance transform at all grid nodes
// RESULT
// Error status
*/
int filterDispositionLevelFFT(const filterObject *Fi, const fftImage *featMapImage,
float **scoreFi,
int **pointsX, int **pointsY);
/*
// Computation border size for feature map
//
// API
// int computeBorderSize(int maxXBorder, int maxYBorder, int *bx, int *by);
// INPUT
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// bx - border size (X-direction)
// by - border size (Y-direction)
// RESULT
// Error status
*/
int computeBorderSize(int maxXBorder, int maxYBorder, int *bx, int *by);
/*
// Addition nullable border to the feature map
//
// API
// int addNullableBorder(featureMap *map, int bx, int by);
// INPUT
// map - feature map
// bx - border size (X-direction)
// by - border size (Y-direction)
// OUTPUT
// RESULT
// Error status
*/
int addNullableBorder(featureMap *map, int bx, int by);
/*
// Computation the maximum of the score function at the level
//
// API
// int maxFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float *score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// level - feature pyramid level for computation maximum score
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// score - the maximum of the score function at the level
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int maxFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float *score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Computation score function at the level that exceed threshold
//
// API
// int thresholdFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// level - feature pyramid level for computation maximum score
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// OUTPUT
// score - score function at the level that exceed threshold
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int thresholdFunctionalScoreFixedLevel(const filterObject **all_F, int n,
const featurePyramid *H,
int level, float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score, CvPoint **points, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Computation the maximum of the score function
//
// API
// int maxFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H, float b,
int maxXBorder, int maxYBorder,
float *score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// score - the maximum of the score function
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int maxFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H, float b,
int maxXBorder, int maxYBorder,
float *score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Computation score function that exceed threshold
//
// API
// int thresholdFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
// INPUT
// all_F - the set of filters (the first element is root filter,
the other - part filters)
// n - the number of part filters
// H - feature pyramid
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// OUTPUT
// score - score function values that exceed threshold
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// kPoints - number of root filter positions
// partsDisplacement - displacement of part filters (in the block space)
// RESULT
// Error status
*/
int thresholdFunctionalScore(const filterObject **all_F, int n,
const featurePyramid *H,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
float **score,
CvPoint **points, int **levels, int *kPoints,
CvPoint ***partsDisplacement);
/*
// Perform non-maximum suppression algorithm (described in original paper)
// to remove "similar" bounding boxes
//
// API
// int nonMaximumSuppression(int numBoxes, const CvPoint *points,
const CvPoint *oppositePoints, const float *score,
float overlapThreshold,
int *numBoxesout, CvPoint **pointsOut,
CvPoint **oppositePointsOut, float **scoreOut);
// INPUT
// numBoxes - number of bounding boxes
// points - array of left top corner coordinates
// oppositePoints - array of right bottom corner coordinates
// score - array of detection scores
// overlapThreshold - threshold: bounding box is removed if overlap part
is greater than passed value
// OUTPUT
// numBoxesOut - the number of bounding boxes algorithm returns
// pointsOut - array of left top corner coordinates
// oppositePointsOut - array of right bottom corner coordinates
// scoreOut - array of detection scores
// RESULT
// Error status
*/
#ifdef __cplusplus
extern "C"
#endif
int nonMaximumSuppression(int numBoxes, const CvPoint *points,
const CvPoint *oppositePoints, const float *score,
float overlapThreshold,
int *numBoxesOut, CvPoint **pointsOut,
CvPoint **oppositePointsOut, float **scoreOut);
#ifdef __cplusplus
extern "C"
#endif
int getMaxFilterDims(const filterObject **filters, int kComponents,
const int *kPartFilters,
unsigned int *maxXBorder, unsigned int *maxYBorder);
//}
#endif

View File

@ -1,11 +1,11 @@
#ifndef RESIZEIMG
#define RESIZEIMG
#include "precomp.hpp"
#include "_types.h"
IplImage * resize_opencv (IplImage * img, float scale);
IplImage * resize_article_dp1(IplImage * img, float scale, const int k);
IplImage * resize_article_dp(IplImage * img, float scale, const int k);
#ifndef RESIZEIMG
#define RESIZEIMG
#include "precomp.hpp"
#include "_types.h"
IplImage * resize_opencv (IplImage * img, float scale);
IplImage * resize_article_dp1(IplImage * img, float scale, const int k);
IplImage * resize_article_dp(IplImage * img, float scale, const int k);
#endif

View File

@ -1,36 +1,35 @@
#ifndef _ROUTINE_H
#define _ROUTINE_H
#include "precomp.hpp"
#include "_types.h"
#include "_error.h"
//////////////////////////////////////////////////////////////
// Memory management routines
// All paramaters names correspond to previous data structures description
// All "alloc" functions return allocated memory for 1 object
// with all fields including arrays
// Error status is return value
//////////////////////////////////////////////////////////////
int allocFilterObject(filterObject **obj, const int sizeX, const int sizeY,
const int p, const int xp);
int freeFilterObject (filterObject **obj);
int allocFeatureMapObject(featureMap **obj, const int sizeX, const int sizeY,
const int p, const int xp);
int freeFeatureMapObject (featureMap **obj);
#ifdef __cplusplus
extern "C"
#endif
int allocFeaturePyramidObject(featurePyramid **obj,
const int lambda, const int countLevel);
#ifdef __cplusplus
extern "C"
#endif
int freeFeaturePyramidObject (featurePyramid **obj);
int allocFFTImage(fftImage **image, int p, int dimX, int dimY);
int freeFFTImage(fftImage **image);
#ifndef _LSVM_ROUTINE_H
#define _LSVM_ROUTINE_H
#include "_lsvm_types.h"
#include "_lsvm_error.h"
//////////////////////////////////////////////////////////////
// Memory management routines
// All paramaters names correspond to previous data structures description
// All "alloc" functions return allocated memory for 1 object
// with all fields including arrays
// Error status is return value
//////////////////////////////////////////////////////////////
int allocFilterObject(filterObject **obj, const int sizeX, const int sizeY,
const int p, const int xp);
int freeFilterObject (filterObject **obj);
int allocFeatureMapObject(featureMap **obj, const int sizeX, const int sizeY,
const int p, const int xp);
int freeFeatureMapObject (featureMap **obj);
#ifdef __cplusplus
extern "C"
#endif
int allocFeaturePyramidObject(featurePyramid **obj,
const int lambda, const int countLevel);
#ifdef __cplusplus
extern "C"
#endif
int freeFeaturePyramidObject (featurePyramid **obj);
int allocFFTImage(fftImage **image, int p, int dimX, int dimY);
int freeFFTImage(fftImage **image);
#endif

View File

@ -1,93 +1,93 @@
#ifndef SVM_TYPE
#define SVM_TYPE
//#include "opencv2/core/core.hpp"
//#include "opencv2/highgui/highgui.hpp"
#include "precomp.hpp"
//#define FFT_CONV
// Çíà÷åíèå ÷èñëà PI
#define PI 3.1415926535897932384626433832795
// Òî÷íîñòü ñðàâíåíèÿ ïàðû âåùåñòâåííûõ ÷èñåë
#define EPS 0.000001
// Ìèíèìàëüíîå è ìàêñèìàëüíîå çíà÷åíèå äëÿ âåùåñòâåííîãî òèïà äàííûõ
#define F_MAX 3.402823466e+38
#define F_MIN -3.402823465e+38
// The number of elements in bin
// The number of sectors in gradient histogram building
#define CNTPARTION 9
// The number of levels in image resize procedure
// We need Lambda levels to resize image twice
#define LAMBDA 10
// Block size. Used in feature pyramid building procedure
#define SIDE_LENGTH 8
//////////////////////////////////////////////////////////////
// main data structures //
//////////////////////////////////////////////////////////////
// DataType: STRUCT featureMap
// FEATURE MAP DESCRIPTION
// Rectangular map (sizeX x sizeY),
// every cell stores feature vector (dimension = p)
// H - matrix of feature vectors
// to set and get feature vectors (i,j)
// used formula Map[(j * sizeX + i) * p + k], where
// k - component of feature vector in cell (i, j)
// END OF FEATURE MAP DESCRIPTION
// xp - auxillary parameter for internal use
// size of row in feature vectors
// (yp = (int) (p / xp); p = xp * yp)
typedef struct{
int sizeX;
int sizeY;
int p;
int xp;
float *Map;
} featureMap;
// DataType: STRUCT featurePyramid
//
// countLevel - number of levels in the feature pyramid
// lambda - resize scale coefficient
// pyramid - array of pointers to feature map at different levels
typedef struct{
int countLevel;
int lambda;
featureMap **pyramid;
} featurePyramid;
// DataType: STRUCT filterDisposition
// The structure stores preliminary results in optimization process
// with objective function D
//
// x - array with X coordinates of optimization problems solutions
// y - array with Y coordinates of optimization problems solutions
// score - array with optimal objective values
typedef struct{
float *score;
int *x;
int *y;
} filterDisposition;
// DataType: STRUCT fftImage
// The structure stores FFT image
//
// p - number of channels
// x - array of FFT images for 2d signals
// n - number of rows
// m - number of collums
typedef struct{
unsigned int p;
unsigned int dimX;
unsigned int dimY;
float **channels;
} fftImage;
#endif
#ifndef SVM_TYPE
#define SVM_TYPE
//#include "opencv2/core/core.hpp"
//#include "opencv2/highgui/highgui.hpp"
#include "precomp.hpp"
//#define FFT_CONV
// Çíà÷åíèå ÷èñëà PI
#define PI 3.1415926535897932384626433832795
// Òî÷íîñòü ñðàâíåíèÿ ïàðû âåùåñòâåííûõ ÷èñåë
#define EPS 0.000001
// Ìèíèìàëüíîå è ìàêñèìàëüíîå çíà÷åíèå äëÿ âåùåñòâåííîãî òèïà äàííûõ
#define F_MAX 3.402823466e+38
#define F_MIN -3.402823465e+38
// The number of elements in bin
// The number of sectors in gradient histogram building
#define CNTPARTION 9
// The number of levels in image resize procedure
// We need Lambda levels to resize image twice
#define LAMBDA 10
// Block size. Used in feature pyramid building procedure
#define SIDE_LENGTH 8
//////////////////////////////////////////////////////////////
// main data structures //
//////////////////////////////////////////////////////////////
// DataType: STRUCT featureMap
// FEATURE MAP DESCRIPTION
// Rectangular map (sizeX x sizeY),
// every cell stores feature vector (dimension = p)
// H - matrix of feature vectors
// to set and get feature vectors (i,j)
// used formula Map[(j * sizeX + i) * p + k], where
// k - component of feature vector in cell (i, j)
// END OF FEATURE MAP DESCRIPTION
// xp - auxillary parameter for internal use
// size of row in feature vectors
// (yp = (int) (p / xp); p = xp * yp)
typedef struct{
int sizeX;
int sizeY;
int p;
int xp;
float *Map;
} featureMap;
// DataType: STRUCT featurePyramid
//
// countLevel - number of levels in the feature pyramid
// lambda - resize scale coefficient
// pyramid - array of pointers to feature map at different levels
typedef struct{
int countLevel;
int lambda;
featureMap **pyramid;
} featurePyramid;
// DataType: STRUCT filterDisposition
// The structure stores preliminary results in optimization process
// with objective function D
//
// x - array with X coordinates of optimization problems solutions
// y - array with Y coordinates of optimization problems solutions
// score - array with optimal objective values
typedef struct{
float *score;
int *x;
int *y;
} filterDisposition;
// DataType: STRUCT fftImage
// The structure stores FFT image
//
// p - number of channels
// x - array of FFT images for 2d signals
// n - number of rows
// m - number of collums
typedef struct{
unsigned int p;
unsigned int dimX;
unsigned int dimY;
float **channels;
} fftImage;
#endif

View File

@ -1,65 +0,0 @@
#ifndef LSVM_PARSER
#define LSVM_PARSER
#include "precomp.hpp"
#include "_types.h"
#define MODEL 1
#define P 2
#define COMP 3
#define SCORE 4
#define RFILTER 100
#define PFILTERs 101
#define PFILTER 200
#define SIZEX 150
#define SIZEY 151
#define WEIGHTS 152
#define TAGV 300
#define Vx 350
#define Vy 351
#define TAGD 400
#define Dx 451
#define Dy 452
#define Dxx 453
#define Dyy 454
#define BTAG 500
#define STEP_END 1000
#define EMODEL (STEP_END + MODEL)
#define EP (STEP_END + P)
#define ECOMP (STEP_END + COMP)
#define ESCORE (STEP_END + SCORE)
#define ERFILTER (STEP_END + RFILTER)
#define EPFILTERs (STEP_END + PFILTERs)
#define EPFILTER (STEP_END + PFILTER)
#define ESIZEX (STEP_END + SIZEX)
#define ESIZEY (STEP_END + SIZEY)
#define EWEIGHTS (STEP_END + WEIGHTS)
#define ETAGV (STEP_END + TAGV)
#define EVx (STEP_END + Vx)
#define EVy (STEP_END + Vy)
#define ETAGD (STEP_END + TAGD)
#define EDx (STEP_END + Dx)
#define EDy (STEP_END + Dy)
#define EDxx (STEP_END + Dxx)
#define EDyy (STEP_END + Dyy)
#define EBTAG (STEP_END + BTAG)
//extern "C" {
int LSVMparser(const char * filename, filterObject *** model, int *last, int *max, int **comp, float **b, int *count, float * score);
#ifdef __cplusplus
extern "C"
#endif
int loadModel(
const char *modelPath,
filterObject ***filters,
int *kFilters,
int *kComponents,
int **kPartFilters,
float **b,
float *scoreThreshold);
//};
#endif

View File

@ -1,4 +1,5 @@
#include "_distancetransform.h"
#include "precomp.hpp"
#include "_lsvm_distancetransform.h"
/*
// Computation the point of intersection functions

View File

@ -1,5 +1,6 @@
#include "precomp.hpp"
#include "_latentsvm.h"
#include "_resizeimg.h"
#include "_lsvm_resizeimg.h"
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))

View File

@ -1,4 +1,5 @@
#include "_fft.h"
#include "precomp.hpp"
#include "_lsvm_fft.h"
int getEntireRes(int number, int divisor, int *entire, int *res)
{

View File

@ -1,5 +1,6 @@
#include "precomp.hpp"
#include "_latentsvm.h"
#include "_matching.h"
#include "_lsvm_matching.h"
/*
// Transformation filter displacement from the block space

View File

@ -1,6 +1,6 @@
#include "precomp.hpp"
#include "_lsvmparser.h"
#include "_matching.h"
#include "_lsvm_matching.h"
/*
// load trained detector from a file

View File

@ -1,4 +1,5 @@
#include "_matching.h"
#include "precomp.hpp"
#include "_lsvm_matching.h"
#include <stdio.h>
#ifndef max

View File

@ -55,7 +55,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/core_c.h"
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/internal.hpp"
#endif

View File

@ -1,10 +1,10 @@
#include "_resizeimg.h"
#include "precomp.hpp"
#include "_lsvm_resizeimg.h"
#include <stdio.h>
#include <assert.h>
#include <math.h>
IplImage * resize_opencv (IplImage * img, float scale){
IplImage * imgTmp;

View File

@ -1,4 +1,5 @@
#include "_routine.h"
#include "precomp.hpp"
#include "_lsvm_routine.h"
int allocFilterObject(filterObject **obj, const int sizeX, const int sizeY, const int p, const int xp){
int i;