[libcxx] Add Atomic test helper and fix TSAN failures.

Summary:
This patch attempts to fix the last 3 TSAN failures on the libc++ bot (http://lab.llvm.org:8011/builders/libcxx-libcxxabi-x86_64-linux-ubuntu-tsan/builds/143). This patch also adds a `Atomic` test type that can be used where `<atomic>` cannot.

`wait.exception.pass.cpp` and `wait_for.exception.pass.cpp` were failing because the test replaced `std::terminate` with `std::exit`. `std::exit` would asynchronously run the TLS and static destructors and this would cause a race condition. See PR22606 and D8802 for more details. 

This is fixed by using `_Exit` to prevent cleanup.

`notify_all_at_thread_exit.pass.cpp` exercises the same race condition but for different reasons. I fixed this test by manually joining the thread before beginning program termination.

Reviewers: EricWF, mclow.lists

Subscribers: cfe-commits

Differential Revision: http://reviews.llvm.org/D11046

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@245389 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Fiselier 2015-08-18 23:29:59 +00:00
parent 3b1fb53a65
commit 286e0a491b
8 changed files with 257 additions and 136 deletions

View File

@ -36,9 +36,10 @@ void func()
int main()
{
std::unique_lock<std::mutex> lk(mut);
std::thread(func).detach();
std::thread t(func);
Clock::time_point t0 = Clock::now();
cv.wait(lk);
Clock::time_point t1 = Clock::now();
assert(t1-t0 > ms(250));
t.join();
}

View File

@ -20,12 +20,13 @@
#include <thread>
#include <cassert>
#include "test_atomic.h"
std::condition_variable cv;
std::mutex mut;
int test0 = 0;
int test1 = 0;
int test2 = 0;
AtomicInt test1(0);
AtomicInt test2(0);
void f1()
{
@ -64,11 +65,13 @@ int main()
}
if (test1 == 2)
{
assert(test2 == 1);
t1.join();
test1 = 0;
}
else if (test2 == 2)
{
assert(test1 == 1);
t2.join();
test2 = 0;
}
@ -81,11 +84,13 @@ int main()
}
if (test1 == 2)
{
assert(test2 == 0);
t1.join();
test1 = 0;
}
else if (test2 == 2)
{
assert(test1 == 0);
t2.join();
test2 = 0;
}

View File

@ -1,63 +0,0 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// UNSUPPORTED: libcpp-has-no-threads
#include <thread>
#include <condition_variable>
#include <mutex>
#include <chrono>
#include <iostream>
#include <cassert>
void f1()
{
std::exit(0);
}
struct Mutex
{
unsigned state = 0;
Mutex() = default;
~Mutex() = default;
Mutex(const Mutex&) = delete;
Mutex& operator=(const Mutex&) = delete;
void lock()
{
if (++state == 2)
throw 1; // this throw should end up calling terminate()
}
void unlock() {}
};
Mutex mut;
std::condition_variable_any cv;
void
signal_me()
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
cv.notify_one();
}
int
main()
{
std::set_terminate(f1);
try
{
std::thread(signal_me).detach();
mut.lock();
cv.wait(mut);
}
catch (...) {}
assert(false);
}

View File

@ -1,63 +0,0 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// UNSUPPORTED: libcpp-has-no-threads
#include <thread>
#include <condition_variable>
#include <mutex>
#include <chrono>
#include <iostream>
#include <cassert>
void f1()
{
std::exit(0);
}
struct Mutex
{
unsigned state = 0;
Mutex() = default;
~Mutex() = default;
Mutex(const Mutex&) = delete;
Mutex& operator=(const Mutex&) = delete;
void lock()
{
if (++state == 2)
throw 1; // this throw should end up calling terminate()
}
void unlock() {}
};
Mutex mut;
std::condition_variable_any cv;
void
signal_me()
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
cv.notify_one();
}
int
main()
{
std::set_terminate(f1);
try
{
std::thread(signal_me).detach();
mut.lock();
cv.wait_for(mut, std::chrono::milliseconds(250));
}
catch (...) {}
assert(false);
}

View File

@ -0,0 +1,132 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: libcpp-has-no-threads
// <condition_variable>
// class condition_variable_any;
// RUN: %build
// RUN: %run 1
// RUN: %run 2
// RUN: %run 3
// RUN: %run 4
// RUN: %run 5
// RUN: %run 6
// -----------------------------------------------------------------------------
// Overview
// Check that std::terminate is called if wait(...) fails to meet it's post
// conditions. This can happens when reacquiring the mutex throws
// an exception.
//
// The following methods are tested within this file
// 1. void wait(Lock& lock);
// 2. void wait(Lock& lock, Pred);
// 3. void wait_for(Lock& lock, Duration);
// 4. void wait_for(Lock& lock, Duration, Pred);
// 5. void wait_until(Lock& lock, TimePoint);
// 6. void wait_until(Lock& lock, TimePoint, Pred);
//
// Plan
// 1 Create a mutex type, 'ThrowingMutex', that throws when the lock is aquired
// for the *second* time.
//
// 2 Replace the terminate handler with one that exits with a '0' exit code.
//
// 3 Create a 'condition_variable_any' object 'cv' and a 'ThrowingMutex'
// object 'm' and lock 'm'.
//
// 4 Start a thread 'T2' that will notify 'cv' once 'm' has been unlocked.
//
// 5 From the main thread call the specified wait method on 'cv' with 'm'.
// When 'T2' notifies 'cv' and the wait method attempts to re-lock
// 'm' an exception will be thrown from 'm.lock()'.
//
// 6 Check that control flow does not return from the wait method and that
// terminate is called (If the program exits with a 0 exit code we know
// that terminate has been called)
#include <condition_variable>
#include <thread>
#include <chrono>
#include <string>
#include <cstdlib>
#include <cassert>
#include "test_atomic.h"
void my_terminate() {
std::_Exit(0); // Use _Exit to prevent cleanup from taking place.
}
// The predicate used in the cv.wait calls.
bool pred = false;
bool pred_function() {
return pred == true;
}
class ThrowingMutex
{
AtomicBool locked;
unsigned state = 0;
ThrowingMutex(const ThrowingMutex&) = delete;
ThrowingMutex& operator=(const ThrowingMutex&) = delete;
public:
ThrowingMutex() = default;
~ThrowingMutex() = default;
void lock() {
locked = true;
if (++state == 2) {
assert(pred); // Check that we actually waited until we were signaled.
throw 1; // this throw should end up calling terminate()
}
}
void unlock() { locked = false; }
bool isLocked() const { return locked == true; }
};
ThrowingMutex mut;
std::condition_variable_any cv;
void signal_me() {
while (mut.isLocked()) {} // wait until T1 releases mut inside the cv.wait call.
pred = true;
cv.notify_one();
}
typedef std::chrono::system_clock Clock;
typedef std::chrono::milliseconds MS;
int main(int argc, char** argv) {
assert(argc == 2);
int id = std::stoi(argv[1]);
assert(id >= 1 && id <= 6);
std::set_terminate(my_terminate); // set terminate after std::stoi because it can throw.
MS wait(250);
try {
mut.lock();
assert(pred == false);
std::thread(signal_me).detach();
switch (id) {
case 1: cv.wait(mut); break;
case 2: cv.wait(mut, pred_function); break;
case 3: cv.wait_for(mut, wait); break;
case 4: cv.wait_for(mut, wait, pred_function); break;
case 5: cv.wait_until(mut, Clock::now() + wait); break;
case 6: cv.wait_until(mut, Clock::now() + wait, pred_function); break;
default: assert(false);
}
} catch (...) {}
assert(false);
}

View File

@ -22,6 +22,8 @@
#include <cstdlib>
#include <cassert>
#include "test_macros.h"
unsigned throw_one = 0xFFFF;
void* operator new(std::size_t s) throw(std::bad_alloc)
@ -75,7 +77,7 @@ public:
int G::n_alive = 0;
bool G::op_run = false;
#ifndef _LIBCPP_HAS_NO_VARIADICS
#if TEST_STD_VER >= 11
class MoveOnly
{
@ -137,7 +139,7 @@ int main()
assert(!G::op_run);
}
}
#ifndef _LIBCPP_HAS_NO_VARIADICS
#if TEST_STD_VER >= 11
{
assert(G::n_alive == 0);
assert(!G::op_run);
@ -150,5 +152,5 @@ int main()
std::thread t = std::thread(MoveOnly(), MoveOnly());
t.join();
}
#endif // _LIBCPP_HAS_NO_VARIADICS
#endif
}

View File

@ -9,8 +9,6 @@
//
// UNSUPPORTED: libcpp-has-no-threads
// NOTE: TSAN will report this test as leaking a thread.
// XFAIL: tsan
// <thread>
@ -47,7 +45,7 @@ bool G::op_run = false;
void f1()
{
std::exit(0);
std::_Exit(0);
}
int main()

109
test/support/test_atomic.h Normal file
View File

@ -0,0 +1,109 @@
#ifndef SUPPORT_TEST_ATOMIC_H
#define SUPPORT_TEST_ATOMIC_H
// If the atomic memory order macros are defined then assume
// the compiler supports the required atomic builtins.
#if !defined(__ATOMIC_SEQ_CST)
#define TEST_HAS_NO_ATOMICS
#endif
template <class ValType>
class Atomic {
ValType value;
Atomic(Atomic const&);
Atomic& operator=(Atomic const&);
Atomic& operator=(Atomic const&) volatile;
private:
enum {
#if !defined(TEST_HAS_NO_ATOMICS)
AO_Relaxed = __ATOMIC_RELAXED,
AO_Seq = __ATOMIC_SEQ_CST
#else
AO_Relaxed,
AO_Seq
#endif
};
template <class Tp, class FromType>
static inline void atomic_store_imp(Tp* dest, FromType from, int order = AO_Seq) {
#if !defined(TEST_HAS_NO_ATOMICS)
__atomic_store_n(dest, from, order);
#else
*dest = from;
#endif
}
template <class Tp>
static inline Tp atomic_load_imp(Tp* from, int order = AO_Seq) {
#if !defined(TEST_HAS_NO_ATOMICS)
return __atomic_load_n(from, order);
#else
return *from;
#endif
}
template <class Tp, class AddType>
static inline Tp atomic_add_imp(Tp* val, AddType add, int order = AO_Seq) {
#if !defined(TEST_HAS_NO_ATOMICS)
return __atomic_add_fetch(val, add, order);
#else
return *val += add;
#endif
}
template <class Tp>
static inline Tp atomic_exchange_imp(Tp* val, Tp other, int order = AO_Seq) {
#if !defined(TEST_HAS_NO_ATOMICS)
return __atomic_exchange_n(val, other, order);
#else
Tp old = *val;
*val = other;
return old;
#endif
}
public:
Atomic() : value(0) {}
Atomic(ValType x) : value(x) {}
ValType operator=(ValType val) {
atomic_store_imp(&value, val);
return val;
}
ValType operator=(ValType val) volatile {
atomic_store_imp(&value, val);
return val;
}
ValType load() const volatile { return atomic_load_imp(&value); }
void store(ValType val) volatile { atomic_store_imp(&value, val); }
ValType relaxedLoad() const volatile { return atomic_load_imp(&value, AO_Relaxed); }
void relaxedStore(ValType val) volatile { atomic_store_imp(&value, val, AO_Relaxed); }
ValType exchange(ValType other) volatile { return atomic_exchange_imp(&value, other); }
bool testAndSet() volatile { return atomic_exchange_imp(&value, 1); }
void clear() volatile { atomic_store_imp(&value, 0); }
operator ValType() const { return atomic_load_imp(&value); }
operator ValType() const volatile { return atomic_load_imp(&value); }
ValType operator+=(ValType val) { return atomic_add_imp(&value, val); }
ValType operator-=(ValType val) { return atomic_add_imp(&value, -val); }
ValType operator+=(ValType val) volatile { return atomic_add_imp(&value, val); }
ValType operator-=(ValType val) volatile { return atomic_add_imp(&value, -val); }
ValType operator++() { return *this += 1; }
ValType operator++(int) { return (*this += 1) - 1; }
ValType operator++() volatile { return *this += 1; }
ValType operator++(int) volatile { return (*this += 1) - 1; }
ValType operator--() { return *this -= 1; }
ValType operator--(int) { return (*this -= 1) + 1; }
ValType operator--() volatile { return *this -= 1; }
ValType operator--(int) volatile { return (*this -= 1) + 1; }
};
typedef Atomic<int> AtomicInt;
typedef Atomic<bool> AtomicBool;
#endif // SUPPORT_TEST_ATOMIC_H